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Thesis Summary

This thesis describes the Generative Topographic Mapping �GTM� � a non�linear latent variable
model� intended for modelling continuous� intrinsically low�dimensional probability distributions� em�
bedded in high�dimensional spaces� It can be seen as a non�linear form of principal component analysis
or factor analysis� It also provides a principled alternative to the self�organizing map � a widely estab�
lished neural network model for unsupervised learning � resolving many of its associated theoretical
problems�
An important� potential application of the GTM is visualization of high�dimensional data� Since

the GTM is non�linear� the relationship between data and its visual representation may be far from
trivial� but a better understanding of this relationship can be gained by computing the so�called
magni�cation factor� In essence� the magni�cation factor relates the distances between data points�
as they appear when visualized� to the actual distances between those data points�
There are two principal limitations of the basic GTMmodel� The computational e	ort required will

grow exponentially with the intrinsic dimensionality of the density model� However� if the intended
application is visualization� this will typically not be a problem� The other limitation is the inherent
structure of the GTM� which makes it most suitable for modelling moderately curved probability
distributions of approximately rectangular shape� When the target distribution is very di	erent to
that� the aim of maintaining an 
interpretable� structure� suitable for visualizing data� may come in
con�ict with the aim of providing a good density model�
The fact that the GTM is a probabilistic model means that results from probability theory and

statistics can be used to address problems such as model complexity� Furthermore� this framework
provides solid ground for extending the GTM to wider contexts than that of this thesis�

Keywords� latent variable model� visualization� magni�cation factor� self�organizing map� principal
component analysis
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Chapter �

Introduction

The amount of data being recorded and stored throughout society is steadily growing� This is largely
due to the increased use of modern technology in general and computers in particular� Satellites in
orbit are generating vast amounts of data in terms of imagery and geodesic data� Transactions on the
global �nancial markets� via computerized systems� generate complex time series data� With increased
competition� companies are building sophisticated customer databases in attempts to analyze current
and future markets� In micro�biology� we now access the large quantity of data stored in the DNA of
living organisms�

However� without means and methods that can aid analysis� much data becomes useless� Human
observers often �nd it hard spotting regularities when looking at raw data� e�g� tables of numbers
and symbols or large numbers of similar images� We therefore need computers to aid us� not only
in the gathering and storing of data� but also in the analysis and processing of it� In particular� if
the computer can be used to summarize data visually� humans are often capable of interpreting such
graphical summaries intelligently�

��� Scope of this thesis

This thesis is concerned with computational methods for �nding 
interesting� structures in sets of data�
with little or no need of human intervention or guidance� A number of such methods has been known
for quite some time� A key feature of many of them is that they involve some sort of dimensionality
reduction� from the� typically high�dimensional� data space to a low�dimensional model space de�ned
by the method used� When visualization is the ultimate aim� the model space is typically chosen to
be two�dimensional� In this thesis� both the data space and the model space are taken to be subsets
of ��� Moreover� we will restrict our interest to global structures� i�e� continuous low�dimensional
manifolds embedded in high�dimensional continuous spaces� For a long time� models with this scope
were restricted to model only linear structures� i�e� hyper�planes� in the data space� We will direct our
interest to models where the relationship between model and data space is non�linear� as illustrated
in the right half of �gure ����

An important reason why the linear models for long were dominating is their computational e��
ciency� However� the arrival of fast� inexpensive computers has� in the last two decades� changed the
picture dramatically� This has combined with discoveries of new computational algorithms and today
we are tackling problems which twenty years ago would have been considered untractable� Many of
these new algorithms have been inspired by models of the processing going on in the human brain�
In particular� there has been a lot of interest in generic algorithms that can 
learn� an underlying
structure from a �nite set of examples� in a fashion similar to human learning� For many problems
this is highly desirable� since a human observer may easily discover regularities in a set of examples�
but will �nd it much harder to describe how he or she made this discovery� Consider� for example� the
set of points shown if �gure ���� most human observers would� when asked to comment on this data�
immediately point out that the points appear to be distributed� approximately� along a curved line�
However� it is unlikely that anyone of them would be able to provide a description of how they arrived
at this conclusion� which would be su�ciently exact to translate into computational algorithm�

This has motivated the development of algorithms that� to a certain extent� try to mimic the

�
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Figure ���� An example of data which� although living in a ��dimensional space� is approximately
��dimensional� Any good method for reducing the dimensionality of this data must be able to deal
with the fact that it is non�linearly embedded in the ��dimensional space�

processes that takes place in the human brain� in terms of discovering and exploiting underlying
structures of �nite data sets� These algorithms have become known under the common name of
neural networks �Haykin� ������ In parallel� similar algorithms have grown out of the research into
statistical pattern recognition �Duda and Hart� ���
�� and the strong links between these two �elds
are today widely appreciated �Bishop� ����� Ripley� ������

To return the focus to the problems we are interested in� our underlying assumption is that although
we observe a large number �D� of data variables� these are being generated from a smaller number �L�
of hidden� or latent� variables� as illustrated by �gure ���� Models based on this assumption are called
latent variable models �Bartholomew� ����� Everitt� ����� and have evolved� initially from psychology�
to become established statistical models for data analysis� When both latent and observed variables
are real valued and the relationship between them is linear� the resulting model is traditionally known
as factor analysis �Bartholomew� ����� Lawley and Maxwell� ����� and will be further discussed in
the next chapter� To allow the relationship between the latent and the data space to be non�linear�
we consider a non�linear� parameterized mapping from the latent space to the data space� This will
map every point in the latent space to a corresponding point in the data space� If we assume that
the mapping is smooth� these points will be con�ned to an L�dimensional� curved manifold in the
D�dimensional data space� If we then de�ne a distribution over the latent space� this will induce a
corresponding distribution over the manifold the data space� establishing a probabilistic relationship
between the two spaces� The challenge will be to adapt the parameterized mapping so as to �t the
density model in the data space to a set of training data�

Assuming we have been able to �t our model� we can then relate points in the data space to points
on the curved manifold� which in turn correspond to points in the latent space� This way� we can give
points in the high dimensional data space a representation in the low�dimensional latent space� and
provided the data space has no more than three dimensions� we can visualize this representation�

The introduction of non�linearity will o	er the possibility of modelling a much richer 
family� of
structures� compared to what we can achieve with linear models� However non�linearity also brings
potential problems� Since real data is typically corrupted by noise� there is a risk that a non�linear
model captures not only systematic non�linearities in a set of data� but also random artifacts due to
noise� Another problem� if we consider visualization of high�dimensional data� is that the relationship
between the data and its 
representation� in the model is not as straightforward when using a non�
linear model as when using a linear model� Although these potential problems should not stop us
from making use of non�linear models� we must be aware of their presence and try to resolve them�
as far as possible�
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Figure ���� A non�linear latent variable model� where the latent variables� x� and x� are mapped�
by the non�linear� parameterized mapping y�x�W�� to a low�dimensional� curved manifold� S� in the
data space de�ned by t�� t� and t��

��� Overview of this thesis

In chapter �� we review a number of models proposed for �nding and exploiting structure in high�
dimensional data sets� These models are divided into three categories�

� projection models� which are based on the notion of 
projecting� points in the data space onto
the model space�

� generative models� where points in the data space are considered to have been generated by
points in the model space� and

� other models� which do not belong to either of the above categories�
The most important of the projection models is linear principal component analysis �PCA� �Jolli	e�
������ the other models discussed in that category can all� in some sense� be regarded as non�linear
variants of PCA� Correspondingly� the section on generative models is headed by factor analysis �FA��
which� traditionally has been regarded as the generative counterpart of PCA� followed by non�linear
generative models� The �nal section on other models is primarily concerned with the self�organizing
map �SOM� �Kohonen� ������ a widely researched neural network model which is strongly related to
the generative topographic mapping �GTM�� introduced in chapter 
�
The chapter on the GTM describes its architecture� the associated training algorithm and how

it can be used for visualization of data� It goes on to discuss the relationship to some of the other
models from chapter �� in particular the SOM�
In chapter �� we try to investigate the relationship between latent space and data space� de�ned

by the nonlinear mapping� by evaluating the 
stretching� of the manifold forming the image of the
latent space in the data space� This will allow us to extract additional information from our model�
in terms of how points in the latent space are related to the corresponding points in the data space�
information which can be merged with visualized data� A method along these lines has been proposed
for the SOM� but has been restricted by the fact that the original SOM model does not de�ne an
explicit manifold in the data space� However� we will see how the method proposed can also be used
with certain� more recent versions of the SOM� provided certain conditions are met�
Chapter � addresses the issue of parameter selection and its relationship to model complexity�

Two principal methods for �nding suitable parameter values are discussed� cross�validation and ap�
proximate Bayesian maximum a�posteriori� the latter of which o	ers di	erent variants� While both
methods can be used o�ine� by simply evaluating the appropriate score for di	erent parameter values
and then choose those with the best score� the Bayesian methods can also� to some extent� be used
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in an online setting� where appropriate parameter values are found during training� thereby o	ering
dramatic savings in terms of computation� The methods are evaluated using synthetic data�
Directions for future work are suggested in chapter �� in some cases accompanied by some provi�

sional results� These include potential ways of dealing with known limitations of the GTM model as
it stands today� as well as possibilities for it to be used in contexts di	erent to that of this thesis� e�g�
data with categorical variables� incomplete data� and mixtures of GTM models� Finally� chapter �
gives a concluding discussion�
The reader who is only interested in the GTM model can skip chapter �� and go directly to

chapter 
� skipping section 
��� Subsequent chapters are independent of each other� but assume that
the reader has read the chapter on the GTM� Section ��� discusses magni�cation factors for the
batch version of the SOM model �BSOM�� for readers unfamiliar with this model� it is described in
section ��
�� and further discussed in section 
�����

����� Publications on the GTM

This thesis gathers and complements the material in earlier publications on the GTM�

� EM Optimization of Latent�Variable Density Models� presented at Neural Information Processing
Systems �NIPS�� Denver� Colorado� ����� chapter 
�

� GTM� A Principled Alternative to the Self�Organizing Map� presented at the International Con�
ference on Arti�cial Neural Networks �ICANN�� Bochum� ����� chapter 
�

� GTM� A Principled Alternative to the Self�Organizing Map� presented at NIPS� ����� chapter 
�

� Magni�cation Factors for the SOM and GTM Algorithms� presented at the Workshop on Self�
Organizing Maps �WSOM�� Helsinki� ����� chapter ��

� Magni�cation Factors for the GTM Algorithm� presented at the IEE International Conference
on Arti�cial Neural Networks� Cambridge� ����� chapter ��

� GTM� The Generative Topographic Mapping� published in Neural Computation� ����� chapter 
�
and

� Developments of the GTM Algorithm� to appear in Neurocomputing� chapter ��

The chapter numbers given refer to the chapter of this thesis where the main content of the corre�
sponding paper can be found� These papers are all authored by C� M� Bishop� M� Svens�en and C� K�
I� Williams� and are also listed with further details in the bibliography�
Before moving on� we now introduce some notation and conventions used throughout the rest of

this thesis�

��� Notation and conventions

In the mathematical notation� the convention will be that an italic typeface indicates scalar values�
e�g� tnd� x� �� while bold typeface indicates vectors and matrices� the former using lower case symbols�
e�g� t��k� and the latter using upper case symbols� e�g� X��� Note� however� that exceptions to this
convention do appear�
Our aim is to build a model of a probability distribution in �D� based on a �nite set of inde�

pendently drawn samples from this distribution� t�� � � � � tn� � � � � tN � We will denote this data set T�
typically� we organize the samples into a N �D matrix� where row n contains sample tn� and T will
also be used to denote this matrix� Individual elements in this matrix or� equivalently� elements of
sample tn� will be denoted tnd� As we will see� a key assumption about T is that the samples are
independent� identically distributed� commonly abbreviated i�i�d�
Also in the low�dimensional model space ��L� we will be working with a �nite set of points�

x�� � � � �xk � � � � �xK � which may or may not be in one�to�one correspondence with the points in T� We
use X to denote this set of points as well as the corresponding K �L matrix� These points will map
to a corresponding set of points� y�� � � � �yk� � � � �yK in the data space� denoted Y� which also denotes
the corresponding K �D matrix�
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Thus� D denotes the dimensionality of the data space� L the dimensionality of the latent space�
N the number of data points and K the number of latent points� As far as it is possible� without
compromising clarity� matching indices will be used� so that d is used as index over the dimensions of
the data space� k is used as index over latent points� etc�
At various occasions we will make use of the identity matrix I �a diagonal� square matrix with ones

along diagonal and zeros elsewhere�� Normally� the size of I will be given implicitly by the context�
so in the equation

A  B! I

where A and B are M �M matrices� I is understood to also be M �M �
Unless indicated otherwise� summations will start from �� and we will use the abbreviation

N�KX
n�k

 

NX
n

KX
k

�

We will also use abbreviations ��D� ��D� etc� for ��dimensional� ��dimensional� etc�





Chapter �

Modelling Low�dimensional

Structure

The problem of �nding low�dimensional representations of high�dimensional data is not new and a
considerable number of models have been suggested in the literature� The rest of this chapter will
review some of those models� broadly categorized into

� projection models�

� generative models and

� other models�

Projection models are� loosely speaking� based on 
projecting� the data� e�g� by orthogonal pro�
jection� on the model � �tting those models corresponds to minimizing the distances between data
and its projection� Generative models try to model the distribution of the data� by de�ning a density
model with low intrinsic dimensionality in the data space� The borders between the three categories
are not clear cut and� as will be seen in the following sections� there are models that �t in more than
one category�

��� Projection models

The traditional meaning of projection is the orthogonal projection of a point in �D� onto a hyper�
plane� �L � �D � where L � D� This is also the method of projection used in principal components
analysis �PCA�� the most commonly used of the projection models described here� The fact that PCA
de�nes a linear� orthogonal model space gives it favourable computational properties� but it is also
its main limitation� Therefore� a number of models have been suggested that allow for non�linearity�
either by using a combination of locally linear models� which together form a non�linear structure�
or through the use of a globally non�linear model� However� before coming to these models we �rst
consider standard linear PCA�

����� Principal component analysis

Principal components analysis �Jolli	e� ����� takes a data set� ft�� t�� � � � � tNg� in a given orthonormal
basis in �D and �nds a new orthonormal basis� fu�� � � � �uDg� with its axes ordered� This new basis is
rotated in such a way that the �rst axis is oriented along the direction in which the data has its highest
variance� The second axis is oriented along the direction of maximal variance in the data� orthogonal
to the �rst axis� Similarly� subsequent axes are oriented so as to account for as much as possible
of the variance in the data� subject to the constraint that they must be orthogonal to preceeding
axes� Consequently� these axes have associated decreasing 
indices�� �d� d  �� � � � � D� corresponding
to the variance of the data set when projected on the axes� which we hence refer to as variances� The
principal components are the new basis vectors� ordered by their corresponding variances� with the

��
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Figure ���� The plot shows a data set of ��� points� plotted as shaded dots� � � drawn at random
from a correlated Gaussian distribution� The two arrows represent the principal components� scaled
by the square root of the corresponding variance times two � �ui

p
�i� i  �� �� in the terminology of

equation ������

vectors with the largest variance corresponding to the �rst principal component�� Figure ��� shows
an example for a ��dimensional data set�
By projecting the original data set on the L �rst principal components� with L 	 D� a new data

set with lower dimensionality can be obtained� If the principal components are �rst scaled by the
corresponding inverse variances� the variables of the new data set will all have unit variance � a
procedure known as whitening or sphering �Fukunaga� ����� Ripley� ������
The traditional way of computing the principal components is to compute the sample covariance

matrix of the data set�

S  
�

N � �
NX
n

�tn � t��tn � t�T� t  
�

N

NX
n

tn�

and then �nd its eigen�structure

SU  U�� �����

U is a D � D matrix which has the unit length eigenvectors� u�� � � � �uD� as its columns and � is
diagonal matrix with the corresponding eigenvalues� ��� � � � � �D � along the diagonal� The eigenvectors
are the principal components and the eigenvalues are the corresponding variances�
An alternative method for computing the principal components� which is claimed to be more robust

�Ripley� ������ is to compute the singular value decomposition �SVD� �Strang� ����� Press et al�� �����
of the N �D matrix� T� containing the data set� so that

T  V�UT� �����

where V is a N � D matrix with orthogonal columns� U is a D � D orthogonal matrix and � is a
diagonal matrix with the singular values of T along the diagonal� As the notation suggests� U and �
have the same values in ����� and ������

�There seems to be some disagreement regarding the terminology in the literature � sometimes it is the new variables
obtained by projecting the data set on the new �scaled� basis vectors that are referred to as the principal components�
and there are also examples where it is the variances�
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An important property of the principal components is that they constitute the unique set of vectors�
up to scaling� that minimizes the reconstruction error�

EL  

NX
n

ktTn � �tTn �UL��U
T
Lk�� ���
�

where �UL and �UL are D�L matrices with the �scaled� principal components u�� � � � �uL �� � L � D�
as their columns� such that �UT

L
�UL  I� EL is the sum of the squared distances between the data

points and their projections on the L principal components� summed over the data set� Thus� it is a
decreasing function of L� equal to zero when L  D� Under this formulation� PCA is known as the
Karuhnen�Lo�eve transform� and it suggests an alternative way of �nding the principal components�
by minimizing ���
�� This approach has formed the basis for non�linear extensions� known as auto�
associative networks or auto�encoders� discussed in section ����
 below�

Mixtures of PCA

Since PCA only de�nes a linear subspace� it will be sub�optimal when the underlying structure in the
data is non�linear� However� even if we have reasons to assume that the data we are dealing with is
not overall linear� it may still be reasonable to assume that in local regions of the data space� a linear
approximation is su�cient� How good such an approximation will be� will depend how strong the non�
linearity in the data is and how small we choose our local regions� Based on this assumption� there has
been a number of suggestions for combining a number of local PCA models� to approximate a globally
non�linear structure� Kambhatla and Leen ������ partitions the data space using vector quantization
and then performs 
local� PCA on the data points assigned to each vector quantizer� Bregler and
Omohundro ������ takes a more elaborate approach� �nding an initial model using K�means and local
PCA� which is then re�ned using the EM�algorithm �Dempster et al�� ����� and gradient descent�
Hinton et al� �����a� suggest an iterative scheme where data points are assigned� initially e�g� by using
K�means� to the PCA component which reconstructs them best� local PCA is performed and then
points are re�assigned� This is repeated until no points have their assignment changed� They also
suggest a 
soft� version of this algorithm� further discussed in �Hinton et al�� ������ where data points
are 
softly� assigned to PCA components� based on the corresponding reconstruction errors� However�
all these algorithms have some degree of arbitrariness associated with them�
Recently� a new� probabilistic formulation of PCA has been proposed by Tipping and Bishop

�����a�� It derives PCA as a latent variable model� and can be regarded as a special case of factor
analysis� It de�nes a generative model� which allows for mixtures of PCA to be constructed with
in the framework of probability theory� Further discussion of this model is deferred to section ������
following the introduction of the factor analysis model�

����� Principal curves and surfaces

Principal curves and surfaces have been suggested as non�linear generalizations of principal component
analysis� In contrast to the mixture models discussed above� principal curves and surfaces represent
single� global models�

Principal curves

Intuitively� a principal curve �Hastie and Stuetzle� ����� Hastie� ����� is a smooth� one�dimensional
curve that passes through the 
middle� of a probability distribution� or a cloud of data points� in a
D�dimensional space� More formally� a principal curve is a parameterized curve� f�x�� that respects
the de�nition of self�consistency�

f�x�  E�tj�f �t�  x�� �����

where t is a random variable in the data space and �f �t� is the 
projection� of t on the curve de�ned by
f���� This says that for any point x� f�x� equals the average of the probability mass that is projected on
x under the projection index �f ���� which in the principal curve and surface models is the orthogonal
projection�



�� CHAPTER �� MODELLING LOW�DIMENSIONAL STRUCTURE

For a �nite data set� this de�nition must be modi�ed� so Hastie and Stuetzle ������ use a scatter�
plot smoothing procedure� which replaces the averaging of continuous probability mass with a smooth�
ed average over data points projecting in the same region on f���� This leads to the following procedure
for �nding principal curves�

�� Set the initial principal curve� f � equal to the �rst principal component and for each data point�
tn� n  �� � � � � N � compute its orthogonal projection on f � xn�

�� Compute a new value for each point on the curve� f�xn�� by a smoothed average over data points
projecting in the neighbourhood of xn�


� Project the data points �numerically� on the new curve�

�� Repeat steps � and 
 until convergence�

As noted by Hastie and Stuetzle� the size of the neighbourhood used in step � can have a signi��
cant impact on the �nal shape of the curve� In essence� the size of the neighbourhood controls the
smoothness of the curve� Hastie and Stuetzle set the neighbourhood� measured by the number of
neighbouring data points it includes� to an initial size which is then gradually decreased during the
iterative �tting procedure until it reaches a desired value� Similar use of weighted averaging over a
shrinking neighbourhood appears in the �tting procedure for the self�organizing map� discussed in
section ��
��� The algorithm above is the �rst example of the iterative two�step �tting procedures
associated with many of the non�linear models that will be discussed below�

Hastie and Stuetzle ������ show that f���� restricted to come from a smooth class of curves� mini�
mizes

E�kt� �f �t�k���

which is the expected distance between t and its projection on the curve �f �t�� taken over the dis�
tribution of t� This is analogous with the property ���
� of principal components� emphasizing the
relationship between the two models�

Webb ������ proposes an alternative model for doing non�linear PCA which is based on the self�
consistency condition ������ but where the orthogonal projection on the curve� has been replaced
by a more general mapping� Thus� this model forms a link between the principal curve model and
the auto�associative neural network model discussed in section ����
� Tibshirani ������ proposed an
alternative de�nition of the principal curve� transforming it into a generative model� which will be
further discussed in section ������

Principal surfaces

Principal surfaces are discussed by Hastie and Stuetzle ������ as an extension of the principal curve�
which allows the model space to be two�dimensional� The de�nition is based on self�consistency�
analogous with the one for principal curves� and Hastie and Stuetzle ������ report that they have
implemented a corresponding principal surface algorithm� using two�dimensional surface�smoothers in
place of the scatter�plot smoothers� However� many of the theoretical results obtained for the principal
curve model no longer hold in the case of principal surfaces�

An alternative de�nition of principal surfaces is proposed by LeBlanc and Tibshirani ������� which
combines ideas of principal curves and multi�adaptive regression splines �MARS� �Friedman� ������
The resulting model de�nes a low�dimensional� piecewise linear structure� which is built in a incre�
mental fashion� An important di	erence compared to many of the other models considered here is
that dimensionality of the model is determined as part of the procedure �tting the model to data�
This is based on minimizing the distance between data points and their projections onto the principal
surface and consists of two main steps� the �rst which grows the model� the second which prunes it�
A part of both these steps is what LeBlanc and Tibshirani call model re��tting� which is similar to the
�tting procedure for principal curves� alternating between projection on and adaption of the surface�

�This model readily extends to more than one non�linear component� but for simplicity we refer to the resulting
low�dimensional structure as a curve�
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Figure ���� An auto�associative network that maps a D�dimensional input vector to itself� through a
L�dimensional bottleneck layer� L 	 D� possibly preceded and followed by layers of non�linear units�

