
Chapter 3 

Formalism of Chemical Kinetics 

1. Main concepts of chemical kinetics 

1.1 LINEAR LAWS OF CONSERVATION 

Let the substances participating in а chemical reaction Ье A j , ••• , Аn • 

Their chemical composition is specified. Let their constituent elements Ье 
B j , ••• Вт. The number of atoms of the jth element in the molecule of A j is 
aij. The matrix (аu) = А is called а molecular matrix. 

Let N; Ье the content (mole) of substance А• in the system, N the vector 
column with components Ni • Similarly, let bj Ье the content (mole) of Bj in 
the system and Ь the vector column with components bj . They are related Ьу 

~T 

matrix А (А transposed) 
n 

bj = L auN; (1) 
i=l 

Matrix АТ 

will Ье used more often than А. Therefore it would Ье more 
correct to introduce this matrix immediately and to designate it as "atomic" 
rather than "molecular", but we will adopt the conventional approach. 
Historically, the introduction of the designations and terminology used is 
substantiated Ьу the relationship between vector columns of molecular М 
and atomic Ма weights 

т 

m i = L aijmaj 
j~j 

АМа (2) 

In closed systems the content of апу element remains unchanged with 
time, i.e. for апу j 

db d n 

d( = dt I aijN; о const. (3) 

or in matrix form 

~ ~T~ 

Ь = А N = const. (4) 

These laws of conservation are independent of what reactions take place 
between the substances A1 , А2 , Аз ... Аn • These substances consist of т 
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elements. Consequently there exist т linear laws of conservation of the type 
of eqn. (3). But they are not always independent. Sometimes part of these 
laws сап Ье represented through the rest of them. The simplest exaтple 
is the reaction ofbutene isomerization. Let A1 Ье butene·1, А2 Ье cis-butene-2, 
and Аз Ье trans-butene-2. They consist of two elements, i.e. carbon and 
hydrogen. Since the whole of А; have the saтe composition С4 Нв , the 
molecular matrix is of the form 

and the laws of conservation ЬС = 4(N1 + N 2 + Nз ) = const., 
ЬН = 8(N1 + N2 + Nз ) = const. are linearly dependent: 2Ьс = ЬН . 

1.2 STOICHIOMETRY OF COMPLEX REACTIONS 

А complex chemical reaction is represented as а sum of some elementary 
reactions. The step consists of two elementary reactions, direct and reverse. 
We will treat the reaction as elementary if its rate is dependent оп соп­
centrations specified in some simple way, e.g. this dependence fits the law of 
mass action (as will Ье discussed below). 
А step сап Ье written as 

(5) 

Here IXsi and f3si are stoichiometric coefficients, i.e. non-negative numerals 
indicating the number of molecules of the substance taking part in the 
elementary reaction, and s is the step number. 

It is the list of elementary steps (5) that is called а complex reaction 
mechanism. This list implies that the same substance сап participate in the 
step as both the initial substance and the reaction product. Ап exaтple is 
the step [1] 

Н + Н2 + М <2 3 Н + М 

where М is апу other substance. Steps of such type are called autocatalytic. 
As а rule, they are applied Ьу the Prigogine school and their associated 
groups ofresearch workers to construct hypothetical models demonstrating 
а complex dynamic behaviour. 

Recently, а whole "zoo of models" has Ьееп investigated. Its most known 
inhabitants, the 'Ъ:tussеllаtог" and "oregonator" Ref. [2], contain the steps 

А + nХ <2 mХ 

i.e. autocatalytic steps. But in real mechanisms of complex reactions that 
are not speculative these steps are observed very rarely. This was suggested, 
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for example Ьу Kondratiev and Nikitin, from their analysis of the тесЬап­
isms for complex gas-phase reactions [3J. Our viewpoint is· the вате. 
Therefore in what follows special attention will Ье given to reactions involv­
ing по autocatalytic steps. Formally it теапв that at апу value of 8 and i at 
least опе of the two values rxsi or f3si is zero. 

Stoichiometric coefficients of elementary steps are often imposed Ьу nat­
ural limitations, i.e. for апу coefficient 

n 

L Cisi ::;; 3 
i=l 

(6) 
n 

I f3si ::;; 3 
i=l 

It теапв that we consider only топо-, bi- and (rarely) termolecular reac­
tions. ТЬе coefficients IXsi and f3si themselves сап take the values О, 1, 2 and 
(rarely) 3. Опе should not confuse the stoichiometric coefficients and stoi­
chiometric numbers observed in the Horiuti-Temkin theory of steady-state 
reactions. ТЬе latter indicate the number Ьу which the elementary step must 
Ье multiplied во that the addition of steps involved in опе mechanism will 
provide а stoichiometric (brutto) equation containing по intermediates 
(they have Ьееп discussed in СЬар. 2). 
ЕасЬ (8th) step corresponds to its stoichiometric vector ys whose сот­

ponents are 

i = 1, ... , n (7) 

ТЬе vector yJndicates the direction of the composition variations due to the 
8th step. If N is а vector, whose ith component i8 the number of molecules 
~ in th~yst~m, then ys is а variation of N <]le to 1&е ac.!ion of опе reaction: 
N' = N + ys (for direct reactions) and N' = N - ys (for reverse reac­
tions). 
у also indicates variations in the vector of molar quantities N per "mole" 

of elementary acts (1 "mole" is 6.02 х 1023 elementary acts just ав опе mole 
is 6.02 х 1023 molecules). 

Ав а whole, а reaction corresponds to the stoichiometric matrix f 

(8) 

Its rows are the stoichiometric vectors ys. 
ЕасЬ step is accounted for Ьу its rate, i.e. воте function ws for the mixture 

composition and temperature 

(9) 

Here w s± are the direct and reverse reaction rates, respectively, indicating 
the number of elementary acts (or their "moles") per unit time in unit 
volume or per unit area for surface reactions. Their commonly used dimen­
sions are molecules (mole)cm- 3 в-1 or molecules (mole)cm- 2 s- 1 . 
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1.3 GRAPНICAL REPRESENTATIONS OF REACTION MECHANISMS 

Mechanisms for complex chemical reactions сап Ье represented Ьу graphs 
having nodes oftwo types [4]. Опе corresponds to elementary reactions and 
the other accounts for substances. 

It must Ье noted that the former correspond to elementary reactions and 
not to steps. It теапв that опе reversible step corresponds to two nodes. 
Edges connect nodes-substances and nodes-reactions provided that the 
substances take part in the reaction. Edges will Ье oriented from substance 
А; to reaction LQ(,Ai --+ Lf3iAi if А;" is the initial reactant (Q(i "" О) and vice 

(а) 

ог 

(d) А1~А2~Аз~А4 

(butene -1 ~ cis-butene -2 ;;=: /rans-butene- 2 ~ butene -1) 

Fig. 1. Simple examples for bipartite graphs of reaction тесЬатйвтв. О, Reaction nodes; О, 
substance nodes. 



89 

versa from reaction to substance if А; is the product (fЗ; # О). ТЬе numbers 
of edges from substance А; to reaction and from reaction to А; are СХ; and fЗ;, 
respectively. (Note that, in the саве of autocatalysis, there are edges ofboth 
types.) Let ив designate the constructed graph ав а bipartite graph for the 
reaction mechanism. The simplest examples are given in Figs. 1 and 2 (r,± are 
the 8th direct and reverse reactions, respectively). Ав more illustrative 
examples we shall consider the two detailed mechanisms for the oxidation of 
СО оп Pt. They are impact (Eley-Rideal) and adsorption (Langmuir­
Hinshelwood) mechanisms. The for1ner does not involve any interactions of 
intermediates, i.e. in every elementary step both the right-hand and left­
hand sides contain only one intermediate. Sometimes this intermediate, 
however, has а coefficient that is higher than unity 

02 + 2Pt +± 2PtO 

СО + PtO -+ С02 + Pt 
(10) 

Let ив consider transformation only of intermediates assuming that the 
gas-phase composition Ьав been specified. In what follows we will often иве 
this method to study catalytic reactions (surface dynamics is investigated 
with constant gas composition). Transformations of surface substances сап 
Ье written as 

2Pt +± 2PtO 

PtO -+ Pt 
(11) 

ТЬе corresponding graph is illustrated in Fig 3(а). ТЬе Langmuir-Hinshel­
wood lllechanism contains а step which is an interaction between inter­
mediates (step 3) 

(а) (е) 

Flg. 2. Examples о!' simple bipartite graphs. (а) Acyclic .graph for the reaction 
А] --+ А2 --+ .•• --+ Аn ; (Ь) cyclic graph for the reaction А] +± А2; (с) graph for the irreversible 
cycle А] ---+ А2 --+ •.• --+ А• --+ А]. 
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or 

(а) 

Fig. 3. Bipartite graphs for the mechanism of СО oxidation оп Pt. (а) E!ey-Ridea! (impact) 
mechanism; (ь) Langmuir-Hinshe!wood (adsorption) mechanism. 

2Pt + 02 .,z 2PtO 

Pt + СО .,z PtCO 

PtO + PtCO -> С02 + 2 Pt 

or in the form of transformations of intermediates 

2Pt .,z 2PtO 

Pt .,z PtCO 

PtO + PtCO -> 2 Pt 

ТЬе corresponding graph is iIlustrated in Fig. 3(Ь). 

(12) 

(13) 

In the analysis of reaction graphs, the concept of а "cycle" is important. 
А cycle is the set of graph nodes {Р1, Р2, ... , Pk} and the set of edges {ll' [2, 
... , lk}' In this case [1, [2, li and lk connect Р1 with Р2, Р2 with Рз, Pi with Pi+ 1 

and Pk with Р1, respectively. То analyze cycles, it is convenient to omit 
drawing two, three, etc., arrows at C(i or f3i > 1. Let us simply write C(i or f3i 
above the arrows if they are greater than unity (see Fig. 3). In the analysis 
of the stability of а complex chemical reaction, we meet with а problem of 
enumerating and investigating cycles in the bipartite graph for the reaction 
mechanism [5]. Let us enumerate cycles for Eley-Rideal and Langmuir­
Hinshelwood mechanisms (Fig. 4). 

We will leave it to the reader (as а simple but useful exercise) to еn­
umerate аН the cycles in аН the graphs depicted in Figs. 1 and 2 and also for 
the Prigogine autocatalytic trigger [6]: 
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(а) (Ь) 

Fig. 4. Cycles in bipartite graphs for СО oxidation оп Pt. (а) Impact mechanism; (ь) adsorption 
mechanism. 

А + Х <:± 2Х 

Х+Е<:±С 

С<:±Е+В 

(14) 

(remember that in the autocatalytic case the graph has two arrows, from 
substance to reaction and from reaction to substance, therefore опе auto­
catalytic reaction already provides а cycle even without taking а reverse 
reaction into account). 

In а certain sense, the simplest class ofreaction mechanism is that whose 
bipartite graphs do not contain cycles, i.e. are acyclic. ТЬе dynamic ЬеЬа­
viour of the corresponding reactions is always extremely simple [7]. Ап 
example for such а mechanism сап Ье А) -> А2 -> Аз -> ... -> А, [see Fig. 
2(а)]. ТЬе contribution of acyclic mechanisms to the kinetics of catalytic 
reactions is not of importance. ТЬе mechanisms of catalytic reactions al­
ways contain cycles and these cycles are oriented, the directions of аН the 
arrows being matched [the end of the ith arrow is the beginning of the 
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Fig. 5. Bipartite graph for the reaction mechanism А, -> А2 , А1 + А2 -> Аз. 

(i + l)th arrow]. Catalyst is not consumed but enters into the reaction, first 
combining with the other reactants and then being liberated again. ТЬе 
corresponding sequence of elementary reactions is 

С(l Аl + ---+ fЗI А2 + 

С(2А2 + ---+ fЗ2Аз + 
(15) 

---+ fЗk-l Аk + ... 

C(kAk + ---> fЗk Аl + ... 

where the dots denote various substances taking part in the reactions. 
А graph for the mechanism having the sequence of steps shown Ьу eqn. 

(15) contains а cycle [see Fig. 2(с)] aHlines in which are oriented so that the 
end ofthe ith edge is the beginning ofthe (i + l)th ("oriented over а circle"). 
But this is not the case for аН possible cycles. For example, the two-step 
mechanism А1 ---> А2 , А1 + А2 ---+ Аз has а cycle (Fig. 5), but the branches 
from А1 are directed "oppositely" and those to Т2 are directed "towards еасЬ 
other". ТЬе absence of oriented cycles also ensures simple dynamic ЬеЬа­
viour [7]. Bipartite graphs for the Eley-Rideal and Langmuir-Hinshelwood 
mechanisms Ьауе cycles of both types, i.e. those that are "oriented over а 
circle" and those that are not [Fig. 4(а), (Ь)]. In what foHows we will соте 
back to the analysis of cycles in bipartite graphs ofreaction mechanisms. It 
will Ье done in answering the question whether is is possible at а given 
reaction mechanism to observe а multiplicity of surface steady states, self­
oscillations, etc. 

If аН the elementary reactions are monomolecular, i.e. сап Ье written as 
А1 ---> A j , it is more convenient to represent reaction mechanisms in а dif­
ferent way, namely nodes correspond to substances, edges are elementary 
reactions, and edge directions are the directions of reaction processes. As 
usual, this graph is simpler than the bipartite graph. For example, for the 
system of three isomers А1 , А2 and Аз we obtain 
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(16) 

This graph сап Ье compared with that represented in Fig. 2(с). 
Strictly speaking, mechanisms for heterogeneous catalytic reactions сап 

never Ье monomolecular. Thus they always include adsorption steps in 
which the initial substances are а minimum of two in number, i.e. gas and 
catalyst. But if опе considers conversions of only surface compounds (at а 
constant gas-phase composition), а catalytic reaction mechanism сап also Ье 
treated ав monomolecular. It is these mechanisms that Temkin designates ав 
linear (вее Chap. 2). 

Let ив consider воте examples. 
The simplest mechanism for ап enzyme-catalysed reaction (Michaelis­

Menten scheme) is 

Е + S <=± ES 

ES -> Р + Е 

where S and Р are the substrate and product, respectively, and Е and ES are 
various enzyme forms. 
А graph for the conversions of intermediates for this mechanism is 

The graph for simple reaction mechanism of the liquid-phase hydrogena­
tion А + Н2 = АН2 is similar. 

Н2В01 + Z <=± Н2 Z 

H2Z + АВО1 <=± АН2о01 

The reaction mechanism for the dehydrogenation of butane сап Ье sim­
plified Ьу the combination of steps 

С4 Н10 + Z <=± C4 H8 Z + Hz 

C4 H8 Z <=± С4Н8 + Z 

C4 H8 Z <=± C4 H6 Z + Н2 

C4 H6 Z <=± С4Н6 + Z 
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А graph for the surface conversions is 

А fragment of n-hexane conversions оп supported Pt catalysts lS re-
presented as 

Н + К f:± НК 

НК f:± IK 

НК f:± МСК 

МСК f:± МС + К 

нк --> Р + к 

нк --> В + К 

IК f:± МСК 

IK f:± 1 + К 

IK --> Р + к 

МСК --> В + К 

where Н, 1, В, МС, and Р are n-hexane, hexane isomers, benzene, methyl­
cyclopentane and cracking products, respectively, and К, НК, МСК and IK 
are intermediates. 
А graph for surface conversions is 

ТЬе numerals over the oriented arc of the graph indicate the numbers of 
the steps (or а step) with the help of which one intermediate is formed from 
the other. 

Cycles in the graph for а linear mechanism are usually called the "re­
gularly oriented" cycles, i.e. sets of substances and reactions of the type 
А1 --> А2 --> Аз --> .•. --> Аn --> А1 (the reactions сап also Ье reversible). 
Thus the combination of reactions 

is а cycle, but the mechanism 
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is acyclic. 

1.4 CHEMICAL КINETICS EQUATIONS 

Chemical kinetics equations for the closed heterogeneous "gas-solid" 
systems are of the type 

dN 
(17) 

dt 

---=:,.gas 

dN 

dt 
(18) 

dt 

where rfas is the vector of substance concentration in the gas phase, ll:/;ur the 
vector of substance concentrations оп the surface, у:аэ the part (projection) 
of the stoichiometric vector for surface reactions composed of stoichiometric 
coefficients for the gas-phase substances, у:uт the part (projection) of the 
stoichiometric vector for surface reactions composed of stoichiometric 
coefficients for the surface compounds, Уа the stoichiometric vector for 
gas-phase reactions, V the gas volume and S the catalyst surface. 

То discriminate between reactions оп solid surfaces and in the gas phase, 
we have introduced different indices, i.e. s for the former reactions and (J for 
the latter. 

Equations (17) and (18) describe the process of complex homogeneous­
heterogeneous reactions. 

Example 1. Let us consider а catalytic isomerization reaction (the sim­
plest model саве). Let the gas phase contain two isomers, А! and А2 , and the 
catalyst surface have three intermediates, Аз = Z (active sites), А4 = A!Z 
and А5 = A2Z. Steps will Ье listed ав follows: (О) А! +2 A2 (gas) and (1) А! + 
Z +2 A!Z; (2) A!Z +2 A2 Z; (3) А2 + Z +2 A2 Z (solid surface). The 
stoichiometric vector Уа for the gas-phase reaction А! +2 А2 is of the form 
[ -i] and for the surface reactions Ys is 

-ll r О 
О 00 

-1 У2 

~ [-: J 

Уз 
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In this саве 

[-01], -ygas = 
j 

---,,-gas 

У2 

,;"' ~ l Л 
If the isomerization rate in the gas phase is шо and that оп the surface is 

Шj , Ш2 , шз, then the kinetic equations сап Ье written as 

Й! S(- Шj ) - VШо 
Й2 S(- шз ) + VШо 
Nз = S(-шj - шз ) (19) 

Й4 S(Шj - Ш2) 

or 

d [Nj ] ~gas ~gas ~gas 
-d = S(Yj Шj + У2 Ш2 + Уз шз) + VУоШо t N2 

d l Nз] sur ~sur ~sur 
dt ~ = S(yj Шj + У2 Ш2 + Уз шз) 

(20) 

Kinetic equations сап Ье reduced to а more compact form using а stoi­
chiometric matrix and writing the rates for the various steps as а vector 
column. Then 

dN 
(21) 

dt 

where Г• is the stoichiometric matrix for surface reactions, Гg that for 
gas-phase reactions, Ws is the vector column for surface reaction rates and 
w that for gas-phase reactions. For the above example of catalytic isomeri­
zition reaction 

о 

о 

-1 

-1 

О 

-1 

1 

-1 

О 

~1 
lJ 



г ( - 1, 1, О, О, О) 

ш = шо g 
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Let ив establish the limitations imposed оп the coefficients (17) and (18) Ьу 
the linear laws of conservation, eqn. (4) 

-Т _Т_ _Т_Т_ 

SA ГsШs + VA ГgШg (22) 

Since linear laws of conservation must Ье fulfilled at any rate of individual 
steps, we obtain 

_Т_Т _Т_Т _ 

А Г• = А r g = О (23) 
_Т_Т 

or, Ьу using the equality А Г 

ГА = -о (24) 

where Г is the arbitrary stoichiometric matrix. 
For individual steps condition (24) in the vector form is 

АТу, = -о 

(25) 

According to eqn. (25) the vectors У, lie in the виЬврасе composed of the 
_Т_ _ -Т 

solutions for the equation А х = О, i.e. the core of the matrix А . 
If the family of the vectors Gs} does not provide this виЬврасе, i.e. the 

family rank is lower than the matrix defect 

со -Т 
rg l у, } < n - rg А (26) 

the number of linearly independent reactions is lower than their maximum 
-Т 

possible number, i.e. the defect of the matrix А . 
In this саве, new linear laws of conservation appear that are not associat­

ed with the conservation of any atoms and are simply of the kinetic type [8]. 
Example 2. Let the reactions 

А) + А2 <=± Аз 

А) <=± А2 

take place, where А] and А2 are isomers and Аз dimer. For this system the 
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linear law of conservation Nj + N2 + 2Nз = Ь! holds. Let ив аввите that the 
reaction А! +2 А2 does not take place. Then а kinetic law of conservation 
will again appear in the system: Ь2 = N j - ~. 