����� Auto�associative feed�forward neural networks

An alternative and rather di	erent approach to non�linear PCA is the use of auto�associative networks
�Kramer� ������ also known as auto�encoders� These are feed�forward neural networks which are
trained to implement the identity function� i�e� to map a vector to itself� through a 
bottleneck��
encouraging it to �nd and exploit an underlying� simpler structure in the training data� Figure ���
shows a schematic picture of an auto�associative network� where a D�dimensional data vector is fed as
input and target� but the mapping goes via an L�dimensional space �the model space�� with L 	 D�
If all the units in this network are taken to be linear� in which case any intermediary layers between

inputs and targets and the bottleneck layer can be removed� and the network is trained using the sum�
of�squares error function� this training corresponds to the minimization of the reconstruction error in
equation ���
�� This will result in the network performing standard PCA with L principal components
�Baldi and Hornik� ������ In fact� it can be shown that this will also be the case for a network with
a single bottleneck layer of non�linear units �Bourlard and Kamp� ������ However� if we instead use a
network with intermediary layers of non�linear units before and after the bottleneck layer� this allows
the network to �nd non�linear structures in the data� which we can interpret as a form of non�linear
PCA� Another interesting implication is that if we allow the number of units in the intermediary layers
to exceed D� we could also consider letting L 
 D and �nd more principal components than there are
dimensions in the data�
Zemel and Hinton ������ develop an alternative formalism in the context of auto�encoders� where

each hidden unit instead represents a quantization vector� with the auto�encoder implementing a
vector quantizer� In this model� there are no intermediate layers between input and target layers and
the bottleneck layer� and the units in the bottleneck layer� of which there are typically many more
than there are inputs� form their activations as soft�max transformations �Bridle� ����� of their net
input� However� each hidden unit also has a adjustable location in a low�dimensional implicit space�
During training� the parameters of the model are adjusted to reconstruct the input vector on the
targets� while driving the activations of the hidden units towards forming a Gaussian bump in the
implicit space� This means adjusting the position of each hidden unit� both in the input space and in
the implicit space� so that units which have nearby locations in the implicit space respond to nearby
vectors in the input space�

����� Kernel based PCA

Kernel based methods� most prominently represented by the non�linear support vector machine �Cortes
and Vapnik� ������ o	er promise for non�linear extensions to many methods based on the inner product�
or dot product� of vectors� Using the kernel based methods� we can consider mapping two vectors in
the input space to a high �maybe even in�nite� dimensional feature space and then compute the inner
product of the resulting vectors in the feature space� The relationship between vectors in the input
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space and their images in the feature space need not be linear� The important point� however� is that
the image vectors are actually never computed explicitly� all that is computed is their inner product�
using a so�called kernel function�

Sch"olkopf et al� ������ describe a method for doing non�linear� kernel based PCA� It corresponds to
doing ordinary linear PCA� but doing it in the implicitly de�ned feature space� As with auto�encoders�
this has the interesting implication that we can �nd more principal components than observed vari�
ables� Another implication� which makes this method less interesting compared with the other models
discussed here� is that� in general� we cannot get hold of the actual principal components� We can
compute the projection of a new point in the data space onto the principal components� but it is di��
cult to explore the relationship in the other direction� i�e� how variance along the principal components
is re�ected in the input space�

��� Generative models

The projection models discussed in the previous section aim at �nding low�dimensional manifolds in
the space of the data� such that the distance between data and its projection on the manifold is small�
The generative models that are to be discussed in the sections to come� try to model the density
function that is assumed to have generated the data� under a set of constraints that restricts the set
of possible models to those with a low intrinsic dimensionality�

����� Factor analysis

Traditionally� factor analysis �FA� �Bartholomew� ����� Lawley and Maxwell� ����� has been the

generative cousin� of PCA� in fact� the two techniques are sometimes confused� The key di	erence is
that where PCA is focusing on variance� FA focus on covariance� Covariance between a set of observed
variables is seen as an indication that these variables are� if only to a certain extent� functions of a
common latent factor� The e	ect of this di	erence becomes apparent when the observed variables are
subject to signi�cantly di	erent noise levels� While PCA will try to capture all variance in the data�
including variance due to noise a	ecting only individual variables� FA will focus on the covariance�
regarding additional variability in the observed variables as noise� Figure ��
 illustrates this for a
two�dimensional data set�

FA has� just like PCA� a long history� dating back to the beginning of the century� It was devel�
oped by psychologists with the aim to explain results from cognitive tests in terms the underlying
organization of mental abilities� Since then� a number of variants have been suggested� di	ering pri�
marily in their estimation procedures for the model parameters� Due to this diversity� and maybe
also to its origin� FA was for a long time looked at with some scepticism� as lacking a solid statistical
foundation� A method for maximum likelihood estimation of the parameters in the FA model was
proposed by Lawley ������� but this method had a number of practical disadvantages and it was not
until when J"oreskog ������ proposed an alternative maximum likelihood method that FA got a wider
acknowledgment as a useful statistical tool�

Rubin and Thayer ������ developed an Expectation�Maximization �EM� algorithm �Dempster et al��
����� for parameter estimation in the FA model� and recently a variant of the Wake�Sleep algorithm
�Hinton et al�� ����b� Dayan et al�� ������ was proposed for FA �Neal and Dayan� ������ This algorithm�
which shares some features with the EM algorithm of Rubin and Thayer ������� is motivated by
localized learning� in turn motivated by neuro�biological considerations�

The factor analysis model

Factor analysis represents an observed D�dimensional continuous variable� t� as a linear function of
an L�dimensional continuous latent variable and an independent Gaussian noise process�

t  Wx! e! �� �����

Here W is a D�by�L matrix de�ning the linear function� e is a D�dimensional vector representing
the noise or individual variability associated with each of the D observed variables� and � is a D�
dimensional vector representing the mean of the distribution of t� To keep the notation simple we will
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Figure ��
� The plot shows the data set from �gure ���� but here the noise on the horizontal variable
has been scaled up� Consequently� the the �rst principal component� shown as the lower grey arrow
with hollow head� is approaching the horizontal axis� while the vector corresponding to one�factor FA
model� although a	ected by the increasing noise� stay closer to the ���degree line� representing the
covariance between the data variables�

assume� without any loss of generality� that the data sets we consider have zero mean� so that � can
be omitted�
We also assume that x has a zero mean Gaussian distribution and� from the notational point

of view� it also is convenient to assume that the latent variables are all independent and have unit
variance�

p�x�  

�
�

��

�L��
exp

�
��
�
xTx

�
� �����

Finally also assuming that x and e are uncorrelated results in a conditional distribution over t which
is also Gaussian�

p�tjx�W���  

�
DY
d

��#dd

�����
exp

�
��
�
�t�Wx�T����t�Wx�

�
� �����

where� is aD�by�D diagonal matrix� with element #dd representing the variance of ed� the individual
variance of td�
From ����� and ����� follows that�

E�ttT�  WWT !�� �����

This manifests the fundamental assumption of many latent variable models� that the conditional
distribution of the observed variables given the latent variables is independent� i�e� the dependence on
the common latent variables explain all covariance between observed variables�
Equation ����� is the starting point for many of the algorithms proposed for parameter estimation

in the FA model� For a given set of training data� ft�� t�� � � � � tNg� we compute its sample covariance
matrix�

S  
�

N

NX
n

tnt
T
n � �����



�� CHAPTER �� MODELLING LOW�DIMENSIONAL STRUCTURE

where we have assumed that the data set has zero mean� and then seek parameters�W and �� that
satisfy the equation

S  WWT !��

Here� however� we will review the EM algorithm of Rubin and Thayer ������� to make a connection
to the EM�algorithm derived for the non�linear generative model described in the next chapter�

An EM algorithm for factor analysis

The Expectation�Maximization �EM� algorithm �Dempster et al�� ����� is a general algorithm for
maximum likelihood estimation in parameterized models from incomplete data� It works in two steps�
in the E�step� it computes expected values of the missing parts of the data or the su�cient statistics
thereof� given the observed data and a current value of the model parameters� In the M�step� it uses
these expectations for the missing data to estimate new values for the parameters� It has been proved
that� alternating between these two steps is guaranteed to increase the likelihood unless already at a
�local� maximum �Dempster et al�� ����� Bishop� ������

In our case� we are given a set of observed data� ft�� t�� � � � � tNg� but we are missing the corre�
sponding fx��x�� � � � �xNg� from which the data set is assumed to have been generated by ������ if
these were known� estimation of W and � would be straightforward� However� by Bayes� theorem�
using ����� and ������ we can write the posterior distribution over x given a data point tn as

p�xjtn�W���  

�����L��jMj��� exp
�
��
�
�x�M��WT���tn�

TM�x�M��WT���tn�

�
� ������

which is an L�variate normal distribution with posterior covariance matrix

M��  �I!WT���W����

Now� assume for a moment that we know xn� n  �� � � � � N � and further that the data points in T
have been drawn independently� We can then write the complete�data log�likelihood� using ����� and
������ as

�  

NX
n

ln p�tn�xn�

 �N

�
ln j�j � �

�

NX
n

�tr�xnx
T
n � ! tr��

���ttT � �Wxnt
T !Wxnx

T
nW

T��� ! constant terms�

������

We do not know xn and xnx
T
n � but using ������ we can compute their corresponding expectations

�the E�step��

hxni  M��WT���tn and ������

hxnxTn i  M�� ! hxnihxniT� ����
�

resulting in an expected complete�data log�likelihood�

h�i  �N

�
ln j�j � �

�

NX
n

�tr�hxnxTn i� !

tr�����ttT � �WhxnitT !WhxnxTn iWT��� ! constant terms� ������

The hxni� n  �� � � � � N � are referred to as factor scores� although there also other de�nitions of this
term �Mardia et al�� ������
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We can maximise h�i with respect to W and � �the M�step� by computing the corresponding
derivatives� using results on matrix derivatives �Fukunaga� ����� appendix A�� and substituting for
hxni and hxnxTn i� yielding the update formulaefW  S���W�I!WT���S���WM����� and ������e�  diag�S� fWM��WT���S�� ������

where S is de�ned in ������ Note that we use the old values�W and �� to compute hxni and hxnxTn i�
while we use the updated value� fW� in ������� when deriving �������
If we study ������� we see that it can be re�written as follows�

fW  S���W�I!WT���S���WM�����

 
�

N
TTT���WM���M�� !M��WT���S���WM�����

 
�

N
ThXiThXXTi��� ������

where T is a D �N matrix containing the data points tn� n  �� � � � � N � as its columns� hXi is the
L�N matrix containing the corresponding posterior mean estimates from ������� and

hXXTi  �

N

NX
n

hxnxTn i�

with hxnxTn i de�ned in ����
��
We can compare ������ with the least squares solution of the linear equations

fWhXi  T

for fW�

fW  ThXiT�hXihXiT����
This solution ignores the covariance structure of the posterior distribution over x and is therefore
incorrect� but it highlights the intuitive idea� We are alternating between estimating posterior mean

points� for a givenW� and then estimating fW to map these back to the corresponding data points�

����� Principal components revisited

Recently� Tipping and Bishop �����b� proposed a probabilistic formulation of PCA �PPCA�� in the
form of a FA model with an isotropic noise model� i�e� �  ��I� They formulate an EM algorithm�
similar to the one of reviewed above� and show that the maximum�likelihood estimate of W corre�
sponds to �an arbitrary permutation of� the L principal eigenvectors of the covariance matrix� S�
scaled by their corresponding eigenvalues�

This brings PCA into the family of generative models� which in turn opens up a whole range of
possibilities� In particular� Tipping and Bishop �����a� show how to construct mixtures of principal
component analyzers� which are �tted to data using a simple extension of the EM algorithm for basic
probabilistic PCA�

����� Non�linear factor analysis

In some sense� all generative non�linear models presented in the following sections can be seen as
variants of non�linear factor analysis� However� it is only the model by Etezadi�Amoli and McDonald
����
� which is explicitly proposed as a non�linear factor analysis model� it follows earlier models by
McDonald ������ ������

�To be precise� they show that W � UL��L � ��I����R� where �L is a diagonal matrix containing the L largest
eigenvalues of the sample covariance matrix S� UL contains the corresponding eigenvectors and R is an arbitrary L�L

orthogonal rotation matrix�
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Figure ���� The solid curve represent a generating curve which is convolved with a Gaussian noise
distribution� represented by the circle� which has its mean on the curve� represented by �� The dashed
curve represents the corresponding principal curve� which falls outside the generating curve�

This model treats the observed variables as lower order polynomial functions of the latent variables�

T  ��X�W !E�

where X is an N � L matrix which rows corresponds to factor scores� W is an L � D matrix of
adaptable weight parameters� E is an N �D matrix of residuals� and� for a two�factor model �L  ��
using second order polynomial�

�n  �xn�� xn�� x
�
n�� x

�
n�� xn�xn���

where �n denotes the nth row of ��X� � this can be extended to more factors and higher order
polynomials�

As with the EM algorithm for FA presented in section ������ computing W and E would be
straightforward if the elements ofX where known� As this is not the case� McDonald ������ also adopts
an iterative scheme� which is a direct extension of a �tting method for linear factor analysis �McDonald�
������ alternating between estimatingW and E and adapting elements of X� using gradient descent�
However� Etezadi�Amoli and McDonald does not de�ne any prior or posterior distribution over x at
any stage so this is not generative model�

����� Principal curves revisited

There also exists a generative variant of the principal curve model �Tibshirani� ������ which was
motivated by the observation of Hastie and Stuetzle ������ that the original principal curve model is
not a generative model� in the sense that if

t  f�x� ! e�

where e represents Gaussian noise and x is uniform on some closed interval� then f��� is generally not
a principal curve for p�t�� The reason for this becomes clear from the illustration in �gure ��� � the
original principal curve should pass through middle of the data that projects orthogonally onto it� but
when the generating curve is bent� the corresponding probability mass �shaded in the �gure� is going
be greater on the outside than the inside of the generative curve� so the resulting principal curve ends
up with a wider radius than the generating curve�
Tibshirani de�nes a principal curve as a triplet hp�x�� p�tjx�� f�x�i� where R p�tjx�p�x�dx  p�t��

and f�x� is a curve� parameterized over a closed interval� which satis�es the self�consistency property�
������ p�tjx� is de�ned N �f�x����x���� where ��x� is aD�dimensional vector representing independent
variances� whereas p�x� is left unspeci�ed� Given a set of i�i�d� data points� the resulting log�likelihood

�To be precise� Tibshirani de	nes p�tjx� to come from a parametric family� but only discusses the concrete case
where it is Gaussian� which is also the case which is relevant in the context of this thesis�
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function becomes

�  
NX
n

log

Z
p�tnjx�p�x� dx� ������

Drawing on a theorem by Lindsay ����
�� Tibshirani states that� with f�x� and ��x� kept �xed�
the maximum likelihood estimate for the mixing density p�x� is discrete with at most N points of
support� we denote these points� x�� x�� � � � � xK � with K � N � Then� ������ becomes

�  

NX
n

log

KX
k

p�tnjx��k � ������

where �k  p�xk�� This is just the log�likelihood function for a Gaussian mixture with centres f�xk��
variances �dk  �d�xk� and mixing coe�cients �k� k  �� � � � �K� which can be maximized using �e�g��
the EM algorithm� As noted by Tibshirani ������� this function has its maxima� equal to in�nity�
when there is a one to one matching between centres and data point and the variances are driven to
zero� moreover� any curve passing through all data points will reach this maximum� and hence there
is a uniqueness problem�
To force the centres of the Gaussian mixture to follow a smooth ��dimensional curve� Tibshirani

introduces a cubic spline smoother� which plays the role of a regularizer of the log�likelihood function�

�  

NX
n

log

KX
k

p�tnjx��k ! �

Z
�f ���xk��

� dx� ������

The resulting model is a regularized Gaussian mixture� where � controls the degree of regularization�
which can be trained using the EM algorithm� with a modi�ed M�step� This will also have to involve
�nding new positions for the support points of the discrete mixing distribution� x�� x�� � � � � xK � for
which Tibshirani uses a one�step Newton�Raphson procedure� This will not maximise� but increase
the log�likelihood� and so it corresponds to a generalised EM �GEM� algorithm �Dempster et al�� ������

����� Density networks


Density Networks� �MacKay and Gibbs� ����� MacKay� ����� is the label attached to a fairly general
framework� proposed to extend the applicability of feed�forward neural networks �Bishop� ������ such
as the multi�layer perceptron� to the domain of unconditional density modelling� These have already
proved highly successful for conditional density modelling� e�g� in pattern classi�ers and non�linear
regression models� As such� they have been trained using methods known as 
supervised learning��
where data is split into inputs and targets� for each input datum there is a corresponding target that
the model should try to match� In unconditional density modelling� there is no such division of data
� the model tries to model the joint distribution of all data variables and must by itself discover any
structure in the data that can aid the modelling� The associated training procedures are therefore
know as unsupervised learning�
MacKay ������ merges the theory of feed�forward neural networks with that of latent variable

models by regarding the inputs of the network� x� as latent variables� for which he prescribes a prior
distribution p�x�� This results in a corresponding distribution over the outputs of the network� the
nature of which depends on the network� With a simple linear network with linear outputs� a Gaussian
distribution over the latent variables and an axis�aligned Gaussian noise model in the target space�
this simply becomes a factor analysis model� If the outputs are fed through a soft�max function� in
which case the resulting variables can be interpreted as conditional probabilities of class membership�
we have obtained what is known as a latent trait model �Lazarsfeld and Henry� ������ It captures
the idea of a sparse distribution in a categorical space dependent on a continuous underlying variable�
which is manifested in correlations between the categorical variables� MacKay ������ ����� shows how
such models can be used for discovering structure in protein data� Using more complex networks in
these models� with non�linear units between inputs and outputs� will allow more complex structures
to be discovered�
To �t these models to data� MacKay ������ employs a conjugate�gradient optimization routine �see

e�g� Press et al�� ������ where the gradient is computed by averaging over the posterior distribution
over the latent space given the data�
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Figure ���� The right half of the �gure shows a schematic illustration of an elastic net model� drawn
as a dashed loop with � representing the points yk� and data points �
cities�� tn� plotted as �� To
the left is a blow�up� where arrows represent the forces acting on the yk�points� which arises from the
prior p�Y� ������ and likelihood p�TjY� �������

����� The Elastic net

The elastic net algorithm was originally proposed by Durbin and Willshaw ������ as a heuristic method
for �nding good approximate solutions to the travelling salesman problem �TSP�� The TSP consists
of �nding a tour of minimal length that makes a single visit to each of the cities in a given set� it is
known to be NP�complete �see e�g� Papadimitriou and Steiglitz� ������ The elastic net algorithm takes
a geometrical approach� starting with a set of points� Y  fykg� k  �� � � � �K� distributed evenly on a
loop� initially shaped as a circle and centered on the mean of the set of points� T  tn� n  �� � � � � N �
representing the cities under consideration� The points on the loop are then moved in steps towards

cities� to which they are close� while trying to minimize the distances to their nearest neighbours on
the circle� as illustrated in �gure ���� Gradually� the trade�o	 between these two forces is shifted so
that closeness of some point on the loop to each point representing a city becomes dominating�

Durbin et al� ������ reformulated the algorithm and showed that it can be interpreted as amaximum
a posteriori �MAP� estimate over the distribution of possible tours� speci�ed by a prior favouring short
tours�

p�Y�  
KY
k

exp
n
� �

V
kyk � yk��k�

o
� ������

where the indices of the y�points are counted modulo K� and a likelihood factor computed from the
data�
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�

K
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k

�
�

��V �
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�V �
ktn � ykk�
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� ������

The prior� ������� is a K�dimensional� correlated Gaussian� encouraging the points in Y to follow a
locally ��D structure� The likelihood factor� ������� is a product of N independent distributions� each
consisting of a mixture of K Gaussians� with centres yk and common variance V � �� in ������� controls
the trade�o	 between the prior and likelihood factors�

Utsugi ������ ����� discusses a generalization of the elastic net model� with a prior that imposes
a ��D structure on the Gaussian mixture model� and relates it to the self�organizing map� discussed
below� This model has some similarities with the model proposed in the next chapter� and will be
further discussed there �section 
������
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Figure ���� A schematic illustration of the self�organizing map � the lower part of the �gure shows the
nodes� drawn as circles� arranged in a rectangular ��D lattice� Each node is mapped to a corresponding
reference vector in the data space� illustrated as black discs in the upper part of the �gure� As
indicated� the ordering of the reference vectors should re�ect the ordering of the nodes�

��� Other models

����� The Self�organizing map

The Self�Organizing Map �SOM� �Kohonen� ����� is a neural network architecture for unsupervised
learning which shares many features with the models discussed so far� despite having rather di	erent
motivation� Since it was proposed by Kohonen ������� it has had considerable success in a wide range
of applications� and has been the subject of signi�cant research e	orts� Nevertheless� the SOM is still
lacking a sound theoretical foundation and is generally motivated by heuristic arguments�
The inspiration for the SOM came from observations of self�organization taking place in the sensory

cortex of the human brain� Bilateral connections between nearby neurons encourage spatial ordering
of sensory input to be re�ected in the ��D spatial ordering of neurons � neighbouring neurons will
typically be activated by similar stimuli� A typical SOM model is depicted in �gure ���� it consists of
a set of nodes �sometimes referred to as 
neurons�� arranged in a regular lattice in a �typically� ��D
space� associated with each node� k� is a so called reference vector� wk� which lives in a D�dimensional
space� Given a D�dimensional set of data� the SOM is trained using the following algorithm�

�� Initialize the reference vectors� w�
k� e�g� setting them equal to random samples drawn from the

data�

�� For each iteration� i� select a data point� tn� either at random or cycling through the data points�
and �nd the node with the closest reference vector� that is� �nd node kn such that

kn  argmin
k

ktn �w
�i��	
k k��
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Figure ���� The left and right plots show a Gaussian and 
top hat� neighbourhood function� respec�
tively� for a ��D SOM� Nodes are plotted as �� except for the node on which the neighbourhood
function is centred �kn�� which is plotted as 	�


� Update the reference vectors so that

w
�i	
k  w

�i��	
k ! 
�i	h�i	�k� kn��tn �w

�i��	
kn

�

where 
�i	 is a learning rate and h�i	��� is the neighbourhood function�

�� Repeat step � and 
 while decreasing the value of 
 and the width of the neighbourhood function�

The neighbourhood function h�i	�k� kn� typically take values between � and �� is unimodal� sym�
metric and centred on kn� common choices are the unnormalized Gaussian and the 
top�hat� function


�
illustrated in �gure ���� The intended e	ect of the neighbourhood function is encourage the reference
vectors of nodes which are near each other on the map� to be near each other in the data space� As the
width of the neighbourhood function gradually decreases� so does the in�uence nodes have on their
neighbours�
There is no theoretical framework for how to choose starting values and decrementing schedules

for 
�i	 and h�i	���� but there are simple rules of thumb which usually give reasonable results �Kohonen
et al�� ������

The Batch SOM

Most of the training algorithms discussed so far are batch algorithms� meaning that each update of the
model parameters is based on all data points� whereas the original version of the SOM is a so called
online algorithm� which makes a separate update for each data point� taken one at a time� There is
also a batch version of the SOM algorithm �BSOM��

Initialize the reference vectors� wk e�g� using random samples from the data�
repeat
for each data point� tn� do
Find node kn such that kn  argmin

k
ktn �wkk��

end for
Update all the reference vectors using�

w
�i	
k  

NX
n

h�i	�k� kn�tnPN
n� h�i	�k� kn��

� ����
�

until convergence

Note that the learning rate parameter 
 is no longer present� Obviously� the for�loop and the
subsequent update in the batch algorithm will be computationally more intensive than their online
counterparts� steps � and 
� but this is usually compensated by a much faster convergence� counted
in number of iterations�

�Also called the 
bubble� neighbourhood function�
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Problems with the SOM

Although the SOM has been subject of a considerable amount of research and applied to a wide range
of tasks� there are still a number of problems that remain unresolved �Kohonen� ������

�� The SOM does not de�ne a density model in the data space� Attempts has been made to
formalize the relationship between the distribution of reference vectors and the distribution of
the data� but has only succeeded under very restricted conditions �Ritter and Schulten� �����
������

�� The training algorithm does not optimize an objective function � in fact� it has been proved
�Erwin et al�� ����� that such an objective function cannot exist�


� There is no general guarantee the training algorithm will converge�

�� There is no theoretical framework based on which appropriate values for the model parameters
can be chosen� e�g� initial value for the learning rate and width of the neighbourhood functions�
and subsequent rate of decrease and shrinkage� respectively�

�� It is not obvious how SOM models should be compared to other SOM models or to models with
di	erent architectures�

�� The mapping from the topographic space to the data space in the original SOM is only de�ned
at the locations of the nodes�

Probabilistic versions of the SOM

Points ��� above� all stem from the �rst point and would largely be resolved in a probabilistic setting�
This has inspired the search for re�formulations of the SOM within the framework of probability theory
and statistics� Indeed� the model presented in the next chapter has been proposed as a principled
alternative to the SOM �Bishop et al�� ����b� ����b�� and a related model based on the elastic net
has also been proposed along those lines �Utsugi� ����� ������ A rather di	erent approach is taken by
Luttrell ������� who derives the SOM as a special case in a more general framework based on folded
Markov chains�
Here we review a latent variable based approximation to the SOM� developed for modelling radar

range pro�le data �Luttrell� ������ The data is assumed to follow a low�dimensional manifold ���D for
radar range pro�le data�� so Luttrell devises the following probabilistic model�

p�t�  

Z
p�tjy�x��p�x� dx� ������

where p�tjy�x�� is assumed to be Gaussian with mean y�x� and the prior distribution over the latent
variable� p�x�� is assumed to be uniform over a �nite interval X �
The model is �tted using maximum�likelihood� by gradient ascent� The gradient of the log�

likelihood function involves the term� p�xjt�� which� using Bayes� theorem� can be written as

p�xjt�  p�tjy�x��p�x�
p�t�

� ������

Luttrell approximates ������ by the formula

p�xjt� 
 ��x� x�t���

where x�t� is the point on X minimizing kt�y�x�k �c�f� the projection index of principal curves� and
���� is chosen based on prior knowledge of the data�
He then suggests the following training algorithm�

�� Select a random data point� tn� and �nd the value x�tn� that minimizes ktn � y�x�k
�� Adjust y�x� so that

y�x� � y�x� ! 
��x � x�t���tn � y�x���
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� Repeat step � and � till convergence�

Since the necessary calculations cannot be done analytically� x is quantized into a discrete set of
non�overlapping 
bins� over the interval X � each with its own y�x�� Following this 
discretization��
steps � and � above will correspond approximately to steps � and 
 of the SOM algorithm� with
��x� x�t�� playing the role of the neighbourhood function� Thus� the training algorithm of the SOM
can be seen as an approximation to maximum�likelihood training of a latent variable model�

����� Multidimensional scaling

Given an N�N matrix of 
distances�� D� between N points� multidimensional scaling �MDS� �Mardia
et al�� ����� Ripley� ����� gives a corresponding set of N points� X  fx��x�� � � � �xNg� in an L�
dimensional space� such that the distances between points inX re�ect those given inD� The 
distances�
need not be Euclidean distances� but can be more general� e�g� distance measures for categorical
variables or subjective measures of similarity� in which case they are often called dissimilarities�
These dissimilarities are the only information about the data that is required� so indeed the data does
not even need to have an explicit form� However� in the context that we are interested in� where the
data has an explicit representation as a set of points in �D� for which the Euclidean distance is the
obvious dissimilarity measure� it can be shown that MDS corresponds to PCA� More precisely� the set
of points found by MDS� X� corresponds �up to scaling and rotation� to the projection of the data on
its �rst L principal components� In this form� MDS is known as principal coordinate analysis�

The Sammon mapping

The Sammon mapping �Sammon� ����� represents a particular form of MDS �Ripley� ����� � the
basic idea is the same� but the Sammon mapping pays more attention to smaller distances� thereby
achieving a varying resolution in the new representation of the data� Regions with a dense population
of data points� between which distances are small� will be 
magni�ed� in the new representation� To
formalize� given a set of 
distances� between N data points�� the Sammon mapping tries to �nd the
set of points fxng� n  �� � � � � N � in �L that minimizes

NX
j�i

 

�
dtij � dxij

	�
dtij

� ������

where dtij denotes the distance between ti and tj and d
x
ij is the distance between xi and xj � This is

a non�linear problem so iterative� numerical optimizations schemes must be used�
The name 
mapping� is somewhat misleading� since the Sammon mapping does not provide any

mapping that can be utilized to �nd a point in the model space corresponding to a new point in the
data space� This has led to the use of parametric neural network models to learn the mapping from
the data space to the low�dimensional space� using ������ as an error function �Lowe and Tipping�
����� Kraaijveld et al�� ������

��� Discussion

This chapter has reviewed a number of models intended for capturing low�dimensional structure in
data living in high�dimensional spaces� or at least provide a low�dimensional representation of this
data� A striking fact is that three of the 
non�generative� models that we have considered � PCA and
the original versions of the principal curve and the SOM � has been re�interpreted or reformulated
for the purpose of bringing them into the family of generative models� The attraction of this type of
model stems from the fact it �ts into the much wider framework of probability theory and statistics�
They can therefore directly make use well�founded theory for �tting models to data� combining models�
treatment of incomplete data� etc�
In the next chapter we propose a generative latent variable model for modelling non�linear� contin�

uous probability distributions with low intrinsic dimensionality� embedded in high�dimensional spaces�
Although similar models have been discussed in this chapter� these di	er in scope or su	er practical
or theoretical limitations�

�We assume that these distances are symmetric and that the distance from a point to itself is zero�
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� In the generative principal curve model� the number of latent points� K� depends on the number
of points in the data set used for training� N � in practice� it will almost always be the case
that K  N � This is likely to cause computational di�culties when tackling larger data sets�
Moreover� it is di�cult to see how this model could be extended to online learning�

� The density network model has been proposed in fairly general terms� but in practice it has so
far only been applied to categorical data�

� The original elastic net model was proposed for �nding good� heuristic solutions to the travelling
salesman problem� This is re�ected in the structure of the model and that there are typically
many more mixture components than there are data points �
cities��� The data is assumed to
be free of noise and so� in a successfully trained model� there is a mixture component positioned
at each data point� A generalised elastic net model will be discussed in the next chapter�

� In the latent variable model proposed by Luttrell ������ to give a probabilistic interpretation
of the self�organizing map� the posterior distribution over the latent variables is approximated
using a function which is based on prior knowledge of the data� but such prior knowledge may
not always be available� As we will see� this approximation is in fact not necessary�





Chapter �

The Generative Topographic

Mapping

This chapter presents the generative topographic mapping �GTM� � a novel non�linear latent variable
model � along with examples that illustrate how the GTM works and its potential applications� There
is also a discussion on the relationship between GTM and some of models presented in the previous
chapter� in particular the self�organizing map�
The underlying idea of the GTM is the same as that of factor analysis and probabilistic PCA �

we are seeking an 
explanation� to the behaviour of a number of observed variables �data variables��
in terms of a smaller number of hidden� or latent� variables� In contrast to FA and PPCA� the GTM
allows for a non�linear relationship between latent and observed variables�

��� The GTM Model

The GTM de�nes a non�linear� parametric mapping y�x�W� from an L�dimensional latent space
�x � �L� to a D�dimensional data space �y � �D� where normally L 	 D� y�x�W� could e�g� be
a multi�layer perceptron �Bishop� ������ in which case W would denote its weights and biases� as
we shall see later� by making a careful choice of how we implement y�x�W�� signi�cant savings can
be made in terms of computation� For now� we just de�ne it to be continuous and di	erentiable�
y�x�W� maps every point in the latent space to a point in the data space� Since the latent space
is L�dimensional� these points will be con�ned to an L�dimensional manifold non�linearly embedded
in the D�dimensional data space� Figure ��� showed a schematic illustration where a ��dimensional
latent space was mapped to a 
�dimensional data space�
If we de�ne a probability distribution over the latent space� p�x�� this will induce a corresponding

probability distribution in the data space� Strictly con�ned to the L�dimensional manifold� this
distribution would be singular� so we convolve it with an isotropic Gaussian noise distribution� given
by

p�tjx�W� ��  N �y�x�W�� ��

 

�
�

��

��D��
exp



��

�

DX
d

�td � yd�x�W���

�
�
���

where t is a point in the data space and ��� denotes the noise variance� This can be thought of
as smearing out the manifold� giving it a bit of volume� and corresponds to the residual variance of
the PPCA model �section ������ � it allows for some variance in the observed variables that is not
explained by the latent variables�
By integrating out the latent variable� we get the probability distribution in the data space ex�

pressed as a function of the parameters � andW�

p�tjW� ��  

Z
p�tjx�W� �� p�x� dx� �
���


�
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y x W( ; )y x W( ; )

x1x1

x2x2

t1t1

t3t3

t2t2

Figure 
��� The basic idea of the GTM � points on a regular grid in the low�dimensional latent space
�left� are mapped� using a parameterised� non�linear mapping y�x�W�� to corresponding centres of
Gaussians �right�� These centres will lie in the low�dimensional manifold� de�ned by the mapping
y�x�W�� embedded in the �potentially� high�dimensional data space�

This integral is generally not analytically tractable� However� by choosing p�x� to have a particular
form� a set of K equally weighted delta functions on a regular grid�

p�x�  
�

K

KX
k

��x � xk�� �
�
�

the integral in �
��� turns into a sum�

p�tjW� ��  
�

K

KX
k

p�tjxk�W� ��� �
���

An alternative approach� used by Bishop et al� �����a� and MacKay ������� is to approximate p�x�
with a Monte Carlo sample� If p�x� is taken to be uniform over a �nite interval� this becomes similar
to �
����
Now we have a model where each delta function centre �we will from now on refer to these as

latent points� maps to the centre of a Gaussian which lies in the manifold embedded in the data
space� as illustrated in �gure 
��� Note that as long as y�x�W� is continuous� the ordering of the
latent points will be re�ected in the ordering of the centres of Gaussians in the data space� What we
have is a constrained mixture of Gaussians �Hinton et al�� ����� Williams� ������ since the centres of
the mixture components can not move independently of each other� but all depend on the mapping
y�x�W�� Moreover� all components of the mixture share the same variance� ���� and the mixing
coe�cients are all �xed to ��K�
Given a �nite set of i�i�d� data points� ft�� � � � � tNg� we can write down the likelihood function for

this model�

L  
NY
n

p�tjW� ��  

NY
n

�
�

K

KX
k

p�tnjxk�W� ��



� �
���

and maximise it with respect toW and �� However� it is normally more convenient to work with the
log�likelihood function�

�  

NX
n

ln

�
�

K

KX
k

p�tnjxk�W� ��

�
� �
���
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We could employ any standard non�linear optimization technique �see e�g� Press et al�� ����� for
the maximization� but having noted that we are working with a mixture of Gaussians� we may instead
use the EM algorithm �Dempster et al�� ����� Bishop� ������ In the last chapter� section ������ we
saw how an EM�algorithm could be used to �t a factor analysis model to a data set� where the key
step was to compute the expectations of su�cient statistics of the latent variables� the values of which
were missing� When �tting a mixture of Gaussians� which is maybe the most common example of
the application of the EM�algorithm �see e�g� Bishop� ������ the problem would be easily solved if we
knew which data point was generated by which mixture component� unfortunately� this is usually not
the case and so we treat these 
labels� as missing variables�

��� An EM algorithm for the GTM

Given some initial values forW and �� the E�step for the GTM is the same as for a general Gaussian
mixture model� computing the responsibilities�

rkn  p�xkjtn�W� ��  
p�tnjxk�W� ��p�xk�P
k� p�tnjxk� �W� ��p�xk� �

� �
���

assumed by the kth component of the Gaussian mixture for the nth data point� for each possible
pair of k and n� rkn corresponds to the posterior probability that the nth data point was generated
by the kth component� As the prior probabilities� p�xk�� were de�ned to be �xed and equal ���K�
in �
�
�� these will cancel in �
���� Note that� since the mixture components correspond to points
in the latent space� the distribution of responsibilities over mixture components correspond to a
distribution over the latent space� forming a connection to the EM�algorithm for FA� In the M�step�
these responsibilities will act as weights in the update equations forW and �� In essence� we will try
to move each component of the mixture towards data points for which it is most responsible�
So far� we have not speci�ed the form for y�x�W�� but only stated that it could be any parametric�

non�linear model� For the GTM� we normally choose a generalised linear regression model� where y
is a linear combination of a set of �xed basis functions�

yd�x�W�  
MX
m

�m�x�wmd� �
���

We could consider a wide range of basis function� but for the rest of this thesis� we will use a combi�
nation of

� MNL non�linear basis functions� in the form of non�normalised� Gaussian basis functions�

� L linear basis functions� for capturing linear trends in the data� and

� one �xed basis function� that allows the corresponding weights to act as biases�
Thus� we get

�m�x�  

�����
exp

n
�kx��mk

�

���

o
if m �MNL�

xl if m  MNL ! l� l  �� � � � � L
� if m  MNL ! L! �  M �

�
���

where �m� m  �� � � � �MNL� denotes the centres of the Gaussian basis functions and � their common
width� and xl denotes the lth element of x� Note that� throughout the rest of the this thesis� the
GTM models used in experiments are understood to have linear and bias basis functions� and these
will not be explicitly mentioned� It will be convenient to write �
��� in matrix form as

Y  �W� �
����

where Y is a K � D matrix of mixture component centres� � is a K �M matrix with elements
$km  �m�xk�� andW is a M �D matrix containing the weight and bias parameters�
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We now derive the M�step for this model as follows� using �
���� �
��� and �
���� we can calculate
the derivatives of �
��� with respect to wmd� yielding

��

wmd
 

N�KX
n�k

rkn�

�
MX
m�

�m��xk�wm�d � tnd

�
�m�xk�� �
����

where rkn are the responsibilities computed in the preceding E�step� and setting these derivatives to
zero we obtain an update formula for W� A detailed derivation is found in appendix A� Similarly�
calculating the derivatives of �
��� with respect to � and setting these to zero� we obtain

�

�
 

�

ND

NX
n

KX
k

rknky�xk �fW�� tnk�� �
����

Here� fW corresponds to the updated weights� which means that we must �rst maximise with respect
to the weights� then with respect to �� The update formula for � is the same as for general Gaussian
mixtures and has an intuitive meaning� We set ���� which is the common variance of the Gaussian
mixture� to the average weighted distance between mixture components and data points� where the
weights are given by the responsibilities�
Using �
����� the M�step forW can be written on matrix form as

�TG�W  �TRT �
��
�

where T is the N �D matrix containing the data points� R is the K �N responsibility matrix with
elements de�ned in �
���� and G is an K �K diagonal matrix with entries

gkk  
NX
n

rkn� �
����

�
��
� can be seen as a form of generalised least squares �Mardia et al�� ������ To draw the parallel with
the M�step for the factor analysis model in ������� we are settingW to map the weighted� non�linear
representation of the latent variables� G�� to the targets formed by the weighted combination of data
points� RT�
We can now also see the advantages of having chosen a generalized linear regression model� as

this part of the M�step is reduced to a matrix inversion and a few matrix multiplications� A di	erent
model� where the log�likelihood depended non�quadratically on the adjustable parameters� would have
required non�linear� iterative maximization� at each iteration computing a new log�likelihood� which
is generally the most costly part of the algorithm�� Note that� since �TG� is symmetric and often
positive de�nite� we can utilize fast Cholesky decomposition for the matrix inversion� with the option
of resorting to singular value decomposition �SVD� �Press et al�� ����� Strang� ������ if the matrix
proves to be singular� There are two possible ways this can happen� G may contain one or more zeros
along its diagonal� which means that the corresponding mixture components take no responsibility at
all� This is very unlikely to happen as long there are signi�cantly less mixture components than data
points� The second possible cause is rank de�ciency in �� which may occur if we choose the basis
functions very broad or very narrow� or use more basis functions than latent points� Normally� there
will be no di�culty avoiding such choices of basis functions and the rank of � can be checked prior
to �tting the GTM to data�
In addition� we could impose a degree of weight regularization� leading to the equation

��TG�! �I�W  �TRT �
����

where � is the regularization parameter and I is an identity matrix of the same dimensions as �TG��
This correspond to specifying an isotropic Gaussian prior distribution overW�

p�W�  
� �

��

�W��

exp
�
��

�
kWk�

�
� �
����

�In such a case it might be better to only a partial M�step� increasing� but not necessarily maximising the likelihood�
corresponding to a generalised EM �GEM� algorithm �Dempster et al�� 
����
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with zero mean and variance ���� where W denotes the total number of elements inW� From �
����
and �
����� it follows that �  ���� Apart from ensuring a fast matrix inversion� the use of weight
regularization gives us one handle on the model complexity through the real valued parameter �� The
issue of model complexity and parameter selection will be further discussed in chapter ��

����� Initialization

The only remaining issue is to choose appropriate initial values forW and �� ForW� one possibility
is to use random samples drawn from a Gaussian distribution� N ��� ��� where � is chosen so that
the expected variance over y equals the variance of the training data� An alternative� which is often
better� is to initialize the weights so that the L latent variables map to the L�dimensional hyper�
plane spanned by the L �rst principal components of the data set we are trying to model� A PCA
initialization only requires the weight of the linear basis functions� so weights of the non�linear basis
functions can be set to zero� or alternatively� to very small random values� resulting in a 
semi�random�
initialization� Whether we use random or PCA�based initialization� it is reasonable to initialize the
weight vector corresponding to the bias basis function so as to match the mean of the training data�
For �� our choice to some extent depends on how we choose W� If W is initialized randomly � is
set to the reciprocal of the average squared distance between the centres of the resulting Gaussian
mixture and the points in our data set� which correspond to the update formula in �
���� with all
responsibilities being equal� If� on the other hand� W is initialized using PCA� � is set so that its
inverse �the variance in the data space� equals the larger of

� the length of the �L ! ��th principal component� i�e� the largest variance orthogonal to the
L�dimensional hyper�plane to which the Gaussian mixture is initially mapped�

� half the average minimal distance between the mixture components�

This is motivated by the idea that the initial � should be small enough to explain the variance
orthogonal to� as well as the variance within� the initial manifold�

����� Summary of the GTM algorithm

We now summarize the sequence of steps for constructing a GTM model�

Generate the grid of latent points fxkg� k  �� � � � �K�
Generate the grid of basis function centres f�mg� m  �� � � � �M �
Select the basis function width ��
Compute the matrix of basis function activations� �� from �
����
InitializeW� randomly or using PCA�
Initialize ��
If desired� select a value for ��
Compute �� %kn  ktn ��kWk��
repeat

Compute R from �
��� using � and ��
Compute G from �
���� using R�

�
E � step

W  ��TG�! �I����TRT� where � may be zero�
Compute �� %kn  ktn ��kWk��
Update � according to �
����� using R and ��

���M � step

until convergence

Note how the squared distances required to update � in the M�step gets 
re�used� when calculating
the responsibilities in the following E�step� Next� we look at an example of how this algorithm works�

Example ��� �Curved line in ��D� Figure ��� shows how a GTM with a ��dimensional latent
variable �learns	 to model a data set which is intrinsically ��dimensional but has been non�linearly
embedded in a ��dimensional data space� The data set was generated by picking 
� equidistant points
in the interval ������ 
���� as the x�coordinates� The y�coordinates were then computed as the function
y  x! ���� sin��x�� Finally� spherical Gaussian noise with standard deviation ��� was added to the
data� As can be seen in 
gure ���� this results in a data set with a distribution which is more dense
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around the bends of the curve and sparser towards the ends� as expected� The initial con
guration
for the GTM was found using principal components�

��� Visualization

An important potential application for the GTM is visualization� To see how this works� note that a
GTM� for which we have found suitable parameter values W� and ��� by �
��� and �
�
�� de�nes a
probability distribution in the data space conditioned on the latent variable� p�tjxk�� k  �� � � � �K�
We can therefore use Bayes� theorem� in conjunction with the prior distribution over latent variable�
p�x�� given in �
�
�� to compute the corresponding posterior distribution in latent space for any given
point in data space� t� as

p�xk jt�  p�tjxk �W�� ���p�xk�P
k� p�tnjxk� �W�� ���p�xk� �

�

As can be seen� this is exactly the calculation of responsibilities in �
���� where again the p�xk� cancel�
Provided that the latent space has no more than two� or possibly three� dimensions� we can plot

p�xk jt� against xk� If we want to visualize whole sets of data� we must resort to less rich descriptions�
Two possibilities are� for each data point tn� to plot

� the mode of the posterior distribution in latent space�
xmoden  argmax

xk

p�xkjtn��

which we call the posterior�mode projection� or

� the mean of the posterior distribution in latent space�

xmeann  

KX
k

xkp�xkjtn��

consequently called the posterior�mean projection�

Whatever we choose� we must bear in mind that summarizing descriptors� such as the mode and the
mean� can give misleading results� e�g� in case the posterior distribution is multi�modal� A schematic
illustration of how such a situation may arise is given in �gure 
�
� for a ��D GTM� In fact� plotting
both the mean and the mode and comparing them can give an indication of multi�modality� Our
second example demonstrates how the GTM can be used for visualization of data�

Example ��� ���phase pipe �ow data� In this example we use synthetically generated data� sim�
ulating non�intrusive measurements by gamma�densitometry� from a pipeline transporting a mixture
of gas� oil and water �Bishop and James� ������ The fractions of gas� water and oil vary� and the �ow
in the pipe takes one of three possible con
gurations�

The construction for data collection is illustrated in 
gure ���� Six pairs of ��beams� where the two
beams in each pair have di�erent wave length� are sent through the pipe� and from measurements of
their attenuation� the path lengths through water and oil can be computed� With six pairs of beams�
this data set is twelve�dimensional� However� for any given �ow�con
guration� there are only two
degrees of freedom in the data� the fractions of oil and water �the fraction of gas being redundant� as
the three fractions must sum to one�� Hence� even if this data lives in a twelve�dimensional space� it
is really con
ned to a two�dimensional subspace�

The existence of multi�phase �ow con
gurations complicate matters somewhat� The three di�erent
con
gurations of �ow are illustrated in 
gure ��
� For the homogeneous �ow� which is simply a
homogeneous mix of oil� water and gas� only one ��beam would be required to determine the fractions
of oil and water � data points collected for this con
guration all lives �approximately� in a two�
dimensional plane in the data space� and hence the measurements from the di�erent ��beams provide
the same information� For the annular con
guration� the relationship between the measurements and
the fractions of water and oil is no longer linear� but all data points taken from this �ow con
guration
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Figure 
��� The GTM learning process � the plots show the density model in data space at iteration
� �the initial con�guration�� �� �� �� � and ��� The data points are plotted as � while the centres of
the Gaussian mixture are plotted as �!�� The centres are joined by a line according to their ordering
in the latent space� The discs surrounding each �!��sign represent two standard deviations� width of
the noise model ��

p
����� Note that the �nal density model re�ects the distribution of the training

data�
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*

Figure 
�
� The �gure shows a schematic illustration of a ��D GTM in a ��D data space� together with
a data point� plotted as �� The manifold of the GTM is bent� so that the two mixture components
that are closest to the data point are not close to each other on the manifold� This result in bi�modal
distribution of responsibilities over the mixture components� illustrated in the �gure with a shading
of mixture components 
proportional� to the responsibility they take�

γ γ γ

γ

γ

γ

23
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6

1

Figure 
��� A cross�section of the pipe� showing the location of the ��beams used for collecting the
measurements in the 
�phase data� Note that the vertical beams are displaced relative to the centre
of the pipe� because all con�gurations considered are left�right symmetrical� �see �gure 
����
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oil homogeneous mixgaswater