This situation is observed rather rarely, but it is still possible. То establ­
ish these laws, опе сап examine, for example, а set of linear equations with 
respect to the n-dimensional vector row х 

~~ ~ ~T~T ~ ~~ ~ 

х у 5 = О for each в, А х = О or хА = О (27) 

This equation is the condition ofx rows orthogonality to лТ (А columns). It 
is necessary in order to eliminate the need to obtain опсе again the laws of 
conservation for the number of atoms or their linear combinations when 
determining х. То establish some additional kinetic laws of conservation, 
опе must solve Eqns. (27) and obtain а complete linearly independent set of 
х- {x j , ••• , Xk} which satisfy it. The laws of conservation are specified Ьу 
the relationships x)V = const. (j = 1, ... , k). 

In what follows when discussing the general properties of the chemical 
kinetic equations, we will assume that the additional laws of conservation 
(if there are апу) have .!:~en discovered and the respective values of Х are 
included in the matrix А as additional rows. 

1.5 REACTION POLYHEDRON 

In the system (18) there exist laws of conservation (22) and it is imposed 
Ьу the natural condition of having positive amounts (mole) of reactants. 
Непсе it is possible to describe the region of composition spaces in which the 
solution for eqn. (18) N(t) (О ~ t < со) with non-negative initial conditions 
lies. It is а сопуех polyhedron specified Ьу the set of linear equations and 
non-equalities [9, 10]. 

n 

I ai/V; = bj 
[=1 

(j = 1, ... , т) 
(28) 

1, ... , n 

where 
n 

bj I aij!l;(O) 
i=l 

Let ив designate this polyhedron as п(6) and саВ it а reaction polyhedron. 
Examples of the construction of п(5) for catalytic reactions are given below. 

Example 3. Let us consider а system ofthree isomers A j , А2 and Аз taking 
part in catalytic isomerization reactions. 

А! +2 Az 

(29) 
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Such а scheme for the catalytic isomerization of n-butenes over А12Оз has 
been studied in detail previously [11]. Each reaction has а rate that is а 
function of both the gas composition and the surface state. In this саве the 
assumption that the concentration of surface intermediates оп the catalyst 
is а function of the gas composition is often used. It is а hypothesis about а 
quasi-steady state that is considered in detail in what follows. According to 
this hypothesis, for the reaction under study there exist three functions of 
the gas composition, W 1W 2 , and Wз , во that the kinetic equations сап Ье 
written ав 

N1 - W 1 + Wз 

Й2 W 1 - Ш2 (30) 

Nз Ш2 - Wз 

It has Ьееп shown [11] that, even when we assume Wi to Ье such linear 
functions of the gas concentrations ав if the three reaction steps of eqn. (29) 
were elementary, experimental results сап Ье described well. Let ив аввите, 
in accordance with ref. 11, that the three reaction steps of eqn. (29) are 
elementary. Their stoichiometric vectors are 

(31) 

and the stoichiometric matrix is 

(32) 

Molecules A1 , А2 , and Аз are isomers and have the вате composition. 
Therefore the amount of апу element in the system is proportional to N1 + 
N2 + Nз 

(33) 

where aj is the amount of the jth element in the isomer molecule. 
For our system it is sufficient to consider only опе law of conservation 

(34) 

The respective "molecular matrix" is the vector column 

(35) 
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ь ~ А'Й ~ (1,1,1) х [~] 
Relationship (24) (ГА = О) сап readily Ье tested. The reaction polyhedron 

fJ is the intersection of the plane specified Ьу eqn. (34) with а positive octant 
[Fig. 6(а)]; ав is вееn in Fig. 6(а), fJ is а triangle. 

Due to the law of conservation (34), the arnount of оnе substance сап Ье 
expressed in terms of those of two 'others, e.g. 

(36) 

Неnсе, eqn. (30) сап Ье represented as а set oftwo equations containing N1 (t) 
and N2(t). The reaction polyhedron fJ in the coordinates N1 and N2 is speci­
fied Ьу the conditions N1 )о О, N2 )о О, Nз = Ь - N1 - N2 )о О. This is illu­
strated in Fig. 6(Ь). It is the вате fJ [Fig. 6(а)], but in the other coordinates; 
we consider only the limits for N1 and N2 variations since Nз is а function of 
N1 and N2[eqn. (36)]. 

Example 4. Let us return to the catalytic isomerization reaction described 
in example 1 and give it а complete consideration without using the sugges­
tion about the low arnount of the catalyst and the quasi-steady state hy­
pothesis (in contrast to exarnple 3). Substances for this reaction are: isomers 
А1 and А2 ; surface compounds Аз = Z (active size); А4 = A1Z; А5 = A2 Z. 
There exist two laws of conservation: under conservation are the overall 
number of isomers (both in the gas and оп the surface) and the overall 
number of active sites 

Ь1 Nr + N2 + N4 + N5 

Ь2 = Nз + N4 + Nr, 
(37) 

The respective "molecular matrix" is 

Fig. 6. Reaction polyhedron for butene isomerization (а) in the coordinates of N" N2 and N" and 
(ь) in the coordinates of N, and N". 
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1 О 

1 О 

Л о 1 

1 1 

1 1 

Ь ЛТ)\Т 

Nj 

[~ :] 
N2 

[::] 1 о 1 
(38) Nз 

О 1 1 
N4 

N5 

The number of substances is five, therefore for every values of Ь ) and Ь2 the 
two equations (37) specify а three-dimensional plane (linear manifold in the 
врасе of compositions). Its intersection with the set of non-negative vectors 
(N; ~ О, i = 1, ... ,5) gives а three-dimensional reaction polyhedron. Let ив 
describe its structure with various ratios of the balance values for Ь ) and Ь2 • 

First we will recall one fact from linear algebra: let L j and L2 Ье linear 
manifolds (planes) in the n-dimensional врасе and their sizes Ье equal to n ) 
and n2, respectively. Then, "ав а rule", the size of their intersection is 
n ) + n2 - n if this number is non-negative, otherwise, "ав а rule", there is 
по intersection (the intersection is empty). Let ив remind ourselves that the 
size of а point is zero. "Ав а rule" here means: (а) if the intersection size is 
n ) + n 2 - n, по sufficiently low variations ofL j and L2 (а shift or а turn) сап 
change this size; (Ь) ifthe intersection size is different, there exist arbitrarily 
low variations of L j and L2 (shifts or turns) after which this size Ьесотев 
equal to n ) + n2 - n. For example, two straight lines оп the plane intersect, 
ав а rule, at а point n1 + n2 - n = 1 + 1 - 2 = О. The exception is either 
parallel (the intersection is empty) or coincident (the size of intersection 
equals unity) straight lines. In both савев it suffices to turn one of the 
straight lines at an arbitrarily втаll angle and they will intersect at а point. 

Ав а rule, in three-dimensional врасе the intersection of two straight lines 
is empty. In саве it is not empty, then а втаll shift of one ofthe straight lines 
сап make it empty. The intersection of а plane and а straight line is, ав а 
rule, а point, and that oftwo planes is а straight line. То describe а reaction 
polyhedron, the first thing to do is to specify its nodes (vertices). They are 
the intersections of а plane specified Ьу eqn. (37) with воте faces of the set 
(а cone) of non-negative vectors. Faces of this cone are specified Ьу the sets 
of equations and unequalities 
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N; О (for i from а certain set of the indices 1). 

~ ;;:, О (for j not entering into 1). 

Thus, for example 3 the nodes D are the intersection of the plane 
N1 + Nz + Nз = Ь with the edges ofthe cone for non-negative vectors (Fig. 
6), rays 

О 

О 

О 

Nз ;;:, О 

N1 ;;:, О. 

N2 ;;:, О 

(39) 

It is natural to assume that, as а rule, in the case under consideration 
(catalytic isomerization) the nodes of D will form at intersections with 
two-dimensional faces (the space is five-dimensional whilst the face is three­
dimensional, 2 + 3 - 5 = О). These faces are specified Ьу the conditions 
N;, = N;, = N;, = О atj = i lo i2 , iз • It is also possible that there are special 
савев of such Ь1 to Ь2 ratios that а vertex is formed at а point of intersection 
with а one dimensional face-ray: N;, = N;, = N;, = N;,; ~ > О atj = i 1 , i 2 , 

iз , i4 • 

Let Ь1 > Ь 2 • This corresponds to an ordinary case, when the catalyst 
weight is lower than that of gaseous substances. It is also evident that Ь 1 , 

Ь2 > О. W е will find vertices of а polyhedron D in the foHowing way. Let 
воте N; Ье equal to zero and under this condition we will examine а set of 
balance equations (37). If it has only а non-negative solution, then it is this 
solution that is the vertex of п. If this solution is not the only one, it must 
Ье suggested that some other N; = О and it is necessary to examine eqns. (37) 
once again. After examining аН possible combinations of indices i and 
assuming that N; = О, we wiH find аН the vertices for the polyhedron п. 
Since the set of balance equations (37) consists of two equations regarding 
five unknown quantities, to obtain its only solution it must Ье supplemented 
Ьу at least three equations. At Ь 1 > Ь2 we will obtain the foHowing results. 
System (37) supplemented Ьу one of the conditions N1 = N2 = Nз = О, 

N1 = N2 = N4 = О, or N1 = N2 = N5 = О has по non-negative solutions, i.e. 
the system mass cannot Ье concentrated in the pairs of substances (а) А1 Z, 
A2 Z, (Ь) Z, A1 Z, (с) Z, A2 Z. Ттв is due to the inequality Ь 1 > Ь 2 • If eqns. (37) 
are supplemented Ьу the condition Nз = N4 = Ns = О, it appears that the set 
obtained does not Ьауе solutions at аН. Ттв is natural, since Ь2 =1= О and we 
assume the absence of surface compounds, which leads to this contradiction. 
For аН the rest ofthe conditions, type N;, = N;2 = N;, = О, the set ofbalance 
equations supplemented Ьу them Ьав the only non-negative solution. ТЬеве 
conditions and their solutions are 

О 

О 

(40а) 

(40Ь) 
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(40с) 

(40d) 

N2 Nз N5 О N j Ь ] - Ь2 , N4 Ь2 (40е) 

N2 N4 N5 О N j b j , Nз Ь2 (40f) 

In the cases (40а) and (40d), the whole of the catalyst (its active centres) 
is concentrated in substance A2 Z, whereas in cases (40Ь) and (40е) and (40с) 
and (40f) it is in AjZ and Z, respectively. 

То construct the reaction polyhedron 15, it is insufficient to know only its 
vertices. W е must also find its edges, i.e. one-parametric families of the 
positive solution for set (37) supplemented Ьу the conditions N; = о for а pair 
of indices i1,2' Two-dimensional (flat) faces are found as two-parametric 
families of solutions for eqn. (37) supplemented Ьу the condition N; = о with 
the only value of i. 

It is convenient to represent the polyhedron 15 schematicaHy in three­
dimensional space. For this purpose, Ьу using the laws of conservation (37), 
we сап eliminate two coordinates Ьу expressing them through the remaining 
three. It is possible to eliminate аnу pair of coordinates except for Nj , N2 and 
N4 , N5 • Let us eliminate Nз and N j Ьу using the relationships 

Nз Ь 2 - N4 - N5 
(41) 

In the coordinates of N2 , N4 and N5 and taking into account eqns. (41), the 
polyhedron 15 will Ье specified only Ьу the inequalities 

Nj Ь ] - N2 - N4 - N5 ~ О 

Nз Ь2 - N4 - N5 ~ О 

ТЬе form of 15 is illustrated in Fig. 7(а)---(с). The figure also shows what 
substances concentrate the whole ofthe таББ ofthe system for vertices ofD. 

In the high-vacuum experiment, when the quantities of gaseous substan­
ces Nj and Nz are extremly low, а situation is possible when аН the balance 
values of Ь] and Ь2 are commensurable, even Ь] < Ь2 • In the latter саБе the 
total amount of catalyst active centres is higher than the quantity of gaseous 
substances. If Ь ] approaches Ь2 but remains higher than Ь2 , Боте pairs of 15 
vertices also соте closer. АБ Бееn from eqns. (40), the following vertices will 
converge: (N2 = Ь ] - Ь2 , N5 = Ь2 ) [eqn. (40а)] with (Nj = Ь] - Ь2 , N5 = Ь2 ) 

[eqn. (40d)], and (N2 = Ь ] - Ь 2 , N4 = Ь 2 ) [eqn. (40Ь)] with (Nj = Ь ] - Ь2 , 

N4 = Ь2 ) [eqn. (40е)]. 
We Ьауе presented here only the non-zero values of the coordinates. In 

both саБеБ the Euclidean distance between the variants inside these pairs, 
[Lf~j (N; - 1\\')2Р/2, is equal to 21/2 1Ь ] - Ь2 1 and tends to zero at Ь] --+ Ь2 • For 
the other pairs of vertices the situation is different. 
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Fig. 7. Reaction polyhedron for eatalytie isomerization. (а) Ь, > Ь,; (ь) Ь, = Ь,; (е) Ь, < Ь,. 

At b1 = Ь2 , the value of N1 in vertices (40d) and (40е) and of N2 in (40а) and 
(40Ь) reduce to zero, and instead of four vertices there remain two, i.e. 
(N5 = b1 = Ь2 ) and (N4 = b1 = Ь2 ). The rest of the coordinates for these 
points are zero [вее Fig. 7(Ь)]. With further increases in Ь 2 , we obtain 
b1 < Ь2 • The vertices (Nз = Ь2 - Ьи N4 = b1) and (Nз = Ь 2 - b1, N5 = Ь2 ) 
appear [Fig. 7(с)]. For these vertices the whole ofthe gas is adsorbed: for the 
former in the form of A1Z and for the latter ав A2Z. There are two more 
vertices, (40с) and (40f), in which gas and catalyst are separated (clean 
surface) and the whole of the gas is concentrated either in isomer A1 (40f) or 
in А2 (40с). These vertices are common to аН the thre.e саБев of b1 ~ b2[Fig. 
7(а)-(с)]. 
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1.6 REACTION RATE 

When introducing the concept of the elementary reaction rate, we treated 
it ав а number of elementary acts per unit volume or per unit surface for а 
unit time. But ав а rule, the elementary character of а reaction and the 
number of elementary acts cannot Ье tested experimentally. Therefore it is 
important to determine а rate of reaction step using the kinetic equation 

N = SLYsWs + VLYuWu 
s и 

Here the step rate Ws,u acts ав а coefficient for the stoichiometric vector Ys,u, 
and it is this coefficient that is found when processing data of kinetic 
experiments, 
А difference between "elementary" (e.g., Н + 02 -> ОН + О) and non­

elementary (e.g, 02 + 2Н2 --> 2Н2 О) reactions is in the form of the W de­
pendence оп the reactant concentrations, For elementary reactions the law 
of тавв action (the law of acting surfaces) is assumed to hold, According to 
these laws, the rates for direct and inverse elementary reactions 

IX1A1 + , , , + IXnАn <= fJ1A1 + , , , + fЗnАn 

are specified ав 

ш+'- (С) = k+'- (Т) fI с""р, 
i=l 

(42) 

The reaction rate for а step, ш., is the difference between the rates for the 
direct and inverse reactions (ш,+ and ш,- , respectively), i,e, w = ш; - ш;, 

Here Ci is the concentration of the ith substance, i,e, Ci = N i I V for the 
gas-phase substance and Ci = Ni I S for the surface compound and с is the 
concentration vector, We will use cg and cS for the concentration vectors of 
gas and surface compounds, respectively, 

The temperature dependence of the rate constant is usually taken ав а 
generalized Arrhenius law 

(43) 

where Ао ± is а constant, Е ± the activation energies for the direct and 
inverse reactions and n± the exponents of а power that are seldom given а 
direct physical sense, Sometimes they are associated with the number of 
degrees of freedom (heat capacity) for the initial reactants and reaction 
products [3], At present, we believe it is most reasonable to treat the con­
stants for the generalized Arrhenius law (Ао ±, n ± and Е ±) ав matching 
parameters found Ьу the interpolation of experimental data, In different 
elementary act models these parameters сап, however, Ье given а concrete 
physical sense, In particular, Е ± сап Ье interpreted ав real activation 
energies, i,e, values of potential barriers that must Ье overcome во that а 
reaction сап take place, But one must remember that this is not obligatory, 
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According to various model considerations, опе сап often obtain more 
complicated temperature dependences of rate constants than eqn. (43) (see, 
for example, ref. 3). 

1.7 CONCENTRATION EQUATIONS 

If а reaction proceeds at а constant reaction volume, eqns. (17) and (18) 
сап Ье readily rewritten relative to concentrations 

(44) 
1 dJVsur 

SaJ 
or 

dt 
(45) 

А somewhat complicated case occurs when the reaction volume is vari­
аЫе. Ап equation for varying gas concentrations сап Ье obtained from eqns. 
(17) and (18) using the relationship 

dt 

di 

and the state equation. 

1dJVgas ~ 1dV 
--- - c g

-­
V",· V dt 

dt 
(46) 

Let us consider it in more detail. Let V Ье expressed through concentra­
tions using the balance relationships 

bj = I aijN; = I aijN;gas + ~ aijN;sur 
i 

(47) 

Непсе 
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(48) 

where ац are the elements of а molecular matrix and summation in the 
numerator and denominator is made over the indices corresponding to the 
surface compounds and gas, respectively. It is convenient to use the gas mass 
balance since Iщсf reduce to zero only in the саве c;g = О 

V = т - SIm;c;' 
. Im;c;g 

(49) 

where Щ in the numerator is the gas тавв entering into а mole of the ith 
surface compound* and in the denominator the тавв of а mole of the ith 
substance of the gas phase, and т is the total тавв of the system gas (both 
adsorbed and in the gas рЬаве). Equation (49) Ьав а simple physical вепве. Its 
numerator is the тавв of substances that are present in the gas phase (the 
total тавв minus the тавв of adsorbed gas) and the denominator is the gas 
phase density. Accordingly, in eqn. (48) the numerator is the amount of the 
jth element in the gas рЬаве and the denominator is its amount per unit 
volume of gas. 

Equation (49) must Ье substituted for V in eqn. (46) and d V/dt is to Ье 
expressed through reaction rates using equations of states under given 
conditions. For isobaric isothermal conditions and in the саве ofthe applica­
bility of the ideal gas model 

V = ~~tВ: (50) 

where Р is а constant pressure, Т is а constant temperature, Nt~t is the 
number of gas moles, ~~c = N;g, and R is the universal gas constant. 

From eqn. (50) we obtain 

~~ = RJ [s ~ (ш,(с) ~ y~;a,) + V~ (wa(cg) ~ Уа;)] (51) 

Using eqns. (49) and (51), eqns. (46) сап Ье represented ав 

dt 

(52) 

* The authors have not found а better designation to define а surface substance component 
transferred from the gas phase. 

References рр. 183-184 



108 

dc' ,,- - --- = L.., у~шв(е) 
dt S 

This equation accounts for variations in the reaction volume for the 8th and 
uth steps (per one "mole" of elementary acts in the direct reactions) 

RT 
д v = _" У .gas 

s р ..у St 

RT 
д V. = р L:YUi , (53) 

Thus а method has been demon:strated, taking into account the equation 
of state, for proceeding from the kinetic equations of the amounts of sub­
stance to the equations for concentrations (isobaric process). 

It might seem that, for the derivation of kinetic equations describing 
variations in the amounts of substance eqns. (17) and (18), the equation of 
state is unnecessary. But this is not so. In the case of а variable reaction 
volume, it тау Ье necessary to express gas-phase substance concentrations 
through their amounts, since step rates w are specified ав functions of 
concentrations. For isobaric isothermal processes and ideal gases с" = N" j 
V = PN"jN"totRT. 