Figure 
��� A cross�section view of the three di	erent con�gurations of �ow in the pipe� showing� left
to right� homogeneous� annular and strati�ed �ow�

still lives on a single curved manifold� This not the case with the strati
ed �or laminar� con
guration�
as the three fractions change� the vertical ��beams change from passing only through oil to passing only
through water �say�� This cause discontinuities� and consequently data points from this con
guration
are spread over a number of separate two�dimensional manifolds� The three classes join at the three
points� corresponding to pure �ows of oil� water or gas�

The data generating model includes a noise process� modelling errors in the measurements arising
from photon statistics� In a real setting� the noise level would be governed by the time spent to
collect each data point� called the integration time� The data set discussed here was generated so as
to correspond to an integration time of �� seconds�

A GTM model was 
tted to a set containing samples from all three classes� It had a ���by���
square grid of latent points in two�dimensional space� It utilized� apart from bias and linear basis
functions� �� Gaussian basis functions with their centres located on a ��by�� square grid in the latent
space� Both grids were centred on the origin in the latent space� The basis functions had a common
width of � times the shortest distance between two neighbouring basis functions� The model was
initialized using PCA and trained for �� iterations of the training algorithm� imposing a Gaussian
prior on the weights with inverse variance �  ����

The left panel in 
gure ��� shows the posterior�mean projection of the training data in the latent
space with the initial con
guration found using PCA� the middle panel shows the corresponding plot
after training� The separation of the three di�erent classes has increased� in particular� the data points
belonging to the laminar class has been distributed over a number of distinct clusters� The right panel
shows a plot of posterior�mean and �mode for a few of the data points� with the mean and mode
corresponding to the same data point connected by a line� The rather large distances between mean
and mode in some cases suggest that the corresponding distributions may be multi�modal� or at least
skewed� This is not completely unexpected� as the GTM is modelling a rather complex distribution
spread over a number of separated two�dimensional manifolds� some of which are curved� using a
single �elastic	 manifold�

��� Relationship to other models

In the previous chapter we discussed a number of models which all have a similar aim to the GTM�
In this section we discuss the relationship between the GTM and some of these models� giving special
attention to the relationship to the Self�Organizing Map� which has a long�standing position in the
area of unsupervised neural networks�

����� The Self�organizing map

Since the GTM de�nes a density model in the the data space� many of the problems associated with
the SOM� which were discussed in section ��
��� are automatically solved �Bishop et al�� ����b� ����b�
����b��
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Figure 
��� Shown� left to right� are the posterior�mean projection of the data in the latent space of the
PCA�initialised GTM� prior to training� the corresponding plot after having trained the GTM� and�
rightmost� pairs or posterior�mean and �mode projections for the trained GTM� joined by lines� for
��� randomly drawn data points� The three di	erent types of �ow are plotted as ! �homogeneous��
� �annular� and � �strati�ed�� In all the plots� latent points are plotted as shaded �� In left plot� 

represent posterior mode points� with the class label given by the connected posterior mean point�

� The GTM is trained by optimizing an objective function� namely the log�likelihood function in
�
����

� The EM�algorithm is guaranteed to converge to a �local� maxima of the log�likelihood function
�Dempster et al�� ����� Bishop� ������ By appealing to the Robbins�Monro theorem �Robbins
and Monro� ����� Fukunaga� ������ sequential maximization schemes could also be guaranteed
to converge� or we could consider using an online EM�algorithm �Titterington et al�� ������

� We can invoke the machinery of Bayesian statistics to derive methods for treating the parameters
of the model� as will be described in chapter ��

� The likelihood provides a measure based on which a GTM model can be compared to other
generative models�

Another important feature of the GTM is that� if the mapping from the latent space to the
data space is taken to be smooth� the topographic ordering in the latent space will be preserved
on the manifold in the data space�� This is a direct consequence of the fact the GTM de�nes a
continuous manifold in the data space� which is not the case with the original SOM model� To this
end� Ritter ����
� suggested the parameterized SOM �PSOM� model� where a parametric 
surface�
is constructed that passes through the reference vectors of a �tted SOM model� by associating a
basis function with each node�reference vector pair� A more elegant solution� however� is the kernel�
smoothed interpretation of the BSOM� by Mulier and Cherkassky ������� which is discussed further in
the section on kernel smoothing below� However� both these models still su	er many of the problems
of the original version of the SOM� stemming from the fact that they do not de�ne generative models�
We now investigate the relationship between the GTM and the SOM in a little bit more detail�

Soft vs� hard assignment

If we study the training algorithms for the GTM and the SOM� we can discover both similarities and
di	erences� An important dividing line is the way the two models handle the assignment of data points
to mixture components or reference vectors� The SOM assigns each data point to a single reference
vector� corresponding to 
the winning node�� whereas the GTM distributes the responsibility for a
data point over a number of mixture components� This di	erence is analogous to that between the K�
means algorithm �Linde et al�� ����� and the EM�algorithm for a conventional�K�component Gaussian
mixture� A K�means model represents a data set using K mean points� �k� which are �tted to given
a data set of N data points� ftng� using the following algorithm��

�Note that this does not imply that the GTM is guaranteed to reveal any topographic ordering present in the data�
�Note here the similarities with the training algorithm for the batch version of the SOM� discussed in section ����
�
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initialize ��� � � � ��K � e�g� using K randomly drawn points from the data set
repeat
for each data point� tn� do
Find k such that k  argmin

k�

ktn � �k�k� and assign tn to �k � tn � Tk�
end for
re�estimate the the mean points so that

�k  
�

Nk

X
t�Tk

t� where Nk in the number of elements in Tk

until no data point has its assignment changed�

The assignment of data points to mean points can be seen as a special case of the E�step in �
����
where � � � and all responsibility is assigned to a single mixture component� The re�estimation of
the mean points correspond exactly to the M�step for updating a mixture of Gaussians � each mean
point or mixture component is set equal to a weighted combination of the data points assigned to it�
The di	erence lies in the weights of this combination� In the K�means case� each data point assigned
to �k gets weight ��Nk in the update formula� while all other data points get weight zero� For the
Gaussian mixture� the weights are given by the responsibilities� which are typically greater than zero�
The GTM and the SOM di	er in exactly the same way� in terms of assignment of data points to

latent points or nodes� In terms of the update� however� both the GTM and the SOM di	er from
the simple weighted averaging used by K�means and Gaussian mixtures� as well as from each other�
As already pointed out� the GTM de�nes a constrained Gaussian mixture in the data space� so even
though it has the same weighted average of data points used for the general Gaussian mixture as
target for its update� it can only try to �t this target as well as possible� while maintaining its overall
smooth� low�dimensional structure� The SOM uses the neighbourhood function to allow nodes to
in�uence each other in the update of their corresponding reference vectors � in e	ect� each node
is incorporating data points assigned to other nodes in the weighted average update of its reference
vector� The weights assigned to data points of other nodes depends on the distances between the
nodes in the latent space� and will usually di	er from the responsibilities used to calculate the update
target for the GTM� which are based on the distances between mixture components and data points
in the data space� From this perspective� the use of the neighbourhood function in the SOM model
can be seen as a way of trying to smooth or distribute the hard assignments of data points to reference
vectors� In the GTM� there is no need for such arbitrary smoothing� since it uses soft assignments �
responsibilities � calculated under a probabilistic model� Further insights can be gained by studying
how the distribution of responsibilities evolve during training of a GTM model� Figure 
�� shows grey�
scale plots of the responsibility distribution over the latent space during di	erent stages of training�
for a particular data point� The responsibility distribution starts o	 being rather wide� to then
gradually narrow with training� The e	ect of this process is similar to that achieved by shrinking the
neighbourhood in the SOM model� The important di	erence is that in the GTM� this results as an
automatic consequence of the gradually improved �t of the model to the data� whereas the shrinking
of the neighbourhood in the SOM model has to be done 
by hand�� by the user�
When comparing the GTM and the SOM� it is di�cult to describe the precise e	ects of these

di	erent strategies of assignment� as they depend on many factors� only some of which are under the
control of the user� Figure 
�� shows the same plot as in �gure 
��� but for a di	erent data point� From
initially having the same characteristics as the distribution in �gure 
��� instead of getting narrower
the single mode here splits into two� Whereas in the unimodal case� the hard assignment of the SOM
combined with neighbourhood smoothing could possibly be regarded as a reasonable approximation�
it is clearly inappropriate in this bi�modal case�

Kernel regression

A di	erent framework in which the relationship between the GTM and the SOM can be analyzed is
that of kernel regression� As noted by Haan and Egecioglu ������� the update formula for the batch
version of the SOM �BSOM��

wk  

NX
n

h�k� kn�tnPN
n� h�k� kn��

� ����
�
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Figure 
��� The four plots show the distribution of responsibilities over the latent space for a particular
data point from the pipe��ow data set described in example 
��� at the initial con�guration� found by
PCA� and then after �� � and �� iterations of training�

Figure 
��� The four plots correspond to those shown in �gure 
��� showing the distribution of re�
sponsibilities over the latent space at di	erent stages of training� but for a di	erent data point� where
the distribution eventually splits over two modes�

�where we here have dropped the time�step index �i�� can be written as

wk  

PK
k� Nk�h�k� k��mk�PK

j Njh�k� j�
�

where

mk  
�

Nk

X
t�Tk

t� �
����

is the mean of the set of data points assigned to reference vector k� denoted by Tk� and Nk denotes
the number of data points in Tk�
Mulier and Cherkassky ������ used this to show that� at any given iteration of the training algo�

rithm� the BSOM model can be expressed using a kernel regression formula

y�x�  

KX
k

F �x�xk�mk �
����

with mk de�ned as in �
���� and

F �x�xk�  
Nkh�x�xk�P
j Njh�x�xj�

� �
����

is the kernel function of node xk � and we have made the neighbourhood functions dependency on
location in the topographic space explicit�
Also the GTM model can� at any given iteration of the training algorithm� be written on the form

in �
����� with the kernel functions

F �x�xk�  ��x���TG������xk�
Tgkk� �
����
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Figure 
��� The four plots show �right�left� top�down� the kernel �
����� evaluated over the latent grid
after � �PCA initialisation�� �� �� and �� iterations of training� using the data set from example 
���
with the centre of the kernel located approximately at the centre of the latent space�

where ��x� is a ��M vector with elements �m�x�� G and gkk are de�ned in �
����� and

mk  g��kkRkT� �
����

where Rk is the kth row of R � the responsibility matrix with elements de�ned in �
���� Figure 
��
shows examples of this kernel� approximately centred in the latent space� during di	erent stages of
training� Note that both kernel functions � �
���� and �
���� � sum to one� For �
���� this follows
directly from the formula� while for �
����� it is easy to see that F�  �� where F  �F �xi�xj���
i� j  �� � � � �K� the result then follows from the fact the Mth column of $� which corresponds to the
bias basis function� contains only ones ���s��
Formulae �
���� and �
���� again re�ects the di	erence between the hard assignment of the SOM

and the soft assignment of the GTM� If we study the kernel functions in �
���� and �
����� we see
that the SOM kernel will gradually get narrower during training� as a consequence of the shrinking
neighbourhood function� The GTM kernel� on the other hand� varies only with G� and typically
retains its width during training� although peaks and troughs tend to become more pronounced�
This is illustrated in �gure 
��� and is a consequence of another important di	erence between the
SOM and the GTM� For the GTM� the sti	ness of the manifold� which primarily depends upon the
width of the non�linear basis functions� does not change during training� For the SOM model� the

manifold� starts o	 being rather sti	�� to then gradually become more �exible as the neighbourhood
function shrinks� This gradual softening� which is essential for the learning in the SOM� unfortunately
makes the relationship between the user controlled parameters �e�g� the initial and �nal width of the

�As have already been mentioned� the original SOM model does not de	ne a continuous manifold in the data space�
but thinking of the reference vectors as spanning an elastic manifold helps the understanding�
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Figure 
���� Sample manifolds of increasing sti	ness� These manifolds were generated by �rst selecting
the relative width for the non�linear basis functions� � � ���� ��� and ��� for the left� middle and right
panel� respectively � and then draw weight parameters randomly from the prior �
�����

neighbourhood� rate of shrinking� etc�� and a priori expectations about the resulting model rather
obscure� In the GTM� user controlled parameters are de�coupled from the learning process� and
their impact on the �nal model is therefore easier to understand� Figure 
��� shows examples of ��D
manifolds embedded in a 
�D space� generated from a GTM with a ��D latent space� by randomly
sampling weight parameters from the prior �
����� The three plots correspond to increasing values
of �� � will only a	ect the overall scale of the manifold� although we could consider allowing greater
variance for the weights of the linear basis functions� which would then consequently result in more

linear� manifolds�

Computational considerations

Although the rapid development of computer technology has to some extent altered our perception
of computational complexity� this issue cannot be ignored� To simplify the comparison� we here only
consider the batch version of the SOM �BSOM��
If we study the steps for computing the statistics necessary to update the parameters �winning

nodes or responsibilities�� we see that the distance calculation between data points and mixture
components of reference vectors� respectively� is identical in both training algorithms� On top of that�
the GTM has the additional cost of computing the responsibilities from these distances� but as the
the dimensionality of the data space increases� the proportional cost of this extra step decreases�
When updating the parameters� the GTM requires a matrix inversion of anM �M matrix� where

M is the number of basis functions� followed by a set of matrix multiplications� The matrix inversion
scales as O�M��� while the matrix multiplications scales as O�KND�
� The update of the SOM
depends on the form of the neighbourhood function� If it is continuous on the latent space� then
every node will potentially be in�uenced by all other nodes and so the update will require O�K�ND�
operations� Every time the width neighbourhood changes� determining the cross�in�uence between
nodes will require another O�K�� operations� If� on the other hand� the top�hat neighbourhood
function is used� each node will only in�uence nodes which are within the width of the neighbourhood
function� which can result in dramatic savings� especially when the neighbourhood is small� However�
updates using the top�hat neighbourhood function is typically much less smooth than those obtained
when using e�g� a Gaussian neighbourhood function�

Assuming that the BSOM is using a continuous neighbourhood function� the cost ratio for the
respective update calculations will largely depend on the ratio between K and M � Normally� the
number of basis functions in the GTM will be much smaller than the number of latent points� When
applied to the data used in example 
��� a BSOM model with a corresponding grid of ��� �� nodes
and a Gaussian neighbourhood function converged in roughly the same time as the GTM used in the
example� However� using the top�hat neighbourhood function� the same BSOM model converged to a

�To be exact� the matrix multiplications scales as O�KMD �KND�� but normally the number of data points� N �
exceeds the number of basis functions� M �
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comparable� solution �as judged by visually inspecting the resulting winning node plot for the data�
in less than a third of that time� An additional factor that must be considered is the number of trials
required to �nd suitable parameter values� and to which extent such trials can be run and assessed
without human supervision� As described in chapter �� there are principled ways in which this can be
done automatically for the GTM�
Various techniques could be used in both models to speed up the computations� One potential

such technique for the GTM� which retains all its desirable properties� is discussed in section ����
To summarize� with a top�hat neighbourhood function� a BSOM model will normally converge

more quickly than the corresponding GTM model �i�e� the number of latent points equals the number
of nodes�� However� using a Gaussian neighbourhood function with the BSOM model� which typically
gives a smoother convergence� the di	erence in speed of convergence will depend on the ratio between
K and M � In practice� we normally chose M 	 K�� for the GTM� in which case the convergence
rates are similar�

����� A Generalised elastic net model

Recently� a generalization of the elastic net model was proposed by Utsugi ������ ����� as a probabilis�
tic formulation of the SOM� a model which is closely related to the GTM� Recall that the elastic net
model� as proposed by Durbin et al� ������ �see section ������� is a Gaussian mixture with a prior that
encourages the mixture components to follow a locally ��D� globally cyclic structure� This prior can
be extended to more general forms� Utsugi uses a discretized Laplacian smoothing prior �O�Sullivan�
����� that encourage the mixture components to follow a low�dimensional� rectangular structure� and
which can relatively easily be modi�ed to more complex priors� e�g� to allow for �partial� 
cuts� or

tears� in the manifold �Utsugi� ������ To formalize this� the model consists of a K�component Gaus�
sian mixture with centres� wk� a common variance �

�� and equal mixing coe�cients �xed to ��K�
For the centres we de�ne the prior

p�Wj��  
DY
d

� �

��

�j��
�j�T�j����� exp

�
��

�
k�bwdk�

�
�

where W is the K �D matrix holding the centres� wk� as its rows� bwd is the dth column of W� �
is a matrix representing a discretized smoothing operator on the latent �topological� space� j�T�j�
denotes the product of the j positive eigenvalues of �T�� and � controls the degree of smoothing
imposed� Utsugi gives examples using a second order smoother discretized on a lattice in a ��D latent
space�

%ij  

���
�� if j�i� j� ! �j  ��
� if j�i� j� ! �j  ��
� otherwise�

i  �� � � � � �K � ��� j  �� � � � �K�

Given a data set� ft�� � � � � tNg� we can write the penalized log�likelihood function as�

�  

NX
n

ln p�tnjW� �� ! ln p�Wj��

We can maximise this using an EM�algorithm� where the E�step is identical to that of the GTM� while
in the M�step� we are solving �

G!
�

�
�T�

�
W  RT�

for W� where G� R and T are de�ned as for the GTM� equation �
��
�� Comparing these two
equations highlights the key di	erence between the two models� The GTM consists of a constrained�
rather than a regularized� Gaussian mixture� Alternatively� regularization can be seen as imposing
soft constraints on the mixture components� in contrast to the hard constraints enforced by the GTM�
Another important di	erence� is that this elastic net model� due to its use of a discretized smoother�
does not de�ne a mapping from the latent space to the data� and hence no explicit manifold in the
data space� A new point in the latent space which does not coincide with any point in the lattice
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of the smoother can therefore not be mapped to the data space� as is the case with the GTM� In
section ��� we discuss an alternative way of de�ning the mapping from latent to data space in the
GTM� which imposes soft constraints on the mixture components� using a Gaussian process prior�
The relationship of the generalised elastic net to the SOM is largely analogous with that of the

GTM� discussed in the previous paragraphs� Utsugi ������ shows how the Laplacian smoother alter�
natively can be written in the form of a �discretized� kernel smoother�

����� Principal curves

The original principal curve algorithm� discussed in section ������ is in some ways closer to the SOM
than the GTM� in that

� each data point is associated with a single point on the curve� namely its projection on the
curve� and

� for �nite data sets� the conditional estimates of the curve are smoothed over a neighbourhood
de�ned in the parameter space of the curve� corresponding to the neighbourhood function of the
SOM�

Note that the projections onto the curve change on a continuous scale in the parameter spaces� as
the curve adapts� The re�assignment of data points to the static nodes in the SOM can be seen as a
discretization of this process�
The revisited version of the principal curve� discussed in section ������ is closer to the GTM and the

elastic net model discussed in the previous section� It also generates a regularized Gaussian mixture�
but uses a cubic spline smoother� and the number of components in the mixture equals the number of
data points� Tibshirani ������ suggests the possible extension of the revisited principal curve model
to structures of higher dimensionality� but goes no further�

����� Density networks

The density networks model �MacKay and Gibbs� ����� MacKay� ����� is fairly general and the
GTM model proposed here can be seen as a particular instance� with a particular form for the prior
distribution in the latent space� given in �
�
�� and the mapping from latent to data space being
implemented using a generalised linear regression model which is optimized using the EM algorithm�
As mentioned at the end of section ������ MacKay and Gibbs use a conjugate gradient routine for the
optimization� The gradient is computed by averaging over the posterior distribution over the latent
variables and since MacKay and Gibbs approximates this distribution over a �nite sample of points
in the latent space� the computation of this distribution will be equivalent to the computation of
responsibilities in the GTM�
MacKay and Gibbs ������ also discuss a hybrid Monte�Carlo approach �Neal� ����� for modelling

the posterior distribution� which holds potential to resolve problems that arise as the dimensionality
of the latent space increase�

����� Auto�associative networks

The most important di	erence between the auto�encoder and the GTM is that the former does not
de�ne a distribution over the latent space �the space of the hidden units� and hence it is not a
generative model� However� the auto�encoder has the advantage of e	ectively dealing with latent
spaces of higher dimension� since the E�step of the generative models� which computes a �discretized�
distribution over the whole of the latent space� is replaced by a straightforward 
projection� in the
latent space �the space of activations from the bottleneck layer�� which is a single point� computed
by the forward propagation from the input layer to the bottleneck layer� These projections are then
mapped� by the second half of the auto�encoder �bottleneck to targets�� which corresponds to the
mapping from latent to data space in the GTM�
This ��stage view of the auto�encoder has provided inspiration for developments of generative latent

variable models� in which a recognition model� analogous with the input�to�bottleneck mapping� is used
to �approximately� model the conditional distribution over a set of latent variables� given a data set�
This distribution is then mapped to the data space� in analogy with the bottleneck�to�targets mapping�
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Figure 
���� A toy data set consisting of ���� data points drawn at random from a distribution de�ned
by two correlated Gaussians in ��D�

resulting in a generative model in the data space� These ideas were �rst developed for latent class
models� where the observed data consist of binary vectors� e�g� binary images �Dayan et al�� ������
More recently� also models for non�linear factor analysis and topographic maps have been suggested
within this framework �Ghahramani and Hinton� ����� Hinton and Ghahramani� ������

��� Discussion

This chapter has introduced the basic GTM model� There are a number of ways in which this model
can be generalized� extended or adapted� The important point� however� is that any such future
developments can be carried out within the framework of probability theory� We have in this chapter
left a number of parameters of the GTM model unspeci�ed � in chapter �� we will see how we can
�nd suitable values for these using Bayesian methods� In chapter � several other suggestions will be
given on how the GTM model can be extended in a principled manner� providing further evidence of
the bene�ts of using a generative� probabilistic model�
We have also seen how the GTM can be used for visualization of data from the modelled distribu�

tion� based on the posterior distribution over the latent space induced by a point in the data space�
In chapter �� we will see how we can use the fact that the GTM de�nes a continuous manifold in the
data space to further enhance its capabilities for visualization by the introduction of the magni�cation
factor�
A potential problem with the GTM as presented in this chapter� is that it will be best suited to

model continuous� low�dimensional distributions of roughly square shape� When this is not the case�
the non�linear mapping will try to adapt in order to match the data as well as possible� but that may
in turn raise a con�ict between the interpretability and the quality of the density model�

Example ��� �� Gaussians in ��D� Consider the data set shown in 
gure ����� consisting of two
correlated Gaussians in ��D� Two GTM models were 
tted to this data set� both having a ����� grid
of latent points� but one had a rather �exible mapping� with a �� � grid of basis functions� whereas
the other had a minimal �� � grid of basis functions� both had �  ����

Both models were trained using �� iterations of EM� the 
rst without using any weight regular�
ization� the second using �  ���� and the resulting manifolds are shown in the top left and right
panels of 
gure ����� note that these have been plotted using a 
�� 
� grid of latent points� In the
bottom panels the corresponding density models are illustrated� together with a test set consisting of
���� points drawn independently from the same distribution as the training data� The more �exible
manifold has been curled up and folded as the training algorithm has tried to achieve an optimal 
t
to the training data� The sti�er manifold has been too sti� to bend or fold and� as a consequence� the
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Figure 
���� The left and right column shows the manifolds �top� and density models �bottom� of the
more �exible and the more sti	 GTM models� respectively� The manifolds has been plotted using a

� � 
� grid of latent points� The density model plots shows contours of constant density� together
with a set of independent test data points� plotted as � �

resulting density model is clearly inferior� The log�likelihood scores for the two models are shown in
table ����

It should be noted that the experiment in example 
�
 was designed to demonstrate a point� The
data consists of two separated clusters with ellipsoid shapes� and since we are �tting a ��D model to
��D data� the non�linearity in the GTM will be used entirely to squeeze the single� inherently square
shaped manifold to �t two ellipsoid clusters� In this situation� warping the manifold as in the top�left
panel of �gure 
��� appears to be the most 
pro�table� alternative for the training algorithm� in terms
of the trade�o	 between likelihood and the degrees of freedom available� A second important point to
note is that a more �exible model will always �t better to training data� compared to a less �exible
one� but this will not necessary generalise to independent test data� a problem known as over�tting�
which will be further discussed in section ���� Indeed� if the �exible model in the example had been
even more �exible� or if the training data set had been smaller� the scores in the test data column of
table 
�� may have been reversed�
A potential solution to problems arising from the �xed� square shaped distribution is to relax the

constraint of �xed mixing coe�cients� and instead estimating these as part of the training procedure�
The training algorithm could then� within given limits� choose the distribution of mixing coe�cients
that gives the best �t to data� in e	ect choosing the distribution over the latent space� However�
this is likely to have a signi�cant impact on the GTM as a model for visualization� The data in
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Data Set
Model Training Test
Flexible ����� �����
Sti	 ��
�� ��
��

Table 
��� Log�likelihood scores on training and test data� for the �exible and sti	 GTM models
discussed in example 
�
� Both training and test set contained ���� data points�

example 
�
� may in such a model project only on the two opposite edges of the latent space� The
�xed mixing coe�cients� on the other hand� are encouraging the training algorithm to make use of as
many mixture components as possible� given the constraints on the �exibility of the mapping�
If the ultimate goal is density modelling and a �single� GTM model indicates clusters in the data�

it may be that a better density model can be obtained by using a mixture model� which may have a
GTM as one or more of its components�





Chapter �

Magni�cation Factors

The concept of magni�cation factors initially arose in studies of the formation of topological maps
in the visual� auditory and somatosensory regions of the cortex of mammalian brains �see e�g� Suga�
����� Kaas et al�� ������ It refers to how a region in a sensory space �e�g� a region of the retina in the
eye� is being mapped to a� proportionally� much larger region of the cortex� the region in the sensory
space is said to be 
magni�ed�� It was naturally carried over to the biologically inspired SOM model�
where it came to represent how the topological map was being �locally� stretched and compressed
when embedded in the data space� in order to make the density of reference vectors 
match� the
density of the training data� More precisely� Kohonen ������ uses the term 
magni�cation factor�
to mean &the inverse of the point density' of the reference vectors� and theoretical analysis of the
magni�cation factor� in this sense� was carried out by Ritter and Schulten ������ ������ We will use
the term 
magni�cation factor� to refer to the stretching and compression of the manifold representing
the latent space� when embedded in the data space� Since the GTM density model consists of a set
of equally weighted Gaussians with a common noise model� which corresponds to the regular grid
of points in the latent space� the stretching and compression of the manifold will be driven by the
objective of the training algorithm� to make density model match the distribution of the training data�

Since for the original version of the SOM� the topological map is represented in the data space only
in term of a discrete set of reference vectors� the magni�cation factor� according to the de�nition used
here� will only be available in a discretized form� as the ratio of distances between reference vectors
in the data space and distances between the corresponding distances between nodes on the map� A
method� called the U�matrix method� was proposed by Ultsch and Siemon ������� which visualizes
distances between reference vectors on the topological map� this method will be further discussed in
section ����

The GTM� by contrast� de�nes a continuous manifold embedded in the data space� which allows us
to derive methods for computing the magni�cation factor as a continuous function over manifold �and
hence over the latent space�� as will be discussed in section ��
� As will be described in section ����
this method is also applicable to the batch version of the SOM� provided certain conditions are met�
First� however� we give further motivation for the use of magni�cation factors�

��� Motivation

What does the locations of two points in the latent space tell us about the locations of the corre�
sponding two points in the data space( Given the discussion in the previous chapter on the topology
preserving properties of the the GTM� the answer may seem obvious� nearby points in the latent space
map to nearby points in the data space� But how near is 
nearby� and will this value be constant
over the latent space( The answer to this last question is generally no� Since the mapping between
the latent space and the data space is non�linear� what is nearby will vary over the latent space� In
fact� we have already seen an example of this � the toy data set used to demonstrate learning in
the GTM in example 
�� is not uniformly distributed over the curve that it follows� Consequently�
the GTM trained on this data will stretch the manifold in regions of low data density and compress
it in regions of high density� This is re�ected in the bottom right plot of of �gure 
��� showing the
converged model� the mixture components� that correspond to a uniform grid in the ��D latent space�

��
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Figure ���� An illustration of the U�matrix method� To the left is the topographic map� where the
circles represents nodes and the 
�D bars represent the distances between the corresponding reference
vectors� shown as circles in the data space to the right�

are spread out towards the end of the manifold and compressed together in the bends�

Thus� it is clear that 
nearby� is something relative which varies over the latent space� and this can
have important implications on how data is visualized in our model� Clusters of data which are well
separated in the data space may appear much closer in when visualized in the latent space� However�
if we �nd out how the manifold in the data space is being stretched or compressed� locally� that
should give an idea of what nearby means at di	erent positions in the latent space� This could reveal
boundaries between clusters as regions where the manifold in the data space undergoes high stretch�

��� The U�matrix method

The uni�ed distance matrix �U�matrix� method �Ultsch and Siemon� ����� Ultsch� ���
� provides an
estimate of the magni�cation factor for the SOM by visualizing the distances between reference vectors
in the data space on the topographic map� The method is illustrated in �gure ���� the dx bar on the
map represents the square distance between reference vectors a and b� similarly� the dy bar represents
the square distance between reference vectors a and c� the dxy bar� �nally� represents the averaged
squared distances between reference vector pairs a�d and b�c� Instead of using 
�D bars� distances
can be visualized using grey�scale or colour coding� as will be shown in the examples in section ����

��� Continuous magni�cation factors

We introduce the method for computing the magni�cation factor as a continuous function over latent
space by �rst looking at the special case were the latent space is two�dimensional� This is partly
because this is the by far most common case� especially when the ultimate aim is visualization of
data� More importantly� the two�dimensional case provides an intuitive understanding of the general
treatment�

We are interested in how a region in the latent space is being stretched �or compressed� when
mapped into the data space� More precisely� we want to �nd the areal ratio between an in�nitesimal
rectangle in the latent space with area Ax� and its 
image� in the data space with area Ay� as shown
in �gure ����

As the %x�s in the latent space go to zero� we can treat the mapping as linear around the point of
interest� and we get the ��D vectors %y� and %y� in terms of the partial derivatives of the mapping
with respect to the �rst and second dimension of the latent space� respectively�
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Figure ���� An illustration of the magni�cation factor for a ��D latent space � the vectors %x�

and %x�� forming a rectangle in the latent space �left� with area Ax� are mapped to %y
� and %y��

respectively� forming a parallelogram with area Ay in the data space �right�
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By standard geometrical arguments� the square of the area Ay can be written as

A�
y  k%y�k�k%y�k� � �%y�%y�T�� ���
�

The last term in ���
� expresses the fact that we must consider the correlation in direction between
%y� and %y� � if they were orthogonal to each other� this term would be zero� whereas if they were
parallel� it would equal the �rst term and Ay would be zero �the parallelogram folding to a line��
Now� by using ����� and ������ and after some re�arranging� we get the magni�cation factor as

dAy
dAx

 

vuut���� �y�x�
����� ���� �y�x�

����� �
�
�y
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�x�

T
��
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The partial derivatives of the mapping y�x�W�� with respect to the latent variable� x� are easily
obtained from �
���� yielding

�y

�xl
 �lW �����

where �l is an ��M vector� containing the partial derivatives of the basis functions with respect
to xl� which we get from �
��� as

�lm  

��� ��m�x��xl � �lm��
�� if m �MNL�

� if m  MNL ! l�
� otherwise�

�����
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Figure ��
� An L�dimensional �L  
� parallelepiped whose sides� %y�� � � � �%yL� are given by the
partial derivatives of the mapping from latent to data space� with respect to the latent variables�

����� The General case

The results obtained in the ��D case can be extended to latent spaces of higher dimensionality� by
considering the volumetric ratio between an in�nitesimal� L�dimensional hypercuboid in the latent
space� with volume Vx� and its image in the data space� with volume Vy� Again� with the sides of
the hypercuboid in the latent space going to zero� we can regard the manifold embedded in the data
space as locally linear� and so Vy is contained in an L�dimensional parallelepiped� as illustrated in
�gure ��
� the volume of which is given by the determinant of the matrix containing the sides of the
parallelepiped as its rows� This matrix� which we denote with J� is the Jacobian of the mapping
y�x�W�� i�e� the partial derivatives of y with respect to x�

Jld  
�yd

�xl
�����

Using ����� and ������ we can write J as

J  �W� �����

where � is an L�M matrix with elements �lm� as de�ned in ������
In general� J is not square but L�D� re�ecting the fact that the L�dimensional parallelepiped lies

embedded in the D�dimensional data space� In this form� the determinant of J is unde�ned� but we

can resolve this by �nding� a D � L matrix� cM� with orthonormal columns that span the row�space
of J and then compute bJ  JcM�

Since the columns of cM are orthonormal and span the row�space of J� the lengths of and angles
between the row vectors of J and bJ are identical� and thus we would get the volume Vy by computing
the determinant of bJ� which is L� L�
Eventually� we can compute this volume in a more e�cient way� since lengths and mutual angles

of the row vectors in J and bJ would be identical� it follows thatbJbJT  JJT�
�Using Gram�Schmidt orthogonalization �see e�g� Strang� 
����
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From this and the properties of the determinant� we have

�det�bJ���  det�bJ� det�bJ�
 det�bJ� det�bJT�
 det�bJbJT�
 det�JJT��

and thus

dVy
dVx

 
q
det�JJT�  

q
det��WWT�T�� ������

It is easy to verify that this formula equals ����� if L  ��

An alternative derivation

These results can alternatively be derived using the theory of di	erential geometry �Bishop et al��
����c�d�� Throughout this section� we will adopt the convention from di	erential geometry of summing
over repeated raised and lowered indices� In this approach� we regard the Cartesian coordinate system
de�ned on the latent space� xi� to be mapped to a corresponding curvilinear coordinate system� �i�
de�ned on the manifold embedded in the data space� We then consider the transformation from �i�
at a point Py in the manifold� to an L�dimensional Cartesian coordinate system� ��  ������ The
squared length element in these coordinates is then given by

ds�  ���d�
�d��

 ���
���

��i
���

��j
d�id�j

 gijd�
id�j �

where we have introduced the metric tensor� g� whose components are given by

gij  ���
���

��i
���

��j
� ������

The volume element dVx in the latent space can be related to the corresponding element in the
data space dVy� through the determinant of the Jacobian of the transformation � � ��

dVy  
LY
�

d��  det�bJ� LY
i

d�i

 det�bJ� LY
i

dxi  det�bJ�dVx� ������

where the Jacobian� bJ� is given by
bJ�i  ���

��i
� ����
�

If we study ������ and ����
�� we see that

g  bJbJT�
so by the properties of the determinant�

det�bJ�  pdet�g��
and� from �������

dVy
dVx

 
p
det�g� ������
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We therefore seek an an expression for the metric tensor� in terms of the non�linear mapping
from latent to data space� Again we consider the squared length element ds� but this time in the
D�dimensional Cartesian coordinate system of the data space� where we get

ds�  �pqdy
pdyq

 �pq
�yp

�xi
�dyq

�xj
dxidxj

 gijdx
idxj �

and so we get the metric tensor g as

gij  �pq
�yp

�xi
�dyq

�xj
�

Using this� ������ and ������ we get

dVy
dVx

 
p
det�g�

 det

�
�pq

�yp

�xi
�dyq

�xj

����
 
q
det�JJT��

and so we have recovered �������

����� The Direction of stretch

So far� we have only considered how to compute the areal� magni�cation factor over the embedded
manifold� However� when the manifold is more than one dimensional� stretching in one direction can
be o	set by compression in another direction � a ��by�� rectangle has an area of �� but then so has a
��by�� rectangle� We would therefore like to �nd not only the degree of areal magni�cation� but also
the direction of any compression or stretching�
Intuitively� we want to decompose the stretching of the manifold into its 
principal directions�� as

illustrated in �gure ���� This involves �nding the single direction in the latent space along which we
�nd the largest magnitude of the partial derivatives� and then repeat this procedure until we have
spanned the latent space� with the additional constraint that each new direction must be orthogonal
to all directions found so far�
Put more formally� to �nd the directions of stretch at a point Py in the manifold� corresponding to

the point Px in the latent space� we want to �nd the eigenvalues and eigenvectors of the outer product
matrix of �y��x�jPy � � � � � �y��xLjPy � de�ned as

LX
l

�y

�xl

����T
Py

�y

�xl

����
Py

�

Note that this a D�D matrix� but it has rank L� All subsequent calculations in this sub�section are
understood to be relative to the points Py and Px� so in the interest of clarity these indices will be
dropped�
As discussed in the previous section� the Jacobian J� de�ned in ������ has �y��x�� � � � � �y��xL as

it rows� so our desired outer product matrix can be expressed as JTJ� We can identify eigenvectors
)yl and eigenvalues �l� l  �� �� � � � � L� such that

)ylJTJ  �l)y
l� ������

However� what we are really interested in are the corresponding vectors in the latent space� but since
y  xJ around the point of interest� we can write ������ as

)xlJJTJ  �l)x
lJ� ������

�We will keep using terms like 
area� and 
areal�� since a ��D latent space is by far the most common case� However�
the technique described also applies to cases where L � ��
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Figure ���� A ��D illustration of the directions of stretch� given by vectors )y� and )y� in the data space
�right�� with corresponding vectors )x� and )x� in the latent space �left��

and since J is L�D and has rank L� it has got a right�inverse� and hence

)xlJJT  �l)x
l� ������

Thus we have identi�ed the directions and magnitudes of stretch in the latent space with the eigen�
vectors and eigenvalues of JJT or� equivalently� the metric tensor g�

��� Magni�cation factors for the BSOM

The techniques presented in the previous sections can also be applied to the batch version of the
self�organizing map �BSOM�� provided that the neighbourhood function used is continuous over the
topographic space� As discussed in section 
����� the update formula for the reference vectors in the
training algorithm for the BSOM can be re�written as a kernel regression formula

yk
�

 

KX
k

F �xk� �xk�mk �
����

where

mk  
�

Nk

X
t�Tk

t� �
����

and

F �x�xk�  
Nkh�x�xk�P
j Njh�x�xj�

� �
����

If the neighbourhood function� h���� is de�ned to be continuously di	erentiable � the non�normalized
Gaussian�

h�x�xk�  exp

�
�kx� xkk�

���

�
� ������

will be used in the examples presented below � formulae �
������
���� de�ne a continuous mapping
from the topographic space to the data space� The BSOM model therefore� just like the GTM� de�nes
a continuous manifold in the data space� and thus we can apply the techniques described in section ��
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xy

z

Figure ���� Toy data generated from a regular grid in ��D which is then fed through a tanh�function
along the x�direction� The plot shows the data generating manifold plotted in grey and the data
points plotted as � �

also to the BSOM model� The only di	erence compared to the GTM� is in the computation of the
partial derivatives with respect to the topographic variables� which we get� using �
���� and ������� as

�y

�xl
 
X
k

�F

�xl
mk

 
X
k

xl � xlk
��

�F �x�xk�
� � F �x�xk��mk� ������

��� Examples

We now look at two examples of the techniques discussed in this chapter� which illustrate how they
can be used� and we compare them to the U�matrix technique�

Example 	�� �A ridge in ��D� The 
rst example uses a toy data set� consisting of ��� data points
distributed over a ��D ridge shaped surface in ��D� shown in 
gure ��
� The data was generated from
a regular� square grid in ���� ���� which gave the x� and y�coordinates� whereas z  tanh��x�� Finally�
Gaussian spherical noise with standard deviation ��� was added� As can be seen in 
gure ��
� this
results in the data set being �stretched	 over the tanh�function�

A GTM with a �� � �� latent grid and � � � basis functions and a BSOM with �� � �� grid of
nodes were 
tted to this data and magni
cation factors and the U�matrix were evaluated� The results�
which largely agree with what we would expect from this data� are shown in 
gures �������� Figure ���
shows grey�scale plots of the logarithm of the areal magni
cation factor for the GTM and BSOM�
with darker areas corresponding to regions of high stretch �low magni
cation�� Note that although
the grid of latent points or nodes is ��� ��� the magni
cation factor has been evaluated on a ��� ��
grid in the latent space � in principle� this grid could have arbitrarily 
ne resolution� Overlayed on
the GTM plot is the posterior mean plot of the data� correspondingly� in the BSOM plot� each node
has been labelled with the number of data points won by that node� whenever that number exceeds
zero� In 
gure ���� ellipses show the magnitude and direction of stretch� evaluated at the positions
of the latent points�nodes for the GTM and BSOM� here the scale is linear and the plots have been
individually scaled to avoid overlap between ellipses� Also this plot could be done at a 
ner resolution
if desired� Figure ���� 
nally� shows the U�matrix for the BSOM model�
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Figure ���� Plot of the magni�cation factor for a GTM �left� and a BSOM �right�� trained on the toy
data shown in �gure ���� Overlayed on the GTM plot is the posterior mean plot of the data� while on
the BSOM plot� each node has been labelled with the number of data points it 
won��

Figure ���� Plots showing the direction of stretch for the GTM �left� and the BSOM �right�� corre�
sponding respectively to the left and right plots in �gure ����

Figure ���� The U�matrix plot of for the BSOM model trained on the toy data shown in �gure ����
for which the corresponding magni�cation factor is shown in the right panel of �gure ����



�� CHAPTER �� MAGNIFICATION FACTORS

0

0.5

1

1.5

2

2.5

3

−0.5

0

0.5

1

1.5

2

2.5

Figure ���� Plot of the magni�cation factor for the GTM �left� and the BSOM �right�� trained on the
crabs data� Overlayed on the GTM plot is the posterior mean plot of the data� while in the BSOM
plot� each node has been labelled according to the dominating class among the data points assigned
to them� O denotes blue male� M denotes blue female� C denotes orange female and� �nally� B denotes
orange male

Example 	�� �Leptograpsus Crabs� In the second example� we will look at a data set containing
physical measurements from two species of Leptograpsus rock crabs� � blue and orange� This set was
compiled in order to provide a statistical sample based on which preserved specimen �which have lost
their colour� could be classi
ed� There are 
� male and 
� female of each of the two species� so in all
there are ��� samples�

The data set is 
ve dimensional� the measurements of each data vector correspond to the length of
the frontal lip� rear width� length along mid�line� maximum width of carapace and body length� These
measurements are all strongly correlated with the overall size of the crab� so the dominant underlying
variable of this data set is size� To remove this e�ect� each data vector �sample� is normalized to
unit mean� This seems reasonable if we assume that there are large and small specimens of males and
females in both of the species� We must be aware� however� that there is a risk that this transformation
may remove a feature which could be relevant in distinguishing �e�g�� males from females� if on average�
there is a di�erence in size between males and females� After having normalized the individual data
vectors� the variables of the data set are normalized to zero mean and unit variance�

As in the previous example� a GTM with �� � �� latent points and � � � basis functions and a
BSOM with ����� nodes were 
tted to this data� The results are shown in 
gures ��������� following
the same �line of presentation	 as in previous example� Figure ��� shows a grey�scale plot of the
logarithm of the areal magni
cation factor for the GTM and BSOM� again evaluated on a �� � ��
grid in the latent space� The GTM plot again shows the posterior mean projection of the data� while
in the BSOM plot� nodes has been labelled according to the dominating class among the data points
assigned to them� Figure ���� shows ellipse�plots of the magnitude and direction of stretch� evaluated
at the positions of the latent points�nodes for the GTM and BSOM� Figure ����� 
nally� shows the
U�matrix for the BSOM model� with nodes labelled as in 
gure ����

��	 Discussion

The examples given in the previous section suggests the magni�cation factor can indeed provide useful
information� such as regions of stretch in the manifold which separates di	erent regions in the data
space� However� if the manifold takes a complex shape in the data space� the resulting magni�cation
factor plot may be rather di�cult to interpret�
Recall the data set from example 
�
� which consisted of two Gaussians in ��D � the manifold of

one of the two GTM models �tted to this data ended up having a rather complex shape� shown in

�This data set was obtained from Prof� Brian Ripley�s homepage� http���www�stats�ox�ac�uk��ripley�
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Figure ����� Plots showing the direction of stretch for the GTM �left� and the BSOM �right�� corre�
sponding respectively to the left and right plots in �gure ����

Figure ����� The U�matrix plot of for the BSOM model trained on the crabs data� for which the
corresponding magni�cation factor is shown in the right panel of �gure ���� the nodes has been
labelled as in �gure ����
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Figure ����� The plot shows the magni�cation factor� plotted on a log�scale for the more �exible GTM
model discussed in example 
�
�

the top�left panel of �gure 
���� Figure ���� shows the corresponding magni�cation factor� computed
over a 
�� 
� grid in the latent space�
One may ask the question whether the magni�cation factor can be used to detect a severely

warped manifold� Certainly� when the data lives in ��D and has been normalized� a magni�cation
factor ranging from �� to � on a log�scale is an indication that 
something might be wrong�� but
this probably does not generalize to less extreme examples� Another potential indicator may be to
compute the inner product of the vector )y� representing the principal direction of stretch at some point
Py in the manifold� and the corresponding vectors at other points in the neighbourhood of Py on the
manifold� For a smooth manifold we would expect this inner product to be positive and signi�cant
close to Py� However this indicator may raise false alarms in regions of uniform stretch� which is why
one would also have to consider the ratios of magnitudes of stretch in the di	erent directions�
In section 
��� the introduction of adaptable mixing coe�cients was suggested as a potential

solution to problems linked to the inherent square shape of the distribution of mixture components�
It was then pointed out that this could a	ect GTM as a model for visualization� and this will also
include the results can expect from the use of magni�cation factors� If density mass can be shifted
between regions on the manifold� the training algorithm will not have to stretch manifold as much as
would have been the case with �xed �xing coe�cients�



Chapter �

Parameter Selection

As is the case with all parametric models� constructing a GTM model will require us to choose
values for a number of parameters� such as the number of latent points� the number and form of basis
functions and the regularization coe�cient� and this choice is likely to have a signi�cant impact on the
�nal model� Common sense will rule out certain combination of parameter values and intuition may
provide additional 
rules of thumb�� but nevertheless it would be desirable to have principled methods
for making these choices� In this chapter we try to address this problem� at least partially� by looking
at methods for �nding suitable values for �� � and �� These methods could also� in principle� be used
to choose values for other parameters in the model� such as the number of basis functions� We will
�rst look at the roles of the parameters we are about consider and try to understand how di	erent
choices a	ect the model�

��� Roles of di
erent parameters

The parameters we concentrate on in this chapter are�

� � � the inverse noise variance�

� � � the inverse variance of the prior over the weights�� and

� � � the common width of the Gaussian basis functions ����

In the approach discussed so far� � is estimated together withW� using maximum�likelihood� while
� and � are set prior to training� essentially by rules of thumb� and then kept �xed�
WhereasW explicitly de�nes the shape of the manifold embedded in the data space� �� � and �

will have an implicit e	ect� by a	ecting the way the parameters inW are adapted during the training�
we therefore sometimes refer to these as hyper�parameters� In this chapter we will normally use the
shorter 
parameters� to refer to �� � and �� while the elements in W will normally be referred to as

weights��
During training� � will a	ect the smoothness of the manifold at a local level� by de�ning how much

noise or independent variability is associated with the observed variables� As � increases� the variance
decreases and so we expect more of the variability in the data to be explained by the variability
in the manifold� If � decreases on the other hand� corresponding to an increasing noise� more and
more of the variance in the data will be regarded as noise� which will result in a smoother manifold�
Eventually� if � becomes small enough� the manifold will simply collapse to a point at the sample mean
of the data� with all the variance in the data being regarded as noise� The EM algorithm provides
a maximum likelihood estimate of �� but these estimates can be overly optimistic� in the sense that
they underestimate the noise level� and alternative estimates are discussed below�

� controls the global smoothness of the manifold� since as the radially symmetric basis function
gets broader� they also get more correlated in their responses to points in the latent space� Nearby
points in latent space will therefore map to increasingly nearby points in the space of basis function

�In this chapter we only consider an isotropic prior over the weights� i�e� � is a scalar� but the methods described
can also be extended to deal with more general cases�

��
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activations� and consequently to increasingly nearby points in the data space� resulting in increasingly
sti	er manifolds� an example of this was shown in �gure 
���� It will also be re�ected in the fact
that� as � increases� at some point the matrix � become rank de�cient� taken to extreme� we end
up with the same case as with small �� with the manifold collapsing to a point or� if we have also
incorporated linear basis functions� a PCA�like solution� At the other extreme� as � gets small�
the basis functions eventually become �numerically� completely uncorrelated� and the smooth non�
linearity in the manifold 
falls apart�� if � keeps decreasing the non�linearities may vanish� unless basis
function centres coincide with latent points�

�� �nally� controls the magnitude of the weights and hence the scale of the manifold� One could
argue that constraining the weights would seem unnecessary� since a model that did not get the overall
scale right would not be a good model anyway� However� since we are working with �nite data sets�
degrees of freedom that are not spent on capturing the underlying distribution will be used to �t noise
on the data�

��� Parameter selection and generalization

When we are trying to train a model on a data set� we are normally not interested in �nding a model
that perfectly �ts the data� but rather one that �ts the underlying distribution from which the data
was generated� Assuming we are successful� we would expect this model to also �t well to other data
sets drawn from the same distribution � we say that the model has good generalization capabilities
�Bishop� ������

The issue of generalization is directly related to parameter selection� since our choice of parameters
controls the �exibility of the model� A su�ciently �exible model will be able to �t any �nite data
set perfectly� a GTM with su�ciently many latent points �K � N� and �exible enough mapping will
place a mixture component at each data point and set the common variance to zero yielding an in�nite
likelihood� For all other data sets� however� the likelihood under such a model will be zero� Since
we assume that our data is generated from a systematic component and a random noise component�
independently collected data sets are not expected to be identical� The perfect �t to training data
is obviously an extreme example� but it highlights an important problem� a too �exible model will
not capture the underlying distribution of a data set� but rather the structure of that particular data
set� with its associated noise and artifacts� This phenomenon is known as over�tting� On the other
hand� if the model is not �exible enough� it may not be able to successfully model the underlying
distribution � a situation correspondingly known as under�tting� In either case� the resulting model
is poor� so the challenge� within the framework we have worked in so far� would be to �nd a model
which is �exible enough to capture the overall structure in the training data set� but not so �exible
that it also catches on to features speci�c to that particular set of data� Since the �exibility of the
model is controlled by the parameters� this corresponds to �nding suitable values for these�

A di	erent approach to learning is taken in Bayesian statistics� The Bayesian viewpoint is that�
rather than trying to �nd a single set of parameter values� we should work with a distribution over
possible values� Before we have seen any data� this distribution is speci�ed entirely from whatever prior
knowledge is available� and is therefore called a prior distribution� or just prior� Once data arrives�
we combine the likelihood of the data with our prior� using Bayes� theorem� to yield a posterior
distribution over parameter values� Typically� this posterior distribution will be narrower than the
prior� since in the light of the data� certain parameter values will appear more likely than others� This
treatment applies to all parameters � 
ordinary� parameters� such as the elements ofW in the GTM�
as well as hyper�parameters� such as �� � and � � and the Bayesian framework naturally formalizes
the relationship between di	erent kinds of parameters through conditional probability distributions�
thus we will see in the next section how the regularised log�likelihood function emerges from the
conditional probability distribution overW� given �� �� � and the set of training data� We will also
see how we can use the Bayesian machinery to infer suitable values for �� � and �� but �rst we consider
more traditional methods�

One method for parameter selection which we can use� provided we have su�cient amounts of data�
is to partition the data available into one set that we use for �tting� or training� the model� called the
training set� and one set that we use to evaluate the performance of the trained model� which we call
a validation set� By training and evaluating models over a range of parameter values� we can �nd the
parameter values that result in the best performance on the validation set� This is motivated by the
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Figure ���� A pictorial illustration of cross�validation� Each row correspond to a di	erent division of
the data into validation set �shaded� and training set �others��

belief that this model is �exible enough to model the common structure of the training and validation
set� but not so �exible that it also �ts noise and features speci�c to the training set� There are two
obvious drawbacks with this approach�

� it relies on the availability of a su�ciently large set of data and

� it requires signi�cant amounts of computation� which grows exponentially with the number of
parameters�

What 
su�cient� amounts of data of data is of course varies with the problem� in general� the more
complex the underlying structure is� the more �exible our model must be and� hence� the more data
is required� One way to address a possible shortage of data is to use cross�validation�

����� Cross�validation

If we have only limited amounts of data at our disposal� setting aside parts of that data as a validation
set might be considered too costly � we would like to be able to use all data available for training�
Cross�validation �Stone� ����� Bishop� ����� allows us to do just this� at the expense of increased
amounts of computation� The �rst step is to divide the data set into S disjoint� equally sized�
subsets�� We set aside one of those subsets as a validation set and train the model on the union of the
remaining S � � subsets and once trained we evaluate its performance using the validation set� This
procedure is repeated another S � � times� every time using a di	erent subset as validation set� as
illustrated in �gure ���� In the end� we have S validation error measurements and by averaging over
these� we get the S�fold cross�validation error�

As we increase S� our con�dence in the obtained error measure increases� since the trained models
have been trained using larger amounts of training data� Obviously though� the amount of computation
required also increases with S� so there must be a judged trade�o	 between the con�dence we require
and the computational e	ort we can a	ord� Once we have found the parameter values that give
optimum performance on independent �validation� data� we can re�train our model on all the data�
using these values� For models where the dependency of the objective function on the adjustable
parameters is non�quadratic� the use of cross�validation becomes somewhat questionable� since models
trained on di	erent fractions of the data may converge to very di	erent local maxima�� It is then not
clear that averaging these di	erent likelihood scores will actually tell us anything about the expected
performance of models with the corresponding parameter setting�

�Actually� the subsets need not be equally sized� but normally they are chosen to be of roughly equal size� when the
sets di�er in size� this should be corrected for when averaging the validation errors�

�Note that this is the case for all the parameters in the GTM� the dependency of � on W is only quadratic given
the temporarily 	xed responsibilities �which depend on W��
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��� A Bayesian approach

We now return to the Bayesian methods which were brie�y discussed in the previous section� Our
primary objective will be to derive an alternative method for estimating suitable values for the hyper�
parameters �� � and �� but Bayesian methods can also be applied for discriminating between di	erent
models in a wider sense� and could therefore be used e�g� to select the number of basis functions�
The Bayesian methodology was introduced in the �eld of neural computing by MacKay ������ ������
The presentation in this section largely follows the review of Bayesian methods in Bishop ������
�sections ���� and ������
So far� we have regarded the training algorithm for the GTM as a maximization procedure� aimed

at �nding the 
best� single matrix of weights� Taking the Bayesian perspective� it instead becomes
a part in a machinery for statistical inference� which produces a distribution over possible weight
matrices� This distribution will depend on the data we use for training� and so we write it p�wjT��
which� using Bayes� theorem can be expressed as

p�wjT�  p�Tjw�p�w�
p�T�

� �����

where w denotes a vector of all the elements in W� p�Tjw� is the likelihood for w� in this context
sometimes also called the evidence� and de�nes a probability distribution over the space of the data
set T� conditioned on w� p�w� is the prior distribution over the weights� before having seen any data�
and p�T� is a normalization constant that ensures that the posterior distribution over the weights
integrates to one�

p�T�  

Z
p�Tjw�p�w� dw� �����

From chapter 
� we know that the density function de�ned in the data space is a Gaussian mixture
with isotropic components� furthermore� one of our fundamental assumptions is that the data sets we
use for training consists of independently drawn points� Thus we can write

p�Tjw�  �

ZT

NY
n

KX
k

exp

�
��

�
ktn � y�xk �w�k�

�
���
�

 
�

ZT
expf�ST�w� ��g� �����

where

ST�w� ��  �
NX
n

ln

KX
k

exp

�
��

�
ktn � y�xk �w�k�

�
� �����

The reason for introducing the form in ����� will soon be clear� From ���
�� we can calculate the
normalization constant� ZT� as

ZT  

Z NY
n

KX
k

exp

�
��

�
ktn � y�xk �w�k�

�
dT

 

Z KX
k�

� � �

KX
kN

NY
n

exp

�
��

�
ktn � y�xkn �w�k�

�
dT

 

KX
k�

� � �

KX
kN

Z
exp



�

NX
n

�

�
ktn � y�xkn �w�k�

�
dT

 KN

�
��

�

�ND��
�����

where dT stands for dt�dt� � � � dtN � After having written the product of sums as a sum of products
we use the fact the exponential is strictly positive� in order to swap the order of integration and
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summation� This gives us a sum ofKN ND�dimensional� independent Gaussian distributions� yielding
����� �see e�g� Bishop� ����� appendix B�� For the time being� we assume that � is �xed at a known
value�
Our choice of prior distribution over the weights� p�w�� should re�ect any prior knowledge we might

have regarding the distribution of the data we are trying to model� Most of the time� we have little
such prior knowledge� but we normally assume that the mapping from latent to data space should
be smooth� As discussed above� the most important parameter for controlling the smoothness of the
mapping is �� but because of �nite�size e	ects� the magnitude of the weights should be constrained� to
maintain the smoothness imposed by �� Here we follow MacKay ������ and use a spherical Gaussian
which� as well as constraining the weights as desired� has favourable analytical properties� thus

p�w�  
�

ZW
expf�Sw�w� ��g� �����

where

Sw�w� ��  
�

�

WX
i

w�
i �����

and hence

Zw  

Z
p�w� dw  

�
��

�

�W��

� �����

Just as for �� we will assume for now that we know the value for ��
Since the denominator in ����� is independent of w� we see from ������ ������ ����� and ����� that

�nding the mode of p�wjT� corresponds to the maximization of the regularized log�likelihood function�
as described in the previous chapter� However� if we want to make use of p�wjT� for further statistical
inference �such as inferring the distributions of �� � and ��� we must also compute the normalization
constant p�T�� Unfortunately� the integration in ����� is not analytically tractable� so in order to make
progress we must make some approximations� Again we will follow MacKay ������ and approximate
p�wjT� with a Gaussian distribution� which makes it easy to integrate� Some justi�cation for this
approximation with the GTM can be found in the fact that if for each data point� there was a single
mixture component taking all the responsibility for that data point� this approximation would be
exact� It is commonly the case for trained GTM models� that almost all the responsibility for a single
data point rests with a single mixture component� although a counter�example was shown in �gure 
���
To obtain the Gaussian approximation we �rst note that the maximization of the regularized

log�likelihood is equivalent to minimizing the error function

S�w� �� ��  ST�w� �� ! Sw�w� ��� ������

From ����� we see that Sw is quadratic in w� while ST� de�ned in ������ will also be approximately
quadratic inw� if we assume that� for each data point� tn� the sum over k is dominated by a single term�
this would consequently result in the corresponding mixture component taking all the responsibility
for that data point� as discussed above� We therefore approximate S�w� �� �� by its second order
Taylor expansion in w� around its minimum� wMP� yielding

S�wMP� �� �� !
�

�
%wTH%w�

where %w  wMP �w and H is the matrix of second derivatives�

Hij  
��S�w� �� ��

�wi�wj

����
wMP

�

also known as the Hessian matrix� The linear term of the expansion vanishes since we are expanding
around a minimum�
The Hessian is the the sum of two matrices� HT and Hw� resulting from ST and Sw� respectively�

It is easily seen from ����� that

Hw  �I� ������
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where I is a W �W identity matrix� In appendix A� we derive two formulae for HT� one which is
exact but computationally rather expensive� while the second is an approximation which is cheap to
compute� We then get the Gaussian approximation as

p�wjT�  �

Z
exp

�
�S�wMP� �� ��� �

�
%wTH%w

�
� ������

where the normalization constant can be evaluated �Bishop� ����� appendix B� as

Z  expf�S�wMP� �� ��g����W��jHj����� ����
�

����� Estimation of �	 � and �

In ����� we omitted the dependencies on �� � and �� and in the discussion that followed � and � were
assumed to be known wherever they appeared� We now make these dependencies explicit and re�write
����� as

p�wjT� �� �� ��  p�Tjw� �� ��p�w� ��
p�Tj�� �� �� � ������

Here we have used the fact that the evidence factor is independent of �� while the prior is independent
of � and �� Normally� we will only have a very vague idea about what values that would be suitable
for �� � and �� and the correct way of treating such unknown parameters in a Bayesian framework is
to integrate them out� so that

p�wjT�  
ZZZ

p�wjT� �� �� ��p��� �� �jT� d� d� d��

We therefore seek an expression for p��� �� �jT� and using Bayes� theorem we get

p��� �� �jT�  p�Tj�� �� ��p��� �� ��
p�T�

� ������

Here the normalization constant from ������ plays the role of the evidence factor and again we must
specify a prior� this time for �� � and �� computing the the normalization constant� p�T�� now involves
integration over �� � and ��
As with p�wjT� in equation ������ �nding the mode of p��� �� �jT� only involves the prior and

the evidence factors� Therefore� one approach would be to try to �nd the mode� corresponding to
the most probable values for �� � and �� and then use these values� This can be motivated by an
assumption that p��� �� �jT� is sharply peaked around the mode� so that

p�wjT�  
ZZZ

p�wjT� �� ��p�w� ��p��� �� �jT� d� d� d�


 p�wjT� �MP� �MP�p�w� �MP�

ZZZ
p��� �� �jT� d� d� d�

 p�wjT� �MP� �MP�p�w� �MP�

If we take p��� �� �� to be uniform� on the positive region of ��� �nding the mode of p��� �� �jT�
will correspond to maximising the evidence factor� p�Tj�� �� ��� which we can re�write in terms of
quantities we have already evaluated�

p�Tj�� �� ��  
Z

p�Tjw� �� ��p�w� �� dw

 
�

ZT

�

Zw

Z
expf�S�w� �� �� ��g dw

 
Z

ZTZw
������

�Such a prior is called an improper prior �Bishop� 
����� since it cannot be normalized� This would cause di�culties
if we wanted to compute p�T� in ���
���
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From ������� ����
�� ������� ����� and ������ we can write the logarithm of the evidence for �� � and �
as

ln p�Tj�� �� ��  �ST�wMP� �� ��� Sw�wMP� ��� �
�
ln�jHj�

!
W

�
ln��� !

ND

�
ln��� � ND

�
ln�����N ln�K�� ������

One obvious approach for �nding the mode of p��� �� �jT�� is simply to evaluate ������ over a grid
of points in ������space� Although such a simplistic approach will be computationally demanding�
it may still be more e�cient than cross�validation� and may also give clearer results� However� an
almost certainly more e�cient approach would be to incorporate the parameter estimation as part of
the training algorithm� by maximising ������ with respect to �� � and � during training�

Online estimation of �� � and �

We �rst consider maximization of ������ with respect to �� and so we want to evaluate the corre�
sponding derivative� We start by re�writing the term involving the Hessian as

ln jHj  ln
WY
i

��i ! ��  

WX
i

ln��i ! ��� ������

where �i are the eigenvalues of HT� From ������ and ������ we then get

d ln p�Tj�� �� ��
d�

 ��
�

WX
i

w�
i !

W

�

�

�
� �
�

WX
i

�

�i ! �
� ������

which we can set to zero and then solve for �� yielding

�  
�PW
i w�

i

� ������

where

�  

WX
i

�i
�i ! �

� ������

If we assume that all �i are positive� the terms of this sum lies between � and �� and the terms where
�� �i will dominate� These terms correspond to directions in the weight space where the weights are
relatively tightly constrained by the data� so � can be interpreted as the number of well�determined
weights �Gull� ����� Bishop� ������ The result in ������ is actually only approximate� since it has been
derived under the implicit assumption that the eigenvalues �i are independent of �� which generally
is not true� since H is evaluated at wMP� which depends on ��
Next� we turn our attention to � and now we must decide which of two forms of HT we choose to

work with� For the online estimation� we choose the approximate form� which is derived in appendix A
as a block�diagonal matrix with identical building blocks

��TG�� �A����

where G is de�ned in �
����� This decision based on the following grounds�

� the exact form of HT� given in �A��
� is expensive to compute� which makes it unattractive to
use for online parameter estimation� the approximate form we compute anyway� as a step in the
normal training algorithm�

� as can be seen from �A����� the approximate form of HT depends linearly on �� which allows
for an update formula for � in closed form� This would not be the case if we choose to work
with the exact form �A��
�� and hence we would be forced to either make other approximations
�e�g� assume that the dependency of the exact HT on � is approximately linear� or use costly
numerical optimization to update ��
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Using the approximate form of the Hessian we get

d�i
d�

 
�i
�

������

and hence� using �������

d ln jHj
d�

 
�

�

WX
i

�i
�i ! �

� ����
�

and so� setting the derivatives of ������ with respect to � to zero� using �
���� and ����
� we get

�  
ND � �PN�K

n�k rknktn � ykk�
� ������

When � is zero this equals the EM�update for �� which would correspond to a case where no weights
are well�determined by the data� This uncertainty in the weight could then be taken to account for
some of the discrepancy between the data and the model� As � increases� however� an increasing
fraction of any remaining deviation must be attributed to inherent noise on the data� as re�ected by
a decreasing ��
For � we are unfortunately unable to derive as elegant a solution� but since we are now down to a

single variable� we can a	ord searching over a grid of ��values� evaluating ������ at each point
� after
having trained the GTM model� re�estimating � and � online�
For the practical implementation� we follow the approach taken by MacKay ������ in applying

Bayesian techniques to feed�forward neural networks� periodically re�estimating � and � during the
training ofW� More precisely� we take a three�level approach� as follows�

for i  � to I do
initialize GTM using �i
repeat
repeat
optimizeW by EM� with � and � kept �xed

until stop criterionW for is met
re�estimate � and �� using ������ and ������� respectively

until stop criterion for � and � is met
record the log�evidence for �i

end for

The stop criteria are typically chosen to be a threshold for the change in log�likelihood� combined
with a maximum number of iterations allowed at each level� After we have found the value of �
which gives the highest log�evidence� we simply use that to train our model� again estimating � and
� online� By adopting this hierarchical scheme� �rst optimizing with respect toW� we hope that the
approximations we have used to derive the update formulae for � and � will be reasonable by the
time we start to apply them� This assumes thatW will then be close to its optimum � the mean of
the posterior ofW � given the current values for �� � and �� and that most of the responsibility for
any data point is assigned to a single mixture component�

��� An Experimental evaluation

In this section we investigate empirically the selection of parameters by cross�validation and o�ine
and online Bayesian methods� The data used was generated from a ��� �� regular grid of points on
a curved ��D surface in a 
�D space� generated by the function

z  ����x� � x� ! ���� cos��y��

x and y had a range of ���� �� and ���� ��� respectively� giving one of the variables signi�cantly larger
range was a deliberate choice that ensured that the PCA initialization would provide a reasonably

�Numerical maximization of ���
�� with respect to � was also considered� but was empirically found to be unaccept�
ably ine�cient�
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good starting point for the GTM models to be trained� �� training data sets were generated by adding
random spherical Gaussian noise with standard deviation ��� �corresponding to �  �����  ��� to
the grid points� A sample data set is shown� together with the data generating manifold� in the top�left
panel of �gure ���� A separate test data set was created from a 
� � 
� grid on the same surface�
again adding random noise�

����� O
ine estimation of �	 � and �

For each of the �� training data sets� a GTM with a �� � �� grid of latent points and a � � � grid
basis functions was initialized using PCA� trained with � and � kept �xed and then evaluated using

� log�likelihood of the training set� measured by ���fold cross�validation�

� the log�evidence of the training set� ������� using either

� the exact �given by �A��
� and ������� or

� the approximate �given by �A���� and �������

form of the Hessian� and

� log�likelihood of the test set�

This procedure was repeated for all possible combinations of

� �  ��i� i  ������ � � � � ��

� �  �j � j  �� �� � � � � ��� and

� �  �k� k  ������ � � � � ��

For �� this range was assumed to be su�cient and the empirical results supports this� For �� the lower
limit was given by the variance in the data� whereas the upper limit was assumed to be high enough�
The limits of � were given by the fact that for smaller or larger values� the matrix of activations of
the given basis functions� �� became rank de�cient and hence deteriorated towards a PCA solution�
As will be seen� the empirical evidence suggests that also these limits were su�ciently wide�

Figure ��� show surfaces of constant log�likelihood on validation and test data� and constant log�
evidence computed using the exact and the approximate form of the Hessian� The log�likelihood
score computed by cross�validation appears to be very �at around the maximum in the ����plane�
and selects rather narrow basis functions combined with a higher degree of weight regularization and
greater noise variance� The log�likelihood score computed over the test set prefers the least regularized
con�guration� whereas the log�evidence computed using the approximate form of the Hessian choose
the highest degree of weight regularization� The log�evidence scores appears to shun low�� regions�
except at the extremes of �� where the � matrix tends towards rank de�ciency � this tendency does
not show for the log�likelihood scores� Figure ��
 give an alternative view of the results� including
histogram�indicators of the maxima found for the di	erent data sets� The �atness of the log�likelihood
score computed by cross�validation is re�ected the large spread of the maxima found in the ����plane�

����� Online estimation of � and �

Essentially the same set�up was used to evaluate the methods for online estimation� except that � and
� were set to initial values and then were re�estimated during training� Figure ��� shows the resulting
plots of log�evidence� log�likelihood� � and �� plotted against log� �� As can be seen� the results agree
reasonably well with those obtained in the o�ine estimation experiments described above�

Figure ��� shows an example of a model selected using this 
semi�online� procedure ��  �����
together with the generating manifold and the sample data set used for training� and examples of
under� and over��tting models�
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�a� Log�likelihood by cross�validation� The 
clos�
est�� folded surface represents a log�likelihood of
������ the maximum value observed was ���
��
found at h�� �� �i � h
��� ��� ���i� The two sur�
faces behind represent log�likelihoods of �� and
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�b� Log�likelihood of test data� The innermost
surface� or shell� represents a log�likelihood of
������ the maximum value observed was ������
found at h�� �� �i � h
���� ��� ��i� The two sur�
faces on each side are part of the same surface�
representing the log�likelihood value ��� and the
farthest surface represents a log�likelihood of ���
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Approximate� log�evidence� The small� top�
clove�looking shell represent a log�evidence of
�

��� the maximum value observed was �

���
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surrounding surface represents a log�evidence of
�
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�d� 
Exact� log�evidence� The innermost� tetra�
hedron�looking shell represent a log�evidence of
�

��� the maximum value observed was �

���
found at h�� �� �i � h
��� ��� ��i� The nearest
surrounding surface represents a log�evidence of
�
��� and the furthermost surface� a value of
������

Figure ���� The surfaces are computed from averaged observations of the �� di	erent training sets�
The log�likelihood scores have been normalized by the number of data points� Note that the log�
evidence plots are rotated ��� relative to the log�likelihood plots� as this was found to give the best
view of these results�
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Figure ��
� The surface and contour plots show the average log�likelihood or log�evidence� computed
over the �� data sets� plotted against log����� and log����� Rows � to � correspond to log�likelihood
on validation data ���� ditto on test data ���� and log�evidence computed using the approximate �
�
and exact ��� form of the Hessian� Columns �� � and 
 correspond to ��values of �� �� and 
�� The
plots also contain histograms with numerical labels of the optimal ������combinations found for the
�� data sets� Note that the plots of the log�evidence are rotated ���� relative to the log�likelihood
plots�
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Figure ���� The plots shows values after training for the log�evidence� ����a�� log�likelihood for training
and test set� ����b�� and the estimates of �� ����c�� and �� ����d�� plotted against log����� Each plot
shows the results for the �� individual training sets� together with a line showing the mean�
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Figure ���� The top left plot shows the data generating manifold� together with a sample data set�
plotted as �� The top right plot shows the manifold of a GTM model trained on this data set� with �
�xed to � and � and � being re�estimated during training� �nal values being �  ��� and �  ���
�
The bottom left plot shows a signi�cantly more �exible model� �  ����� trained using the standard
GTM algorithm and no weight regularization� the �nal estimated value for � was ����� Note that this
plot was produced using a �ner grid in the latent space� The bottom right plot� shows a much sti	er
model� �  �� trained using the standard GTM algorithm and constant weight regularization of ���
the �nal estimated value for � was �����
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��� Discussion

The experimental results in the previous section suggest that all methods that have been considered
can be used for parameter selection� although both log�likelihood computed by cross�validation and
the log�evidence computed o�ine using the approximate form of the Hessian over�estimate the noise
level rather signi�cantly� From a practical point of view� online estimation of � and � combined with
grid search in ��space appear to be the most favourable alternative� requiring only a fraction of the
computational e	ort for grid search in ������space�
Taking a Bayesian perspective on the GTM� we no longer have one single manifold in the data

space� but rather a distribution of manifolds� obtained by integrating over the posterior distribution
over all parameters in the GTM �W� �� � and ��� How should such a model be used for visualisation
of data( There is no obvious answer to this question� but possible approaches are to use the manifolds
corresponding to the mean or the mode of the joint distribution over parameters �these would be
identical using the approximate Bayesian method described in this chapter�� There are also more
di�cult questions that arise� which we so far have not addressed� One such problem is multi�modality
� when we are using the Gaussian approximation of the posterior distribution in the weight space�
we can only expect this to be true 
locally�� If we are using symmetrical grids for the latent points
and the centres of the basis functions� we know that there are identical modes in the weight space�
corresponding to di	erent rotations and �ips of the manifold� Moreover� we know that the EM�
algorithm may �nd a local� rather than the global minima� and di	erent parameter settings and
di	erent initializations may result in di	erent local minima� However� if we assume that these di	erent
minima are su�ciently distant from each other in the weight space� we can still hope that using the
Gaussian approximation should allow us to �nd values for �� � and �� appropriate for the particular
mode under consideration�
A possible solution to the problem of multiple modes of the posterior weight distribution would

be to �t a Gaussian at each mode and then form a weighted combination of these models� which
also can be carried out within the Bayesian framework� However� this has important implications
for how we use the GTM� again� how do we use such a mixture of weights in visualization( As an
example� consider the posterior mean projection of a data point for a GTM with a symmetrically
aligned� square� ��D latent space� if we combine the four modes corresponding to the four rotations
of the manifold� which obviously will �t the data equally well and hence should carry equal weight�
we end up with a point in the centre of the latent space� and this is going to be the result regardless
of the location of the data point�
A di	erent approach� that avoids using a Gaussian approximation for the posterior distribution

of the weights� is to evaluate the necessary integrals numerically by using Monte�Carlo methods�
However� also then ways of dealing with multi�modality and symmetries must be addressed� if the
resulting GTM model is to be used for visualization�
In principle� Bayesian methods could also be used for selecting other model parameters� such as

the number of basis functions and the number of latent points� but as the number of parameters
increase� grid search methods quickly becomes computationally infeasible� An alternative approach to
implementing the mapping from latent to data space that eliminates the basis functions is discussed
in section ����

The number of latent points

A parameter that we have only brie�y touched upon in the preceding discussion is the number of
points on the grid in the latent space� If this grid is intended to approximate a continuous� uniform
distribution� we obviously would want it to be as dense as possible� and in principle there is nothing
preventing us from using a very dense grid� This will result in a very large mixture of Gaussians�
measured by the number of components� but the mixture is constrained and the number of degrees of
freedom in the model depends on the number of adjustable parameters� which is independent of the
number of latent points� In practice� however� using large grids in the latent space is computationally
prohibitive� both in terms of speed and memory usage� and so we must make a judged trade�o	
between the computational e	ort we can a	ord and the 
resolution� in the latent space�



Chapter �

Extensions and Future Directions

This chapter discusses a number of possible extensions of the basic GTM model described in chapter 
�
some of which have been discussed in Bishop et al� �����a�� and which may become subjects of future
research� For some cases� preliminary work has already been done� whereas others are currently only
proposals� They all highlight the advantages of having chosen a model that �ts into the framework of
probability theory�

	�� Relaxations in the GTM model

There are several constraints governing the Gaussian mixture generated in the data space under the
GTM model� when compared to a general Gaussian mixture� Apart from the constraints imposed on
the centres by the latent variable construction� the basic GTM model uses an isotropic noise model
with the noise level being equal for all components� Moreover� the mixing coe�cients of the mixture
are kept �xed and equal ���K�� In principle� there is nothing preventing us from simply letting
each component have a full covariance matrix of its own� possibly combined with variable mixture
coe�cients� ��� � � � � �K � such that

PK
k �k  �� In practice� however� this would lead to an explosion

in the number of parameters and a model with far too much freedom� with associated problems such
as over�tting the training data� as discussed in section ����
A more realistic approach� which is also more in the spirit of the GTM� is to allow the variances

and the mixing coe�cients to be functions of the latent variable x� For �� one way to achieve this
would be

��xk�  exp

�
MX
m

�m�xk�wm�

�
� �����

where �m��� are basis functions that may or may not be identical with the basis functions used to
compute the centres� The exponentiation ensures that � is always positive� Similarly� a possible
way to compute the mixing coe�cients is to use the soft�max function �Bridle� ������ also called the
normalized exponential�

��xk�  
exp

�PM
m �m�xk�wm	

�
PK

k� exp
�PM

m �m�x�k�wm	

� � �����

which guarantees that ��xk� � ��� �� for all k and
PK

k ��xk�  �� A complication with ����� and
����� is that we can no longer �nd update formulae in closed form� but must resort to numerical
optimization�
Assuming we model � and � as scalar functions of the latent variables� we can incorporate this

information in visualization plots of data� showing �e�g�� how the noise on the data varies between
di	erent regions of the data space�
Another issue is whether we should use a spherical or a ellipsoidal� possibly axis�aligned� noise

model� Alternative variants which cater for two cases of full covariance matrices are discussed in
�This is not necessarily the case for ��

�
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W

O

Figure ���� The within� and o	�manifold variances� labelled W and O respectively� illustrated for
a ��D GTM with the standard isotropic noise model� The curved line represents the manifold� the
�!��signs centres of mixture components� with the surrounding circles representing the noise model�

Figure ���� Illustration of a manifold�aligned noise model � as in �gure ���� the curved line represents
the manifold� the �!��signs centres of mixture components� but the circles have been replaced by ellipses
aligned with the manifold� illustrating the new noise model�

sections ��� and ��� below� The use of an isotropic or an independent noise model is what di	erentiates
between probabilistic principal components analysis and factor analysis� respectively� A more general
noise model will avoid skewing the structural model �the shape in the manifold� in the case of the
GTM� in order to explain noise not catered for by a more restrictive noise model� However� if the noise
indeed is approximately isotropic� the spare degrees of freedom provided by the more general model
may cause problems associated with over�tting� When we use an isotropic noise model� we implicitly
assume that any residual variance has the same scale on all observed variables� If assume that the
fraction of noise is the same on all observed variables� � i�e� that observed variables with higher
variance also are subject a higher level of noise � putting them on a common scale� by normalising
them to all have unit variance over the training data� will meet the underlying assumption of the
isotropic noise model�

	�� A Manifold�aligned noise model

A potential problem with the basic GTM is that the noise model may have to take on double roles�
of possibly con�icting natures� The noise model is intended to take account of o��manifold variance
�see �gure ����� i�e� the fact that data points� because of noise� normally do not lie exactly on the
manifold� However� since our prior distribution in the latent space consists of a �nite set of points�
the noise model may also have to explain the within�manifold variance �see �gure ����� arising from
data points that lie close to the manifold� but fall between mixture components�

We would like to avoid this con�ict by allowing for greater variance within the manifold� which
leads us to a Gaussian mixture with ellipsoidal components which are locally aligned with the manifold�
as illustrated in �gure ���� Other models has been proposed along these lines �Williams et al�� ���
�
Hinton et al�� ����a� Simard et al�� ������ where variance along certain directions in the data space
is less penalized than variance in other directions� These models require the use of full covariance
matrices for the mixture components� but this does not mean we have to increase the number of
parameters in our model� Since we want the within�manifold noise to be locally aligned with the
manifold� the corresponding covariance matrix for each component is determined by the derivatives
of the mapping y�x�W� with respect to the latent variable x� computed at the location of the centre
of the corresponding component� That is�

Ck  ���I!
�
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Figure ��
� The left plot shows a GTM with �� latent points and a spherical noise model �tted to
the data from example 
��� the log�likelihood for this model after training was ������ The middle
plot shows a corresponding GTM� but with a manifold aligned noise model� the log�likelihood after
training was ����
� The right plot� �nally� shows a GTM with 
� latent points and a spherical noise
model �tted to the same data� the log�likelihood after training was ������

where Ck denotes the covariance matrix of the kh mixture component� �y��x
l
k is de�ned in ������ �

is a scaling factor equal to some multiple of the distance between neighbouring points in latent space�
and we have added the �I term so that the resulting probability distribution does not become singular�
We could instead consider letting each component have its own o	�manifold noise term� orthogonal
to the within�manifold noise� rather than just adding isotropic noise�

This modi�cation of the model requires that we� in the E�step� compute Mahalanobis distances�
rather than square distances� Moreover� we generally lose the closed form update of the weights in
the M�step� since now also the manifold�aligned part of the covariance matrix depends on the weights�
However� the original M�step may still be used as an approximation� since if we assume that the
manifold is smooth� a con�guration where the centres have their 
right� location will automatically
get the noise model approximately correctly aligned� Unfortunately� with this approximate 
M�step�
the resulting algorithm is no longer an EM�algorithm and so there is no guarantee that this algorithm
will converge to a maximum of the log�likelihood function�

We now return to the toy data set introduced in example 
��� Figure ��
 shows the result of trying
a modi�ed GTM model with �� mixture components� which uses the manifold aligned noise just
described� on this data� with the exception that we use the M�step of the original training algorithm�
ignoring the in�uence of the covariance matrices� The model is compared to a GTM with the same
number of mixture components� but restricted to use the standard� spherical noise model� The plots
and the likelihood scores clearly show that the manifold�aligned noise model is superior here� However�
when compared with a standard GTM that has 
� mixture components� that is no longer the case�
One might think that the use of fewer mixture components should result in computational savings�
but unfortunately� at least in this case� these savings are lost in the increased cost of the E�step�

	�� Mixtures of GTMs

Since the GTM is itself a mixture model� an obvious and straightforward alternative to a single GTM
model is to use a mixture of J GTM models� Computation of the mixing coe�cients for the GTM
mixture� )�j � can easily be incorporated into an EM�algorithm for simultaneously training all GTM
models of the mixture� as

)�j  
NX
n

PKj

kj
rkjnPJ

j�
PKj�

kj�
rkj�n

� j  �� � � � � J� ���
�

This says that the posterior probability of the jth GTM model in the mixture equals its share of the
total responsibility of the data� The E�step of the training algorithm will involve the whole mixture
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of GTM models� but for the M�step� each GTM model can be updated separately� unless we make use
of global parameters� e�g� having a single value for �� shared by all GTM models in the mixture�
An example where such a model might be appropriate is the 
�phase pipe �ow data introduced

in example 
��� We know that data generated from di	erent �ow con�gurations live on a number of
di	erent ��D manifolds� and the use of a mixture of linear models to visualize this data� by Bishop
and Tipping ������� has been shown to be successful�

	�� A Semi�linear model

Normally� we select the latent space of the GTM to have a low dimensionality � typically� we would
choose it to be ��D� If we want to experiment with higher�dimensional latent spaces� although in
principle straightforward� we would soon run into computational di�culties� since the number of
latent points would grow exponentially with the number of dimensions� MacKay and Gibbs ������
address this problem for a density network model by re�sampling the latent space using hybrid Monte�
Carlo methods �Neal� ����� ������ This is a potentially useful approach� but it su	ers the problem of
still being rather demanding in terms of computation�
Here� we instead consider the use of a semi�linear model� obtained by combining a GTM model

with a probabilistic PCA model �see section ������� This gives a model where the observed variables
depend non�linearly on� say� � of the latent variables� while depending linearly on the remaining L���
The 
non�linear� latent variable are treated just like in the GTM model� essential by discretizing the
latent space� while for the 
linear�� or continuous� latent variables� the posterior distribution over the
latent space can be calculated analytically� We have already seen that the basic GTM model can be
seen as a constrained mixture of spherical Gaussians� similarly� this semi�linear model can be viewed as
constrained mixture of probabilistic principal component analyzers� where the centres of the PPCAs
lie in the manifold de�ned by the non�linear mapping from latent to data space� In contrast to the
manifold aligned noised model discussed above� this model will allow greater variance along certain
directions o� the curved manifold� To be more precise� the distribution in the data space would now
be de�ned as

p�tjW�V� ��  
�����D��

KjCj���
KX
k

exp

�
��
�
�t� y�xk �W��C���t� y�xk �W��T

�
� �����

where

C  ���I!VVT

and V is a D�q matrix that de�nes the linear mapping from latent to data space� q being the number
of continuous latent variables�
Tipping and Bishop �����a� presents an EM�algorithm for general mixtures of PPCAs� which is

easily modi�ed to deal with this constrained case� The E�step di	ers only in that we must now
compute the full Mahalanobis�distance� as indicated in ������ while in the M�step� we �rst updateW

using the standard M�step �
��
�� We then use the updated weights� fW� to compute the weighted
covariance matrix�

S  
�

N

N�KX
n�k

rkn�tn � y�xk �fW��T�tn � y�xk �fW���

Using the results of Tipping and Bishop �����a�� the maximum likelihood solution for V is given by

eV  U��� ���I�����

where U is the D � q matrix whose columns is the q principal eigenvectors of S and � is a q � q
diagonal matrix containing the corresponding eigenvalues� �d� d  �� � � � � q� This result corresponds
to the traditional way of computing principal components� discussed in section ������ For �� we get

�
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Figure ���� A demonstration of a semi�linear model trained on toy�data � the left plot shows the data
generating manifold together with the data points plotted as � � the middle plot shows the trained
mixture of �� PPCAs� plotted as ellipsoids� with their centres lying in the ��D manifold de�ned by
the GTM� which is plotted as a line� the right plot shows the same thing� but viewed along the 
linear�
direction of the manifold �not plotted�� highlighting that the model does capture the non�linearity in
the data� which is included in this plot as � �

which has the intuitive interpretation as the average variance 
lost� when projecting the D�dimensional
data on the q�dimensional subspace de�ned by the model�
These update formulae for V and � require computing the covariance matrix S� which can be quite

an e	ort if the dimensionality of the data space� D� is high� As noted by Tipping and Bishop �����a��
a better approach in such situations may be to take the latent variable perspective on PCA and use
an EM�algorithm� similar to the one for factor analysis� discussed in section ������ Although this
means using an iterative optimization scheme� the computational cost for each iteration only scales
as O�ND�� compared to O�ND�� for the computation of S� Thus� provided that the EM�algorithm
converges quickly enough� this will be a computationally favourable alternative� The EM�algorithm
for PPCA is discussed in detail in Tipping and Bishop �����b��
To try this model� a toy data set of ��� data points was generated in a 
�D space� The �rst two

variables� x and y were drawn from a regular� rectangular grid� with x having range ���� �� and y
range ���� ��� The third variable� z� was computed from x and y with the formula

z  ��� sin�����x� ! y�

so the z was linearly correlated with y� A semi�linear GTM with one non�linear latent variable� using
�� latent points and � basis functions with width ���� and one linear latent variable was trained on
this data set� starting from a PCA initialization� The trained model� shown in �gure ���� captures
the structure of the data well� However� the data was generated so as to ensure that the initialization
would map the continuous and discretized latent variables to the dimensions along which the data
exhibited linear and non�linear behaviour� respectively� Initialized the other way around� the model
fails to discover anything but linear structure in the data�

	�� Missing data

A potential problem with real data sets� not discussed so far� is that of missing data �Little and
Rubin� ������ Data values may be simply missing or may fall outside known possible ranges� and
must therefore be considered as being missing� If we have large amounts of data� we can simply
discard data vectors with missing values� but if this is not the case� we would like to be able to use
information in the observed values of incomplete vectors� There may be many reasons for the missing
data� but assuming that data is missing at random � that is� the 
missingness� itself does provide
any information� � we can learn also from incomplete data�

�A counterexample of this is a sensor that fails to give readings when these exceed a certain value�
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We want to deal with the missing values in the data just like we dealt with the missing �unknown�
latent variables� and integrate them out� For that purpose� we split our data set into two parts �
observed�� To� and missing Tm � and equation �
���� then becomes

p�tojW� ��  

ZZ
p�to� tmjx�W� ��p�x� dx dtm �

Using the fundamental assumption of latent variable models� namely that data variables in t are
independent given the latent variables� we get

p�tojW� ��  

Z
p�tojx�W� ��p�x�

Z
p�tmjx�W� ��p�x� dx dtm

 

Z
p�tojx�W� ��p�x� dx�

Thus we can deal with missing values by simply ignoring them� and carry out the calculations of
the E� and M�step using only the observed values� Intuitively� for each data point� we are using the
information it provides� while ignoring any 
non�information�� Interestingly� the same way of dealing
with missing data has been suggested for the SOM �Samad and Harp� ������

	�	 Incremental learning

As has been pointed out earlier� the GTM training algorithm discussed in chapter 
 is a batch algo�
rithm� i�e� the update of the parameters is based on all the data� This means that we have to perform
the E�step for the whole data set� which is normally computationally rather demanding� before we
can update the parameters� W and �� If instead we could do one iteration of EM for each data
point� there is the possibility that the algorithm would converge more quickly� since the model will
be updated for each data point� rather than having to wait for the full E�step over all data points�
Such an incremental form of EM is presented by Neal and Hinton ������� who give examples of its
application to general Gaussian mixtures� Bishop et al� �����a� show how it can be adapted for the
GTM�
Consider some stage of the standard GTM training algorithm� after an M�step� where we have

the 
old� responsibility matrix� Rold� from the previous E�step and current parametersW and �� If�
instead of doing a full E�step� we select a data point tn� which is the nth row of T� and compute the
column�vector� rnewn � with elements rkn as de�ned in equation �
��� �although we keep n �xed�� we
can revise the quantity RT in equations �
��
� or �
���� to

�RT�new  �RT�old ! �rnewn � roldn �tn�

where roldn is the nth column of Rold� Similarly� we can revise our estimate of G from �
���� by

gnewkk  goldkk ! �r
new
kn � roldkn ��

yielding Gnew� We then substitute �RT�new andGnew for the corresponding factors in �
��
� or �
����
and solve forW� Similarly� for �� equation �
���� becomes
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k

�rnewkn � roldkn �ky�xk �W�� tnk��

The M�step for a general mixture of Gaussians is relatively simple and hence can be computed
quickly� For the GTM� the M�step consists of solving a set of linear equations and is therefore more
demanding in terms of computation� This may result in that savings made from faster convergence
are lost� because of the increased amount of computation required by more frequent M�steps� This
can easily be avoided by� rather than doing the partial E�step for just one data point at the time�
doing it for batches of )N data points� where )N is chosen to be some suitable fraction of the total

�Note that up till now� we have assumed there were no missing variables in t and we have referred to all the variables
in t as observed� in contrast to the latent variables which are unobserved� In this section� all the variables in t� some of
which may be missing� are referred to as data variables�
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number of data points� Neal and Hinton ������ report substantial net gains in speed when applying
this semi�batch algorithm to general mixtures of Gaussians�
Neal and Hinton ������ also discuss other variants of the EM�algorithm� including a freeze�EM

algorithm where a proportion of the responsibilities are being frozen �kept �xed� for a number of
iterations during which only responsibilities which are not frozen are recomputed� After a few iteration
with 
frozen� E�steps� all the responsibilities are recomputed using the normal E�step� This variant
has the potential to be particularly useful in the context of GTM� which often uses a rather large
number of mixture components �
 ����� The plots of responsibility distributions in �gures 
�� and

�� suggest that� after only few iterations of 
full� EM� up to ��+ of the responsibilities can be frozen�
to then be recomputed only every �fth iteration �say��
Note that this incremental form of EM is not an online algorithm� since we are only recycling a

�nite set of data points� for which we are keeping the old responsibilities� In a real online algorithms�
data points arrive one at the time� the model is updated and then the data point is discarded� For the
GTM� we could derive such an online algorithm� either by constructing a gradient descent algorithm�
where the Robbins�Monro theorem �Robbins and Monro� ����� will guarantee convergence� or we could
derive an online EM�algorithm �Titterington et al�� ������ Not only would this allow us to use the
GTM in a true online setting� but maybe more importantly� we could use it in tackling very large
data sets�

	�� A Memory�e�cient OSL�algorithm

The standard training algorithm for the GTM is rather demanding in terms of memory usage� since it
needs to store the K �N matrix� R� containing the responsibilities�� This may pose a problem when
applying the GTM to large data sets or when computer resources are scarce� One way to resolve this
would be to derive an online training algorithm� as discussed in the end of section ��� above�
However� an alternative approach is to use a so called one�step�late �OSL� algorithm �Green� ������

From �
���� and �
���� we see that the only reason that we need to maintain the responsibility matrix�

R� is that we need both the responsibilities and the updated weights� fW� in order to update �� To
update W� we only need the quantities RT and G� which both are independent of the size of the
data set� and can be computed incrementally� As part of this computation� we would compute the
squared distances between mixture components and data points used to update �� but using the old
W� Thus we could obtain an EM�algorithm whose memory usage was independent of the size of the
training set� where the update of � is one iteration behind the update ofW� Green ������ suggests a
similar algorithm for penalized maximum�likelihood estimation� where the penalization term at any
given iteration is based on the parameters from the previous iteration� Using such an OSL estimate
of � means that we lose the guarantee that the EM�algorithm will converge� However� it is easy to see
that both algorithms have the same �xed points� so if the OSL algorithm converges� it will converge
to a �local� maxima of the likelihood function� In practice� this algorithm appears to converge just as
quickly and reliably as the original EM�algorithm�

	�
 Discrete and mixed data

Up till now� we have assumed that the observed variables have all been continuous� In this section we
describe how the GTM can be extended also to model discrete data and� more generally� data with
both discrete and continuous variables� The discrete variables may re�ect the underlying continuous
structure and can be of signi�cant� sometimes even indispensable� help in discovering this structure�
Before considering such instances of mixed data� we �rst consider how to model discrete data� starting
with the binary case�
For a binary variable� t� which takes on values f�� �g� we assume it follows a binomial distribution�

p�tjy�  yt��� y����t	

where y is the mean of the distribution� which is modelled by the GTM using a logistic sigmoid