Note that volume V сап Ье determined through balance equations and 
substance concentrations using eqns. (48) and (49) without an equation of 
state. But to express volume V through balance equations and substance 
amounts appears to Ье impossible and the equation of state must Ье used. If 
а process is either non-isothermal or non-isobaric, it is also necessary togive 
а law of either temperature or pressure variations. 
А question arises in what савев have equations for substance concentra­

tions the вате form ав for substance amounts 

ctt 
SL:- -- ----V Ys"aSws(e) + "У w (с") L.., u u 

s 

(54) 

dt 

It only occurs in the савев when the reaction volume remains unchanged or 
where its variations during the course of the reaction сап Ье neglected. 

We discuss the equation for concentrations in detail since, in many савев, 
their wrong derivation results in errors. 

In many cases partial pressures are used ав variables. For ideal gases 

Р; = erRT (55) 

and to write Р; is not difficult (in the isothermal саве) if equations for 
concentrations have been derived. If Р; are treated as the main variables to 
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describe the gas phase state, it is natural that reaction rates are also ех­
pressed through р;. The rate of reaction 

(56) 

is specified ав 

(57) 

In this саве if the reaction takes place оп the surface, w has, ав usual, а 
dimension of mole ст - 2 S - \ and accordingly k is expressed in (mole ст - 2 

'Eo;g 2,;0;8 

s-ltorr- 1 ) i х (molecm- 2 ) '. 

It is also possible to иве other pressure units. А detailed analysis for the 
derivation of kinetic equations for reactions taking place under various 
conditions is given in ref. 12. 

То describe the surface state of catalysts during the course of reactions, 
one сап also иве new variables that are surface coverages. They have а 
simple distinct sense when active centres are of the вате type. If the number 
of active centres and their concentration are designated ав Ь• and с• = bz/S, 
respectively, any compound оп the surface A i ' сап Ье written ав 

е = Ц' 
, Ь• 

(58) 

w е do not give а superscript s for ei or g for Р; since е is а specific 
characteristic for surface compounds and cannot refer to gases. It is not 
difficult to rewrite the basic equations in new variables (surface coverages), 
since Ь• is constant. 

Then the balance equation for surface coverages is 

(59) 

Here aiz is the number of active centres in the ith surface substance A i'. If 
аН these substances contain one active centre, eqn. (59) takes the form that 
is typical for heterogeneous catalysis 

(60) 

One must remember, however, that in the general саве eqn. (59) should Ье 
used. 

If active centres are of different types, it is possible to introduce surface 
coverages corresponding to every type of these centres. 

1.8 NON-IDEAL SYSTEMS 

А law of тавв action/acting surfaces is the simplest of аН the possible 
kinetic laws. But it веетв to Ье far from being valid in every саве. Progress 
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in the application ofthis law сап Ье attributed, in particular, to the fact that, 
for а given series of substances, it is possible, Ьу increasing the number of 
steps and using the appropriate rate constants and solving kinetic eqns. (17) 
and (18) for апу finite time period, to approximate fairly well апу differen­
tiable function N(t) that fits the condition of non-negativity and balance 
equations (4) and has по points of self·intersection: N(t1 ) =1= N(t2 ) at t =1= t2 • 

Roughly speaking, it means that this law сап describe апу dynamic beha­
viour in cases where there are по additionallimitations (e.g. а principle of 
detailed equilibrium we will spea~ about in what follows). If, besides some 
additional steps, we also introduce new "intermediate substances", then 
even when the principle of detailed equilibrium holds we сап obtain an 
accurate description for апу dynamic behaviour for а finite time period Ьу 
kinetic equations derived in accordance with the law ofmass action/acting 
surfaces (for details see ref. 13). 

Note that the worse this law fits the real conditions the larger is the 
number of steps (and "intermediate substances") that must Ье introduced to 
describe а reaction. It is possible to describe the rate of an elementary 
reaction in terms of the other kinetic law. Ап important generalization for 
the law of mass action (acting surfaces) is the Marcelin-de Donder kinetics 
[14]. According to this law, every substance А, is described Ьу а certain 
function of concentration, the activity а/с). Then the rate of reaction 

(61) 

is described as in eqn. (42), but instead of concentrations reaction activities 
are given 

ш = k(T) Па;"' (62) 

Function а/с) must satisfy the apparent limitation 

а/с) = о if е. = О (63) 

Ттв limitation is adequate to the fact that the rate of substance сопвитр­
tion is zero when this substance is absent. 

ТЬе law of mass action is а traditional base for modelling chemical reac­
tion kinetics, but its direct application is restricted to ideal systems and 
isothermal conditions. More general is the Marceline--de Donder kinetics 
examined Ьу Feinberg [15], but this also is not always sufficient. Let ив give 
the most general of the reasonable forms of kinetic law matched to ther­
modynamics. The rate of the reversible reaction eqn. (5) is 

- О(с ш(е, Т) = ш е, Т)(ехр Lдi f1i - ехр L{3if1,) (64) 

where шо(с, Т) is а positive function and f1i(C, Т) is the pseudo-chemical 
potential of substance Ai • As usual, f1i is а chemical potential divided Ьу RT. 
А kinetic equation for а closed system is eqn. (17). For а homogeneous 
system 
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(65) 

where N is the vector оЕ amounts N; оЕ substance Ai , V is the system volume, 
W. is the rate оЕ the 8th step оЕ the type оЕ eqn. (64), and У. is the stoi­
chiometric vector with components Ysi = fЗэ! - IXsi ' Values оЕ N; are the prin­
cipal variables characterizing the state оЕ the reaction mixture. Under the 
conditions given, the rest оЕ the values сап Ье expressed through N and the 
values that are constant under the conditions specified. Then let us assume 
that it is done every time. . 

The potentials I'; must satisfy the following conditions. 
(1) Condition оЕ symmetry. 

Jl'i Jl'j 
д~ = дЦ 

(2) Condition оЕ positive values. 
(а) А quadratic form 

Jl'i 
~ Х; JN Xj 
'J J 

is non-negatively determined in Rn. 

(66) 

(67) 

(Ь) А quadratic form (67) is positively determined in апу hyperplane with 
а positive normal v (every У; > О). 

Conditions (66) and (67) ensure the existence ofLyapunov's сопуех func­
tion for eqns. (17): дЩдЦ = 1';. With а known type оЕ the potentials 1'; for 
which condition (1) is fulfilled, опе сап obtain Lyapunov's thermodynamic 
functions for various (including non-isothermal) conditions. Thus, for ап 
ideal gas and the law оЕ mass action [16] 

~ U Су 
I',(С, Т) = lnc; + RT + 7f InT + д; 

where и, is the energy for the basic state оЕ А;, CVi is the specific partial heat 
capacity, and д; is а constant accounting for the position оЕ ап equilibrium 
point. The obtained expression for 1'(;;, Т) makes it possible to obtain ап 
explicit form for the Lyapunov's function оЕ G. For example, for а ther­
moisolated system under the conditions V, И = const. (where И is the 
internal energy for the system) 

G = LN;(ln ~ + д; - 1) + ; (InT + 1) 

where 

and 

Т = (И - LUД) 
CV 
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The approach suggested provides the possibility of generalizing similar 
formulae for f-li and G for the саве of variable specific partial heat capacities, 
more complex equations of state, non-ideal kinetics at V, Т = const., etc. 
[16, 17]. Note that, at constant heat capacity, Т сап Ье treated ав а "виЬ­
stance" [18]. However, to extend this analogy to the general саве is incor­
rect. 

2. Principle of detailed equiIibrium and its corollaries 

2.1 PRINCIPLE OF DETAILED EQUILIВRIUM 

80 far (8ect. 1) we have discussed only approaches to derive chemical 
kinetic equations for closed systems, i.e. those having по exchange with the 
environment. Now let ив study their dynamic properties. For this purpose let 
ив formulate the basic property of closed chemical systems expressed Ьу the 
principle of detailed equilibrium: а rest point for the closed system is а point 
'of detailed equilibrium (PDE), i.e. at this point the rate of every step equals 
zero 

шs + = ШS - ,Шs = Ш. + - Ш. - = О (68) 

Непсе if in the closed system с = N = О, then for еуегу step Ш. = О. 
Fundamental results in substantiating and extending the principle of 

detailed equilibrium to а wide range of chemical ргосеввев were obtained in 
1931 Ьу Onsager, though chemists had also applied this principle (вее Chap. 
2). А derivation of this principle from that of microscopic reversibility was 
reported Ьу Tolman [19] and Boyd [20]. In the ргевепсе of ап external 
magnetic field it is possible that equilibrium is not detailed. Respective 
modifications of this principle were reported Ьу de Groot and Mazur [21]. 

Note that, when speaking about closed systems, опе should remember not 
only the extent ofthe closed nature, i.e. the аЬвепсе ofin-flux and off-flux of 
the substance, but also about the equilibrium of the environment with which 
the system interacts. The ideal interaction with ап equilibrium environment 
сап Ье of веуегаl types, e.g. (а) according to the heat, they are isothermal 
(interacting with а thermostat) or heat insulating and (Ь) according to 
volume and pressure these interactions are isobaric or isochoric. 

The principle of detailed equilibrium accounts for the specific features of 
closed systems. For kinetic equations derived in terms of the law of тавв/ 
surface action, it сап Ье proved that (1) in such systems а positive equi­
librium point is unique and stable [22-25] and (2) а non-steady-state beha­
viour of the closed system near this positive point of equilibrium is very 
simple. In this саве еуеп damped oscillations cannot take place, i.e. the 
positive point is а stable node [11, 26--28]. 

Let ив recaH that а point is called positive if аН its ,coordinates are аЬоуе 
zero (N; > О ог, which is the вате, С; > О). Postulates (1) and (2) will Ье 
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proved below. The existence of the PDE imposes limitations оп the equi­
librium constants, i.e. the ratios of the direct to reverse reaction rate con­
stants. Let us establish а form of these limitations 

ш; (69) 

where ct is the equilibrium concentration of A i • 

After simple transformations andtaking the logarithms of both sides of 
eqn. (69), we obtain 

L ({Jsi - asi )ln ct = ln(k; / k; ) = ln K s (70) 

where Ks is the equilibrium constant for the 8th step. 
If for convenienc.::.".the yec~ with the components ln ct and ln КВ are 

expressed through lnc* and lnK, respectively, eqn. (70) will take the form 

(71) 

Since, for the time when с* runs through а multitude of iюsitivе vectors, 
ln=;::* moves across the whole of the linear n-dimensional space (ln projects 
а positive real semi-axis to the total axis), the only limitation оп К resulting 
from the existence of а PDE is 

lnК Е 1mf' (72) 

This means that the vector with the components ln Ks lies in the 1т Г, which 
is the image pattern for а matrix Г, i.e. there exists such an n-dimensional 
vector х as 

L YsiXi = ln K s 
i 

(73) 

The question arises of how an explicit form for the limitations оп Ks 

associated with the conditions (72) and (73) сап Ье found. For this purpose 
it is necessary to find all the solutions for the set of equations 

LYSYSi = О i = 1, ... , n; ;г = -о (74) 

where; is the row vector. 
After obtaining а complete set of linear-independent solutions for eqn. 