�Typically� it would also maintain a matrix D of the same size� containing the squared distances between mixture
components and data points� but this can be avoided in a more elaborate implementation�
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function� so that

y  
�

� ! exp��w�
�

where w is the M � � weight vector mapping from the basis functions to the binary data space� Note
that here there is no parameter ��
Variables that are assumed to indicate membership of one of D mutually classes can be modelled

using D�dimensional binary vectors� where if a data point belongs to class d� the dth element of the
corresponding binary vector is set to �� while all the other elements are set to �� this is commonly
referred to as a ��of�D coding scheme� We can model the distribution of such binary vector with a
multinomial distribution�

p�tjy�  
DY
d

ytdd �

which is analogous the binomial distribution if D  �� The D�dimensional binary vector is modelled
by the GTM using the soft�max function� which we used in section ��� to suggest a GTM model with
variable mixing coe�cients�

yd  
exp��wd�PD
d� exp��wd��

�

Since the observed variables are assumed to be independent given the latent variables� we can
deal with mixed data by simply multiplying the corresponding Gaussian� binomial and multinomial
distributions in the E�step� For the continuous variables the M�step will stay the same� but for
binary variables� we must use numerical maximization� This can be done e�ciently using iterative
least�square �IRLS� methods �McCullagh and Nelder� ������ or alternatively a general non�linear
optimization algorithm �Press et al�� ������ In any case� it may turn out to be more e�cient to do
only a partial M�step� which increases but not necessarily maximizes the likelihood� resulting in a
generalised EM�algorithm�

	�� GTM using Gaussian processes

In the basic GTM model� the latent variables are mapped to the data space using a generalised
linear regression model� consisting of a linear combination of a set of �xed linear and non�linear basis
functions� As pointed out in section 
��� this gives the computational advantage of an M�step in closed
form� However� there are also disadvantages with this form of mapping � maybe most important�
it require us to decide on a �xed number of basis functions� This will put a hard constraint on the
�exibility of the mapping� which we then usually combine with a soft constraint� imposed by weight
regularization� Alternatively we could constrain the mapping only using regularization� by specifying
a Gaussian process prior over the distribution of possible functions �Williams and Rasmussen� ������
Consider a GTM model where we have removed the basis functions� and instead each latent point�

xk � has a Gaussian mixture component with centre wk directly associated with it �like nodes and
the corresponding reference vectors in the SOM�� Left like that� the model would simply be a K�
component� general Gaussian mixture� However� now we specify a prior over the centres�

p�W�  
DY
d

�����K��jCdj���� exp
�
��
�
)wT
dC

��
d )wd

�
where )wd is the dth �K � �� column ofW and the Cd are positive de�nite matrices� typically� it will
not be necessary to have separate matrices Cd for each dimension� This prior de�nes a distribution
over all possible con�gurations of the centres� where some con�gurations� e�g� those where the centres
are approximately ordered on a low�dimensional manifold� will be much more likely than others�
Combining the prior with the likelihood function of the training data results in a posterior distri�

bution over the weights� which corresponds to a regularized log�likelihood function in the form

�  
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n
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We can use the EM�algorithm from section 
��� where the E�step will stay the same while in the
M�step� we solve

�G! ���C���W  RT�

with respect toW� where all quantities except C are the same as in the original M�step �
��
�� Here
we have assumed that we use the same C for all dimensions� Again we have obtained an M�step in
closed form� but this time we need to invert a K �K matrix� K being the number of latent points
or mixture components� the original M�step required the inversion of a M �M matrix� M being the
number of basis functions� which is typically signi�cantly less than K�
We specify our prior� p�W�� by specifying C� using a so�called covariance function� Apart from

ensuring that C is positive de�nite� we would like the covariance function to give a prior such that
centreswi and wj are encouraged to stay close to each other in the data space� when the corresponding
nodes xi and xj are close to each other in the latent space� The literature on Gaussian processes�
or equivalently regularization networks �Girosi et al�� ������ provides a wide range of choice �Yaglom�
������ For example� we can choose

Cij  C�xi�xj�  � exp

�
�kxi � xjk�

���

�
� �����

where � gives overall scale of C� and hence determining the overall degree of smoothing� while � de�nes
a length scale in the latent space� corresponding to the scale on which di	erent mixture components
will in�uence each other�
The use of a Gaussian process to specify the mapping from latent to data space in the GTM

is similar to the discretized Laplacian smoothing used by Utsugi ������ in the generalized elastic
net model described in section �
������ However� the resulting smoothing matrix� used by Utsugi�
corresponds to a relatively simple covariance matrix
� which is rather in�exible and cannot cater for
new points in the latent space� From ������ we see that � provides continuous adjustable parameter
that controls the 
resolution� of the smoother in the latent space� Moreover� for any new point in the
latent space� ,x� we can compute the corresponding point in the data space

,y  ,wC��W

where� using ������ ,w  �C�,x�x��� � � � � C�,x�xK���
In the revisited principal curve model� Tibshirani ������ uses a cubic spline smoother in the M�step�

which corresponds to the use of a Gaussian process with a particular choice of C�
The principal advantage of using a Gaussian process rather than a generalised linear regression

model is that the �exibility of the mapping can be controlled in a more elegant way� using � in ������
in the generalised regression model the �exibility depends both on the width and the number of basis
functions� Using Gaussian processes removes one model parameter �the number of basis functions�
and may therefore facilitate the search for the right model complexity� as discussed in chapter ��
especially since both parameters that control the model complexity� � and �� are real valued rather
than discrete� We could consider a similar scheme to the one used in chapter �� which is similar to the
work of Utsugi ������� or a full Bayesian treatment using hybrid Monte Carlo methods� The principal
disadvantage in using Gaussian processes is the increased amount of computation and memory storage
required to do the matrix inversion� however� on a modern workstation� dealing with problems up to
moderate size �say� K � ����� should be straightforward� and for larger problems there exist e�cient
approximate methods �Gibbs and MacKay� �����

	��� Altering the latent structure

In section 
�� we discussed the inherent structural constraints built into the basic GTM model� and
the kind of undesirable result that may follow when these structural constraints are at odds with the
structure in the data� This is a potential problem whenever our prior knowledge about the underlying
structure in the data is limited� However� there are also situations where we do have prior knowledge
about the structure in the data which we can build into the GTM model� by chosing a latent space

�In fact� this matrix is only positive semi�de	nite� due to the presence of a linear null�space�
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with a corresponding structure� As an example� consider the situation where we know that the data
follows a ��D� smooth cyclic structure� we can then use the ��D latent space ��� ��� and trigonometric
basis functions sin�x� and cos�x��
Building such prior knowledge into our model will aid the model �tting� since the space of possible

models that we are searching will be smaller �often much smaller� than if we had chosen a more
general model� This will also make it more likely that the �tted model really re�ects the underlying
structure in the data�

	��� Discussion

This chapter has presented a number of possible extension or variations of the basic GTM model�
Apart from being interesting on their own merits� the more important result is that� together� they
highlight the advantages of the GTM being a probabilistic model� This allows us to make use of
well�established ideas from probability theory and statistics� in order to develop the GTM to tackle
new sorts of problems� Although one could imagine how to tackle the problems listed in this chapter
instead using a SOM model� such attempts would invariably have to made on an ad hoc basis�
The variations of the GTM model discussed in this chapter have barely been tried out� and it

remains to be seen whether they can become truly useful� Although they all carry some intuitive
appeal� there might be other� simpler ways to achieve the same goals� as exempli�ed to some extent
by the experiment with the manifold aligned noise model� shown in �gure ��
�



Chapter 	

Summary and Conclusions

In this �nal chapter we summarize the work described in this thesis and try to draw some conclusions�
We consider potential applications for the GTM as well as problems which are still unresolved� We
also brie�y review independent work on the GTM� before coming to the �nal conclusions�

��� Related models

Chapter � gave a review of some of the models that have been proposed for discovering and exploiting
low�dimensional structures in high�dimensional data sets� The GTM has drawn inspiration from many
of these models� and can be seen as an extension of more than one of them� Given the latent variable
interpretation of principal components analysis in section ������ it can be seen as a form of non�linear
PCA� while generalizing the noise model to independent noise levels for the observed variables results
in a non�linear form of factor analysis� However� in its current form� the GTM is limited to three�
possibly four� non�linear principal components or factors� The new results on PCA also change our
view on the kernel based PCA described in section ������ but this method is still very di	erent from
the GTM� since the corresponding latent space does not have an explicit representation�
Considering the various principal curve and surface models� the GTM provides an alternative�

generative model� which is readily applicable for modelling two� and three�dimensional distributions�
and could potentially also be used with higher dimensional latent space� provided a more sophisticated
approach is adopted for modelling the posterior distribution in the latent space� e�g� using hybrid
Monte Carlo methods�
The relationship to the elastic net �sec� ������ and� in particular� its generalized form �sec� 
�����

can be directly understood via Gaussian process variant of the GTM� described in section ���� where
the di	erence between the two models boils down to the choice of covariance function� This also forms
a connection to the generative variants of principal curves �sec� �������
The relationship to the self�organizing map was discussed at length in section 
����� In summary�

the GTM can be seen as a principled alternative to the SOM� which circumvents many of its associated
theoretical problems� without su	ering any signi�cant comparative drawbacks�

��� The GTM and its applications

This thesis has primarily been concerned with establishing the GTM as a model for non�linear latent
variable density modelling and data visualisation� A more thorough investigation of its general ap�
plicability still remains to be done� However� its strong links to PCA and the SOM give reasons for
optimism�
PCA is a classical method for feature extraction� in terms of low dimensional representations of

data� and has found application in data compression� image analysis� visualization and data pre�
processing� Also the SOM has been subject to a wide range of application �Kohonen� ������ with
examples such as categorizing messages in Internet newsgroups� recognizing topographic patterns in
EEG spectra and production process control�
The GTMmay also �nd a role in exploratory and con�rmatory data analysis� As a related example�

MacKay and Gibbs ������ show how a density network model can be used for discovering correlations

�




�� CHAPTER �� SUMMARY AND CONCLUSIONS

in protein sequences�

����� Visualisation

The GTM holds the potential of becoming a very powerful tool for visualisation of high dimensional
data� capable of dealing with continuous as well as discrete and mixed data� Since it is a generative
model� it is straightforward to incorporate the GTM into hierarchical� probabilistic visualisation mod�
els� such as that suggested by Bishop and Tipping ������� The possibility to compute magni�cation
factors which can be visualised jointly with data further enhance this potential� The magni�cation
factor 
adds a dimension� to the visual representation of data� and can thereby provide a better
understanding of the data� In particular� it can be used to discover clusters in the data�

��� Open questions

There are still a number of questions about the GTM that have so far not been touched upon� and
for which there are still no de�nite answers� These questions are not unique to the GTM � the
corresponding questions exist unanswered also for many of the other models discussed in this thesis�

����� Dimensionality of the latent space

How do we choose the dimensionality of the latent space( Even for the linear PCA and FA models� it
is usually not obvious how many principal components or factors should be used� In PCA� a common
practice is to plot the eigenvalues of the covariance matrix of the data or� equivalently� the singular
values of the singular value decomposition� If the variance in the data primarily is due to a linear
combination of L latent variables� only the L largest eigenvalues will be signi�cant� with the remaining
L � � being very small� Hence� having computed and plotted these eigenvalues� one may be able to
judge� simply by eye� how many latent variables to use� The corresponding procedure for the GTM
would be to �t GTM models with increasing number of latent variables and then plot the inverse
noise variance� �� against the number of latent variables� Assuming that the distribution of the data
is intrinsically L�dimensional� we would expect to see a sharp rise in �� for the �rst L latent variables�
where after the increase of � with L should be much slower� However� in PCA all the D eigenvalues
are available at a computationally moderate cost� This unfortunately not the case with the GTM� As
has already been mentioned� the computational e	ort required to �t the model grows exponentially
with the dimensionality of the latent space� Moreover� as discussed in chapter �� the non�linearity in
the GTM can result in over�tting�problems� in which case the break in the increasing trend of � may
not be that obvious�
An important issue� when deciding on the number of latent variables to use� is the intended use

of the GTM� If the purpose is visualisation of data� we may have to sacri�ce modelling all underlying
degrees of freedom in the data� in order to be able to visualise it using a single� global model� Unless
we want to employ additional visualisation techniques� we will be restricted to three� possibly four�
latent variables� We can still hope that the GTM model will provide a model which is as good as
possible� given these restrictions� although it is not yet clear under which circumstances this will
actually happen�

����� Structural constraints of the GTM

As pointed out in section 
��� the basic GTM model is best suited to model moderately curved�
L�dimensional distributions of roughly rectangular shape� What happens when we apply the GTM
under di	erent circumstances( The objective of the training algorithm of the GTM is to maximise
the likelihood of the training data� subject to the constraints imposed by �e�g�� the number and the
width of the basis functions and the degree of weight regularization� and this objective will always
be the same� If the constraints imposed are too strong� e�g� if the manifold is too sti	� then the
resulting GTM model is bound to be sub�optimal� at least as a density model� With more relaxed
constraints� on the other hand� we may end up with a signi�cantly better density model� but which
gives a 
complex explanation� to an inherently simple structure� as in example 
�
� This is not to say
that the GTM is over�tting� capturing structure in the data which is due to noise � the problem is
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that the structure in the data� although simple� is very di	erent from the inherent structure of the
density model provided by the GTM� Of course� there are ways in which we could handle this speci�c
case �the two Gaussians in ��D� � as pointed out in section ����� in situations where we do have prior
knowledge about the structure in the data� we can build this knowledge into the GTM model� which
usually leads to more e�cient model �tting and better agreement between the �tted model and the
data generating mechanism� However� in general we cannot expect the GTM to be able to provide

interpretable� models of arbitrary low�dimensional distributions� Therefore� an important task will be
to develop reliable diagnostics that can be used to detect folds and other undesirable sub�structures
in the manifold�

����� The merits of being �principled


A recurring term used together with the GTM� especially when relating it to the SOM is 
principled��
This is motivated by the fact that the GTM is derived from probabilty theory and statistics� whereas
the SOM is motivated only by heuristic and empirical arguments� However� are there any practical
gains to be made from this( Are the results obtained with the GTM normally �if at all� 
better� than
those obtained with the SOM( Is the choice of basis functions for the GTM any less arbitrary than
the choice of neighbourhood functions for the SOM(
No doubt� results obtained in terms of visualisation from GTM and the SOM are typically very

similar� as we would expect given the many similarities between the two models� However� except
for simple toy examples it is typically very di�cult or even impossible to judge what is a 
good�
visualisation� With no other objective measure to discriminate between models� we ought to prefer
models which have a sound theoretical foundation to those which have not�
It is also true that� as much as visualisation results vary for the SOM with varying choices of the

neighbourhood function� as much will they vary for the GTM with varying choices of basis functions�
However� if we are working with the SOM� we are left to little but rules of thumb for choosing
our neighbourhood function� attempts to empirically �nd suitable parameters for the neighbourhood
function would be hampered by the fact that the SOM does not minimize an objective function� and
hence we have no measure for comparison� For the GTM� the limitations are 
only� practical � given
in�nite amounts of data and computing time� we will be able to construct an optimal model for any
distribution� given the constraints imposed by the particular GTM model we are using� Even though
this would not be possible in practice� a framework where such an objective is at least theoretically
achievable� is clearly more desirable than one where it does not even exist� To quote Judea Pearl & � � �
we �nd it more comfortable to compromise an ideal theory that is well understood than to search for
a new surrogate theory� with only gut feeling for guidance' �Pearl� ����� page ����

��� Independent work on GTM

Although the GTM is relatively 
young�� it has already inspired new work� also among independent
researchers�� Bishop et al� �����a� use the GTM to model the emission density of a hidden Markov
model� thereby extending the GTM to deal with time series data� where the assumption that the
data points are generated independently is no longer required� They show an example of how this
model can be used to visualise time series data from a helicopter �ight recorder� where di	erent
regions in the latent space corresponds to di	erent modes of �ying� Kiviluoto and Oja ������ develop
a probabilistic� hybrid GTM�SOM model which they call the S�map� they give empirical evidence
that this model� under certain circumstances� has a stronger tendency to self�organize � that is�
adapting so that the topological structure of the model re�ects the topological structure of the data
� when starting from a random initialization� Pajunen and Karhunen ������ show how the GTM can
be used to perform a non�linear form of independent components analysis �ICA� �Bell and Sejnowski�
����� Amari et al�� ������ also knows as blind source separation� This GTM based model can be used
to separate independent sources which have been non�linearly mixed� assuming that the probability
distributions of the sources are known and that the non�linear mixing function is smooth�
A search on the Internet gave additional indications of the GTM being used as an unsupervised

visualization technique for cloud type recognition� for risk prediction in pregnancy and for dimension�
ality reduction of articulatory data�

�The GTM was proposed by Bishop� Svens�en� and Williams�
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��� Conclusions

The generative topographic mapping provides a method for modelling continuous� low�dimensional�
non�linear structures in high�dimensional spaces� It provides a way of doing non�linear PCA or FA�
although in practice it is still limited to a small number of principal components or factors� It forms
a principled alternative to the SOM� resolving many of its inherent problems�
As has been exempli�ed in this thesis� an important application for the GTM is visualisation of

high�dimensional data� The possibility of computing the magni�cation factor as a continuous function
over the latent space and incorporating this in visualisation plots� can make visualised data easier to
interpret�
Since the GTM is a probabilistic model� it �ts into the framework of probability theory and

statistics� We can thus make use of established and well�founded theory to deal with issues such as
selection of model complexity� Moreover� we bene�t from it when extending the GTM to deal with
e�g� missing data and data which take discrete or mixed discrete�continuous values�
Since there are examples where the GTM� when �tted to data with rather simple structure� ends

up being rather complex� developing reliable diagnostics for detecting these situations will be an
important future task� Moreover� before it can fully be assessed� the GTM will need to be thoroughly
tested in a wide range of real applications�
Apart from this thesis and papers referenced herein� the work on GTM has also resulted in a

Matlab
eR implementation with associated documentation� which is freely available on the Internet�

at http���www�ncrg�aston�ac�uk�GTM��
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Appendix A

Derivatives of the Log�likelihood

Function

In this appendix we derive formulae for the �rst and second derivatives� with respect to the weight
parameters� W� of the error function in ������ corresponding to the negative� unregularized log�
likelihood function� here we re�write it as

ST  �
NX
n

ln
�

K

KX
k
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From �
��� and �
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where �k is the kth row of �� wd is the dth column ofW� and we have introduced pkn� in order to
simplify the notation� Thus� �
��� now reads
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A�� First derivatives

Di	erentiating �A���� using �A��� and �A�
�� along with standard rules for di	erentiation� we get
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A�� Second derivatives

First� we introduce
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from which it follows directly that
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and we see from �A��� and �A��� that
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Second� we di	erentiate rkn with respect to wpq � using �A�
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Finally� from �A���� �A���� �A��� and �A���� we get
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If we study �A��� we see that whenever rkn is close to one� �

pq
kn �

PK
k� rk�n


pq
k�n� will be close to

zero� For a trained GTM model� it is often the case that almost all the responsibility for a data point
rests with a single mixture component� in which case it would be reasonable to use the approximation

��ST
�wij�wpq

 

� PN�K
n�k rkn��kp�ki if j  q�

� otherwise�
�A����

which is a block�diagonal matrix with D identical M �M building blocks

��TG�� �A����

where G is de�ned in �
����� If we combine this with Hw� given in ������� we get the building blocks
of the full approximate Hessian as

��TG�! �I�

which we recognize �subject to a multiplicative factor �� from the left�hand side of the M�step equa�
tion �
����� thus� we have already computed this approximate form of the Hessian� as part of the
normal training algorithm�

A���� Computing the exact Hessian

To turn the formulae from �A��� into a computational algorithm we expand the expression rkn

ij
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using �A���� to get
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where

zpqn  

KX
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Using �A���� and �A����� the formulae from �A��� can now be put into matrix form�
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where Hjq
T is the M �M sub�matrix of the data Hessian� HT corresponding to the weights of yj and

yq� Q
jq is a K �K diagonal matrix with entries

qjqkk  
NX
n

rkn�tnj � ykj��tnq � ykq��

Dj is a K �N matrix with entries

djnk  �tnj � ykj��

and R is the responsibility matrix from �
��
�� with � denoting component�wise multiplication�

A���� Exact vs� approximate form

Clearly� computing the exact Hessian as well as using it in further computation� will require much
more computation� compared to the approximate form� It would therefore be useful to be able to
assess the penalty we pay in terms of inaccuracy when using the approximate form� and judge that
against computational savings� A simple approach for estimating �� � and � discussed in section ��
�
would be to evaluate the logarithm of the evidence for �� � and �� given in ������� over a grid in
������space� This includes the logarithm of the determinant of the Hessian�

ln jHj  ln
WY
i

��i ! ��  

WX
i

ln��i ! ��� �A����

where �i is the ith eigenvalue of HT� Figure A�� shows ln jHj plotted against log�� � during di	erent
stages of training on the arti�cial data from section ���� A problem with the exact Hessian is that is
not guaranteed to be positive de�nite� in fact� it is generally the case that the eigen�decomposition
results in a small number of non�positive eigenvalues� For the plots in �gure A��� terms with �i � �
have been excluded from the sum in �A����� It can happen that also the approximate Hessian has
zero eigenvalues� although this is uncommon� which is then treated the same way�
In section ��
� we also discuss methods for estimating the hyper�parameters �� � and � during

training� For this purpose� we make use of a quantity� �� interpreted as the e	ective number of weight
parameters and de�ned as

�  

WX
i

�i
�i ! �

�

Figure A�� show � plotted against log�� �� during di	erent iterations of training for the same data set
which were used to produce the plots in A��� Again� terms corresponding to non�positive eigenvalues�
�i� have been excluded�

As can be seen� there seems to be rather signi�cant discrepancies between the exact and approxi�
mate value for ln jHj whereas the di	erences for � are smaller� The di	erences for both ln jHj and �
appear not to change very much with training� which is somewhat unexpected� since we would expect
them to decrease as a consequence of improved �t to data�
Table A�� contains a comparison of the computational e	ort required for the exact and approximate

form of the Hessian� for the some of the data sets described in this thesis� Note that the computational
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Figure A��� The plots show
PW

i ln��i ! �� against log�� �� where the dashed line shows results from
using the approximate Hessian while the solid line shows results obtained using the exact form� The
four plots correspond �top�down� left�to�right� to results evaluated after � �i�e� after initialization� but
before training has started�� �� ��� and �� iterations of training�



A��� SECOND DERIVATIVES ���

−6 −4 −2 0 2 4 6
0

20

40

60

80

100

log
10

(α)

γ

−6 −4 −2 0 2 4 6
0

20

40

60

80

100

log
10

(α)

γ

−6 −4 −2 0 2 4 6
0

20

40

60

80

100

log
10

(α)

γ

−6 −4 −2 0 2 4 6
0

20

40

60

80

100

log
10

(α)

γ

Figure A��� Plots of � against log�� � at � �i�e� after initialization� but before training has started�� ��
��� and �� iterations of training� The dashed line shows results from using the approximate Hessian
while the solid line shows results obtained using the exact form�
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Data set K N M D size�H� Method Time
Pipe �ow ��� ���� �� �� ������� Exact �����
�example 
��� Apprx ��
Crabs ��� ��� 
� � 
���� Exact ��
�example ���� Apprx �
Synthetic ��� ��� �� 
 ���� Exact ���
�section ���� Apprx �

Table A��� Comparison of the time �measured in ticks � 
 ticks per second� required for computing
the exact and approximate forms of the Hessian� using some of the data sets described earlier in this
thesis� The notation is the same as has been used before� i�e� K is the number of latent points� N
is the number of data points� M is the number of basis functions and D is the dimensionality of the
data�

e	ort required does not only depend on the size of the Hessian� but also the size of the data set and
the number of latent points involved� Although this comparison is far from exhaustive� the �gures in
table A�� clearly shows that computing the exact Hessian is much more expensive than computing
the approximate form �which we have computed anyway� so the actual cost is ��� Moreover� in a lot of
the subsequent calculation using the approximate Hessian� we really only need to compute with one
of the identical blocks from the diagonal� which will result in additional savings�
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