(74),;1, ... ,;1, it is possible to derive limitations оп K s that are equivalent 
to eqns. (72) and (73) 

JilnК -о 

Ly~lnks = о j 1, ... , 1 
(75) 

Some examples are given below. ТЬе simplest example is given Ьу the system 
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ofthree isomers (the isomerization ofbutenes): (1) А} +" А2 ; (2) A z +" Аз, and 
(3) Аз +" A j • 

О: {-:: : у, _У' 
Yz - Уз - О 

о 

уГ о (76) 

It is evident from eqn. (76) that У! = Yz = Уз. This set of equations has the 
only solution accurate to а constant coefficient, say у = (1, 1, 1). The respec­
tive limitation оп the equilibrium constants is 

ylnК = О 

lnKj + lnKz + lnКз = О 

or КjКzКз = 1. 

(77) 

Similarly, for an arbitrary linear (monomolecular) cycle (edges = steps, 
not to Ье confused with а bipartile graph of the mechanism) we have 

(1) А} +" A z 

(2) A z +" Аз 
............ (78) 

(n -1) Ап _} +" Аn 

(n) Аn +" А} 

-1 1 О О 

О -1 1 О 

Г 
О О -1 О 

о о о ... -1 1 

1 О О ... 0 -1 

- У! + ... + Уn О 

У! - Yz О 

УГ О: Yz - Уз О (79) 

Уn-l - Уn О 
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It is evident that У! = У2' .. = Уn, and we have the only solution accurate 
to а constant factor, hence it is possible to choose у = (1,1, ... ,1). Whence 
the limitations оп the equilibrium constants will Ье 

lnKj + lnK2 + ... + lnKn = О 

or 

(80) 

It сап Ье shown that, for апу monomolecular mechanism, аН limitations 
оп the equilibrium constants resulting from the principle of detailed equi­
librium will Ье exhausted if, for every simple cycle in the graph of this 
mechanism (edges - reactions), correlations (80) are written, Thus, for the 
mechanism: (1) А! +± А2; (2) А2 +± Аз; (3) Аз +± A j ; (4) А! +± А4 ; (5) А4 +± А5 ; 

(6) А5 +± А! 

Limitations оп the equilibrium constants wil1 Ье: Кj К2Кз = 1 and 
К4К5К6 = 1. 

Note that eqn. (80) will apply in the саве when in аН steps the direct 
reactions are oriented ав shown in eqns. (78). Otherwise воте k + change 
places with k- , КВ Ьесотев 1/К. and eqn. (80) сап Ье replaced Ьу 

п (К.)"' = 1 (81) 

where а• = 1 when in 8th step the direct reaction is oriented ав shown in 
eqns. (78), and in reverse саве а. = - 1. For example, for the scheme 

(1) А! +± А2 ; (2) А2 +± Аз; (3) А! +± Аз 

we obtain КjК2 /Кз = 1 or Кз = КjК2(rJз = -1). 
In studies of catalytic reactions, linear (monomolecular) mechanisms are 

observed in the following two савев. 
(1) The stoichiometric (brutto) equations for the conversion of gas-phase 

substances are considered. According to them, linear kinetic equations сап 
Ье obtained, apparently, if only the time scale is changed. These reactions 
are pseudo-monomolecular and comprehensively treated Ьу Wei and Prater 
[11]. Ап example is the familiar reaction of butene isomerization. 

(2) Conversions of only surface compounds are considered. It is suggested 
that the gas-phase composition remains unchanged. Н, in this саве, the те­
chanism is linear with respect to intermediates, the conversion mechanism 
for these intermediates is monomolecular. 

In the first саве (pseudo-monomolecular reactions) the application of а 

References рр. 183-184 



116 

relationship for the equilibrium constants is necessary and grounded. In the 
second саве (а monomolecular scheme for the conversion of surface substan­
сев) "equilibrium constants" are not real equilibrium constants, but include 
concentrations of gas-phase reactants. For example, for the step 

СО + Pt <=± PtCO 

the real equilibrium constant is k+ /k-, whereas for the proper step of а 
linear mechanism for the intermediate conversions 

Pt <=± PtCO 

we will obtain k+ [CO]/k- instead of ап equilibrium constant since 

w+ = (k+ [CO])[Pt] 

and 

Therefore in the second саве, the limitations оп "equilibrium constants" 
given Ьу eqns. (80) and (81) are not applicable. They must Ье used to study 
constants of the real mechanism, including gas-phase substances. The limi­
tations thus obtained will also affect "rate constants" for the conversion 
scheme of intermediates. 

It is ofimportance to understand that the limitation оп rate constants (to 
Ье more precise, оп their ratios, i.e. equilibrium constants) resulting from 
the detailed equilibrium principle, are fulfiHed irrespective of the system 
under which the reaction takes place (either closed or ореп) since the rate 
constants are the вате. The difference is that the right-hand sides in the 
equations for ореп systems contain additional factors accounting for the 
substance exchange with the environment. When choosing kinetic paramet­
ers, опе must remember that not аН of them are independent. It will reduce 
laborious difficulties and preclude probable mistakes. 

Let ив consider опе more example and examine опсе again the simplest 
reaction of catalytic isomerization [example (1)] wit1;l substances A j , A z, 
Аз = Z, А4 = AjZ and А5 = A2 Z and the mechanism (О) А] <=± А2 ; (1) 
А] + Аз <=± А4 ; (2) А4 <=± А5 ; (3) А2 + Аз <=± А5 • The corresponding stoichio­
metric matrix is 

[

-1 

-1 
Г= 

О 

О 

1 О 

О -1 

О О 

1 -1 



- Уо - У! 

Уо 

уг= О: 

- Уз 

- Уз 

о 

о 

о 
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whence Уо = - У! = Уз = - У2· We have the only solution accurate to а 
constant factor and сап suggest that у = (1, - 1, - 1, 1). Hence, from eqn. 
(75), we obtain 

КоКз = K j K 2 

or 

Ко = K j K 2 

Кз 

А physical sense of this limitation is simple. It implies that catalysis "does 
not shift the equilibrium", i.e. in the presence of а catalyst the equilibrium 
gas composition is in equilibrium itself. Generally speaking, it does not only 
hold for catalytic reactions. Limitations оп the equilibrium constants of 
eqns. (72), (73), and (75) suggest that reactions do not "shift the equilibrium 
of the others" since the equilibrium is detailed. 

Limitations (75) do not apply if аН the Ys are linearly independent. Then 
the conditions У Г = О are not fulfilled for any of the non-zero у values since 
it is equivalent of the relationship 

Thus, for the Eley-Rideal mechanism 

02 + 2Pt <=! 2PtO 

СО + PtO -+ С02 + Pt 

the stoichiometric vectors (А! 02' А2 = СО, Аз = Pt, А4 = PtO, and 
А5 = С02 ) 

-1 О 

о 

-2 

2 

О 
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are linearly independent (ifthey were linearly dependent, we would have the 
proportionality У1 = О"У2)' The same is true for the Langmuir-Hinshelwood 
mechanism 

(1) 02 + 2Pt <=t 2PtO 

(2) СО + Pt <=t PtCO 

(3) PtO + PtCO --> С02 + 2 Pt 

-1 О О 

О -1 О 

-2 -1 2 
У 1 2 

У2 
О 

Уз 
-1 

О 1 -1 

О О 1 

Vectors У1, У2, and Уз are linearly independent. This is evident since each of 
them has а component with non-zero value at а place where the other two 
have zero values. Therefore, in this case, а standard procedure to test а 
linear independence is unnecessary. 

Let us consider now the limitations оп the constants of а joint four-step 
mechanism. As а fourth step, the Langmuir-Hinshelwood mechanism will Ье 
supplemented Ьу 

СО + PtO --> С02 + Pt 

То enable the possibility of speaking about equilibrium constants, steps (3) 
and (4) will Ье assumed to Ье reversible (in principle, this must Ье so but the 
rate constants for reverse reactions are so small that they are usually 
neglected). 

[

-1 

~ о 
г = 

о 

о 

о 

'--1 

О 

-1 

-2 

-1 

2 

1 

2 О 

j О 1 

-1 -1 

-1 О 



о 

- У2 - У4 = О 

уГ О: 
2Уl - У2 + 2уз + У4 О 

2Уl - Уз - У4 О 

У2 - Уз О 

Уз + У4 О 

whence Уl = О, У2 = Уз = - У4. Taking у 
limitations will Ье 

lnK2 + lпКз - lnK4 = О or 
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(О, 1, 1, - 1), the respective 

(82) 

According to eqn. (82), the third and the fourth steps сап Ье almost 
irreversible only simultaneously (К3.4 = k;'4/k3,4 --+ 00 when К2 is not reduc­
ing to zero). 

Thus, assuming that one of the mechanisms (either the Langmuir­
Hinshelwood or the Eley-Rideal) is irreversible, the second mechanism must 
also Ье assumed to Ье irreversible provided that K z =1- о. If the process is 
carried out at high temperatures and К2 is а minute value, the equality 
К4 = К2КЗ сап also Ье fulfilled in the case when the fourth step is reversible 
and the third is practically irreversible. It does not contradict the principle 
of detailed equilibrium. 

This principle also imposes limitations оп which combinations of steps 
сап Ье reversible and which сап not. For example, mechanism (а) сап Ье and 
mechanism (Ь) сап not. 

(а) ( Ь) 

Indeed, according to eqn. (80) for the reaction mechanism А <± А2 ; А2 <± Аз; 
Аз <± А1 , we obtain К1КzКз = 1. In case (а) (for "almost complete irrever­
sibility"), К1 --+ 00, Kz --+ 00, Кз -> О and their product сап tend to 1. In case 
(Ь), аН the three constants K j , Kz and Кз tend to infinity and their product 
cannot tend to 1. 

Let us remember оп се again that аН these limitations refer to the con­
stants of the real mechanism also involving gas-phase substances. For the 
conversion mechanisms for intermediates (under the assumption of constant 
concentrations for gas-phase reactants), the conditions (75) cannot Ье used 
directly. Thus mechanism (Ь) (an irreversible linear cycle) for intermediates 
is possible. The simplest example is the irreversible catalytic isomerization 
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А) + Z -t AlZ 

AjZ -t A 2 Z 

A2 Z -t А2 + Z 

Conversions of intermediates are 

Limitations оп the conversion mechanism for intermediates сап result from 
the analysis ofthe mechanism involving the participation of gases. Thus for 
the four-step mechanism of СО oxidation оп Pt the third and the fourth steps 
must Ье simultaneously either reversible or irreversible. 

Rate constants and reaction mechanisms for non-ideal systems (the Mar­
celin-de Donder kinetic law) are subject to the вате limitations. For them 
eqns. (69)-(71) include ai(c*) instead of ct; the remaining equations and аН 
the reasoning are the вате [28]. 

2.2 ТНЕ UNIQUENESS AND STAВILITY OF EQUILIВRIUM IN CLOSED SYSTEMS 

Let the equilibrium constants satisfy the conditions (72) (73) and (75). Ттв 
suggests that there exists at least one positive PDE, С*. Let ив show that in 
this саве any steady-state point is that of detailed equilibrium when the law 
of тавв action (active surfaces) is valid. 

(а) Reaction at а constant volume. Let ив introduce the function 

G =t ~[ln (c~) -1] 
~= 1 С l 

and calculate its derivative from а set of the kinetic equations (17) and (18) 

dG 
dt 

I дО d~ 
i д~ dt 

~~ ln (;;) 

Taking into account that cg 
= [/ /V and с' = й' /8 

But for every s (and similarly for every ст) 



Note that 

ш;(с) 

щ+(с) 

k; П R .-',; - с":81 

k + . ' 
8 ' 

At а PDE we have ш+ (с*) = ш- (с*) and 

whence 

f ln (;i) Ysi = ln (:~) = - ln (:n 
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(83) 

А logarithm i8 а monotonic function. If ш+ > ш-, then ln ш+ > ln ш- and 
vice ver8a: if ш+ < ш-, then ln ш+ < ln ш-; therefore for every s we obtain 

w8 1n (:n = (ш; - w;)(ln ш,+ - ln ш;) ~ о 

and the equality to zero i8 obtained only in the саве when, at а point of 
equilibrium, ш8+ = ш;. 

(Ь) Reaction at constant ргеввuге. For thi8 саве let и8 introduce the func­
tion 

(84) 

Assuming that we have an ideal gas, let и8 calculate а G derivative from eqn. 
(18). 

dG 
dt 

дС 

дЩ 

( C~) = ln ~ 
c*g , 
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Here we have taken into account that cg 
= Ft / V, therefore 

( C~) (Ng) (IЩ) ln -' = ln -'- - ln -'--
c*g N*g " N*g 

t t L.. ~ 
i 

and 

G = I Шlп (N;g) - N,g ln ("Nt.~t) + 
i' Ntg tot. Nto1 

where "Nt.~t = LiN;g is the total amount ofthe gas·phase substance (in moles). 
Ав in the саве of а constant volume 

дG 

дЩ 

therefore 

dG 
dt 

= ln ---'-( c~) c*s , 

dG/dt :<о; О, hence the equality with zero is obtained only at PDEs. 

(85) 

Consequently, if the law of mass/surface action is suggested from the 
existence of at least one PDE, then it follows that there exists а dissipation 
function of the composition G whose derivative equals zero only at PDEs. 
The product RTG has the dimensions of energy. 

The existence of this dissipation function results in the fact that апу 
positive steady-state point for eqns. (17) and (18) is that of detailed equi­
librium and апу positive w-limit point is also an equilibrium point. Deter­
mining G оп the boundary of the reaction polyhedron (воте N; = О) accord­
ing to the limit transition, we сап readily вее that апу non-negative (includ­
ing а boundary) w-limit point (including the steady-state point) is also а PDE 
[7]. The value G is redetermined оп the boundary in the following way. If 
N; #- О, N; -> О, we obtain N;lnN; -> О, therefore if N; = О, the item in G 
corresponding to the ith substance is omitted (is assumed to equal zero). G 
is а strictly convex function in the reaction polyhedron 15. This means that, 
for апу two points of 15, N and Й, а value for G at а segment between them 
at а point N + },(Й - N)(O < ). < 1) satisfies the inequality 

G[N + },(Й - -М] < G(N) + },[G(N') - G(N)] (86) 

i.e. at any segment the plotted dependence of G lies under its chord. For the 
саве of constant volume, the function f(x) = х ln ах (at а > О) is strictly 
convex and the sum of а сопуех function is сопуех. G is the sum of such а 
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function from аll N; values. In the саве of constant pressure, опе must prove 
the convexity for the function 

(Here, for convenience, we omit in eqn. (84) аН items that are linear with 
~ #~ 

respect to N containing ln Nt g and also convex function of "У .) Let us make 
use of опе more characteristic property of smooth, strictly convex functions: 
in апу direction а second derivative of ОО in D must Ье rigorously positive. 
То check it, let us write 

N; = NOi + xO i 

where 0i are components of а guiding vector along which а second derivative 
will Ье taken. If substance Ai is а surface соmiюuпd, then 0i = О. Оп the 
other hand, there exists such а gas-phase substance Aj that Oj = о 

After ап elementary transformation, we obtain (it is recommended that the 
reader do it for штвеН) 

d2~0 = L (Оi/Щ _ Оj}NЖ)2/i: NJk ~ О 
dx i>j}NЖ ~ k~l 

The equality to zero is obtained only in the case where, for апу i, j = 1, ... , 
n we have oJN& = oj/N&, i.e. when the vector Ь (with components 0i) is 
proportional to that with components N&, in other words there exists а value 
of А such that 0i = AN5i' But this is possible only in the саве in which аН 
the components bi are simultaneously either positive or negative. Since, at 
воте non-zero value of х, the vectors with components NOi and NOi + О! must 
Ее in the вате reaction polyhedron, the simultaneous positivity or negativ­
ity for аН the 0i values is forbidden Ьу, for example, the law of conservation 
of the overall (taking into account its adsorption) gas тавв: 
'LщNОi = 'Lщ(NОi + XOi); 'Lmioi = О, for апу Af we have m! > О, Ьепсе О! 
cannot have the вате signs. Consequently, in the reaction polyhedron, G is 
а strictly convex function since the sum of а strictly convex ОО with а linear 
function of Ft and а strictly convex function of N is strictly convex in this 
polyhedron. 

ТЬе strict convexity of the function G in the reaction polyhedron D 
results in the following important property. In this polyhedron G has the 
unique local minimum. At the вате time this local minimum is а global опе. 
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It is this property that was used Ьу Zel'dovich [22] to prove the uniqueness 
of the equilibrium specified as а point of the free energy minimum. 

Note that the positive point for the G minimum in the reaction polyhedron 
is that of detailed equilibrium: dGjdt ,;;; О, hence at the point of minimum we 
have dGjdt = О (а decrease is possible "no-where") and according to eqns. 
(83)-(85), dGjdt = О only at the PDEs. 

It was Zel'dovich who showed [22] that G cannot have а local minimum in 
Jj оп the Jj boundary, where it is characterized Ьу опе specific property: 
aGjaN; ..... 00 at N; ..... О. Therefore when G tends to go along а straight line 
out of the Jj interior to апу boundary point, starting from а certain instant 
the G value will increase. 

These notes suggest that each reaction polyhedron has а positive PDE 
coinciding with а point at which G is а minimum (we assumed the existence 
of а positive point at least in опе reaction polyhedron and as а consequence 
the existence of such а point for every polyhedron). 

Not а single steady·state point in kinetic equations cannot Ье asymptotic­
аНу stable in Jj if it does not coincide with а point of G minimum. Indeed, 
let us denote this steady-state point as No and assume that it is not the point 
of G minimum. Then in апу vicinity of No there exist points N for which 
О(Й) < G(No ) (otherwise No would Ье а point of local minimum). But а 
solution of the kinetic equations whose initial values are such values of N, 
since О(Й) < G(No ), at t ..... 00 cannot tend to No : О(Й) сап only diminish 
with time. Consequently, No is not ап asymptotically stable rest point in Jj. 
In its vicinity in Jj there exists such N points that, coming from these poirits:, 
solutions for kinetic equations do not tend to No at t ..... 00. 

Let us consider the behaviour of а chemical system in the vicinity of а 
positive PDE N*(Nf > о for аН values of i). Ап equation for linear approxi­
mation is 

dN; _ s" aWsl (Н N*) dt - L- Ysi дН j - j 
З,) ) ...... 

N* 

+ V(N*) ~ Yai :z;; (~ - N"j) 
а,) ) 

Let us calculate (дw.,аjд~)l.н* 

ш• 

w = 
а 

For the case of а constant volume У, we obtain 

(87) 
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дШ,! = ~ [+. (N%g)"'k (N%S)"'k 
JN N* ks ав) IJ v IJ s 

J N* J 

- k; Psj IJ (N~gY'k IJ (i'Y'k (88) 

Note that 

The left- and the right-hand sides of the equality are ш: and ш; , respective­
ly, taken at а PDE: шз+ (с*) = ш,- (с*). Let us express ш; = 
ш: (с*) = ш; (с*) and rewrite eqn. (88) as 

дшз ! ш; 
JN = - Ysj N*g 

J Й* ) 
(89) 

Similarly, for gas-phase reactions we obtain 

дшз ! ш~ 
JN = - Yaj Ng* 

J Й* } 
(90) 

Hence the linear approximation equations will take the form 

d~ s'" * [", (N; - Nn] dt = - L., Ш, Уз; L., Ysj N* 
s ) } 

v '" * [", щ - Nn] - L., Ша Уа; L., Yaj N* 
а } } 

(91) 

This expression сап Ье simplified further. For this purpose let us introduce 
into the space of compositions (vectors of N) а scalar product designated as 
<1> 

For example, for the catalytic isomerization 

А + Z # AZ # BZ # В + Z 

this scalar product will take the form 

<ЙI Й> = NAN;,. NBN[; NzNz NAZN;,.z NBzN[;z 
N*+N*+N*+N* +N* 

А в z AZ BZ 

It сап Ье represented in the matrix form 
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(NIN') = (NA , NB , Nz , NAZ , NBZ ) 

l/Nl о о о о N~ 

О l/N~ О О О NВ 

х о о l/N! о о х NZ 
о о о l/Nlz о NAz 
о о о о l/N~z NВz 

We сап also introduce the expression Xi = N;/Nt1
/
2

• ТЬеп the scalar product 
(92) will Ье 

(93) 

А formula for the linear approximation in the case of а constant volume 
сап Ье rewritten as 

dN ,,~~ ~ ~ 
- = -S~w;Уs (YsIN-N*) 
dt 

- VI Ш;Уа (YaIN - Й*) (94) 

ТЬе introduced scalar product (1) possesses а11 the properties of ап 
ordinary scalar product, i.e. 

(1) symmetry: (NI Й') = (Й' I N), 
(2) bilinearity: (аЙ + jЗЙ' I Й' ) = а ( NI Й' ) + f3 ( N' I й" ), and 
(3) positive determinacy: ( NI Й) ;;:, О, ( NI Й) = о when and only 

when N = О. 
Ву applying these properties, we will prove that а11 the characteristic 

roots of the matrix for the linear approximation are real and non-positive 
whereas the characteristic roots of its limitation оп the linear subspace 
generated Ьу the vectors Ув.а are negative. Let us express the linear approxi­
mation matrix as L: & = L(N - Й*). This matrix possesses ап important 
property, i.e. self-conjugation relative the iritroduced scalar product ( I ). It 
suggests that, for апу Й, Й', we Ьауе 

(LNI Й) = (Ni LN') 
Indeed 

(LNIN') = - SI ш; (YsIN') (YsIN) 

VI Ш; (YalN') (YaI N ) 
а 
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Roots of а self-conjugated matrix are always real (this is а well-known fact; 
see, for example, ref. 29). То prove negative determinacy L in the subspace 
generated Ьу vectors Ув.", it is necessary and sufficient to show 
that < Ув,а I Ly в,а) < о at апу s or rJ'. We obtain 

< Ys I Ly s) = - Sw; < Ys IYs )2 - S L w; < y,lys' )2 -
8'#8 

since аН w; > О and < Y,lYs ) > О. Similarly, < Уа I LYa ) < О. Непсе L is 
negatively determined in the subspace generated Ьу vectors Ув .•. Whence it 
follows that Й* is ап asymptotically stable (in linear approximation) equi­
librium point in the reaction polyhedron (recall that а reaction polyhedron 
is the intersection of а plane which is paraHel to а linear envelope Ува with 
а multitude of non-negative vectors). Since eigenvalues are real (L is self­
conjugated!) damped oscillations are impossible and Й* is а stable node. For 
the entire space of compositions, L is negatively half determined, i.e. it also 
has zero eigenvalues. Eigenvectors corresponding to zero values are those 
that are orthogonal to the whole ofYs.a, since 

and the equality to zero is obtained when and only when < Ys I х ) = о 
and < Yalx ) = о for аН values of s and rJ'. 

We have proved that апу positive PDE Й* is asymptotically stable in the 
polyhedron D (it is еуеп а "node"). In this point constructed аЬоуе the G 
dissipation function, а minimum of free energy is achieved and the point of 
minimum is unique. Whence we obtain that Й* is а point of minimum G and 
а unique positive PDE in D. 

Similar considerations are also possible for reactions at constant pres­
sure. It is only necessary to introduce а new scalar product (assuming that 
we have ап ideal gas and PV = Ц~t RT) 

LЩ 
<ЙI Й') р = < ЙI Й' ) v - L щ ~ 

i L.. Ntg 
(95) 

Equation (94) will remain unchanged. Опе must only introduce < I ) р in­
stead of < I )v. For catalytic isomerization 

<N~ IN~')p NAN;" NBNВ NzNz NAZN;"z 
N* + N* + N* +-N* 
А в z AZ 

NBZNВz (NA + NB)(N;" + NВ) 
+ N~z - N~+N~ 
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the equation for the scalar product < I >р [eqn. (95)] сап Ье rewritten ав 

N.g N.g' 
(NIlV'>p = (NIlV'>v - ';g*tot (96) 

<о' 

Here N,~t, Nt~~ and Nfof are the number ofmoles of substance in the gas phase 
for the first, second, and equilibrium states, respectively. 

Unlike < 1), the scalar product < I >р has been degenerated: 
(Й* I N*>p = о, but N* is the only direction with this property: within the 
plane of the polyhedron п, < I >pis positively determined. Therefore the 
assumptions concerning the uniqueness in D and asymptotic stability of the 
PDE are also valid for the systems with constant pressures. 

Hence, under the assumption of the law of mавв actionfacting surfaces, 
from the existence of at least one PDE N* we obtain 

(1) each reaction polyhedron has а unique and asymptotically stable 
positive PDE, 

(2) а positive PDE is а stable node and damped oscillations near it are 
impossible, 

(3) there exists а convex function G that is strictly convex in each reaction 
polyhedron and роввеввев the following property: according to the differen­
tial chemical kinetic equation, the derivative of G is 

dG 
dt 

,,; о 

The equality to zero is obtained only at PDE, 
(4) in each reaction polyhedron the positive PDE is the point ofminimum 

G,and 
(5) there exists а scalar product < 1>, that is not degenerated and is 

positively determined within the plane of the reaction polyhedron (the 
subspace generated Ьу vectors У.). It сап Ье applied to rewrite а linear 
approximation ав 

- ш~. < У8,. I N - N* > 

dt 

wherew~. = ш:.(с*) w';:.(c*).Functionsof <N - N*IN - N*> arequad­
ratic terms in the expansion of G into the Taylor series near the equilibrium 
point. 

For reactions at constant volume we have 

n (N) G = Gv = L N.(ln ~ - 1) 
i~l N i 

(98) 
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(99) 

For those at constant pressure we obtain 

G = Ор = ~ щ ln (;:*) + ~ Ni [ln (~:) - 1 ] 

~ щ [ln (:;:) ln (: :;:) + ~ N;s [ln (~:) -1] 
~ Щ [ln (:;:) ln C~~:~) ] + ~ щ [ln (~:) - 1] 

(100) 

where ~~! is the number of moles of substance in the gas phase 

n NN' 1\Tg 1\Tg' 
'"' i i 1 Vtot 1 Vtot L. -- - ---
i~) Nt ~~t 

(101) 

In саве the boundary PDEs, i.e. such N ав а certain N; = О and 
ш:.(с*) = ш;,.(с*), are absent in апу reaction polyhedron from апу initial 
conditions, the solution ofkinetic equation tends to the unique positive PDE 
Й* at t -> 00. 

Initially the possibility for the appearance of boundary PDEs was neg­
lected. This possibility was emphasized Ьу Vol'pert, in 1973, who posed the 
question ав to whether the system from positive initial conditions сап get to 
а boundary PDE (i.e. have this point as ап cv-limit). 

Boundary PDE though rare are nevertheless encountered. 
For example, let us consider а system of three substances А), А2 , and Аз 

and the hypothetical reaction mechanism 

А) + А2 <z 2Аз 

А) + Аз <z 2А2 

А2 <z Аз 

In this system the point (N), О, О) is а PDE. It is evident that if N2 = нз = О, 
neither of the reactions takes place and ш: = Ш1 = ш; = ш2" = ш; = 

Ша = О. 

Recently, Gorban' has shown that, in the presence.of boundary PDEs, 
from апу positive initial condition the solution ofkinetic equations tends at 

References рр. 183-184 
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t -> 00 to а positive PDE whose existence is suggested according to the 
principle of detailed equilibrium. In general, if there is а positive PDE and 
the initial conditions are always positive (аП ~ > о), for попе of the 
substances does ~ reduce to zero during the reaction time or tend to zero at 
t -> 00. 

2.3 THERMODYNAMIC LIMITATION8 ON NON·8TEADY·8TATE КINETIC 
BEHAVIOUR 

In the previous section we introduced the Lyapunov functions for chemi­
cal kinetic equations that are the dissipative functions С. ТЬе function RTG 
is treated ав free energy. Since G о:( о and the equality is obtained only at 
PDE, and for the construction of G it suffices to know only the position of 
equilibrium Й*, there exist limitations оп the non-steady-state behaviour of 
а closed system that are independent of the reaction mechanism. If in the 
initial composition N =1= Й*, the other composition N' сап Ье realized during 
the reaction only in the case when 

(а) Й' satisfies the same balance relationships ав for N 

I aij"N/ I aij~ 

for any j or 

:АТЙ ~T~ 

= AN (102) 

(Ь) 

С(М > G(N') (103) 

ТЬе latter means that G is а monotonically decreasing function among the 
solutions for kinetic equations. 

With time the system сап get from point N to point N' only in the case 
when О(Й) < G (М. But it is not the only limitation. Let us return to а 
system of three isomers (isomerization of butenes) (А" А2 , and Аз) and 
specify its PDE. According to Wei [30], at 2300С Nf ~ 0.14, N~ ~ 0.32, and 
N! ~ 0.54 (the normalization condition is N1 + N2 + Nз = 1, i.e. the law of 
conservation). In this case 

G = N1C;~1 -1) + N2C;~2 -1) 
+ Nзс;~з -1) 

N InN; N,lnN2 + N,lпNз -1 
1 0.14 + 20.32 0.54 

Level lines for G [their equations are О(n) = .const.] in the triangle 
N, + N2 + Nз = 1 are shown in Fig. 8(а). At g > min С(М оп the boundary 
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