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Summary. We present a family of topology preserving mappings similar to the
Self-Organizing Map (SOM) and the Generative Topographic Map (GTM) . These
techniques can be considered as a non-linear projection from input or data space
to the output or latent space (usually 2D or 3D), plus a clustering technique, that
updates the centres. A common frame based on the GTM structure can be used
with different clustering techniques, giving new properties to the algorithms.

Thus we have the topographic product of experts (ToPoE) with the Product of
Experts substituting the Mixture of Experts of the GTM, two versions of the Har-
monic Topographic Mapping (HaToM) that utilise the K-Harmonic Means (KHM)
clustering, and the faster Topographic Neural Gas (ToNeGas), with the inclusion
of Neural Gas in the inner loop. We also present the Inverse-weighted K-means
Topology-Preserving Map (IKToM), based on the same structure for non-linear pro-
jection, that makes use of a new clustering technique called The Inverse Weighted
K-Means. We apply all the algorithms to a high dimensional dataset, and compare
it as well with the Self-Organizing Map, in terms of visualisation, clustering and
topology preservation.

5.1 Introduction

Topographic mappings are a class of dimensionality reduction techniques that
seek to preserve some of the structure of the data in the geometric structure
of the mapping. The term “geometric structure” refers to the relationships
between distances in data space and the distances in the projection to the
topographic map. In some cases all distance relationships between data points
are important, which implies a desire for global isometry between the data
space and the map space. Alternatively, it may only be considered important
that local neighbourhood relationships are maintained, which is referred to as
topological ordering [19]. When the topology is preserved, if the projections
of two points are close, it is because, in the original high dimensional space,
the two points were close. The closeness criterion is usually the Euclidean
distance between the data patterns.
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One clear example of a topographic mapping is a Mercator projection of
the spherical earth into two dimensions; the visualisation is improved, but
some of the distances in certain areas are distorted. These projections imply
a loss of some of the information which inevitably gives some inaccuracy but
they are an invaluable tool for visualisation and data analysis, e.g. for cluster
detection. Two previous works in this area have been the Self-Organizing Map
(SOM) [13] and the Generative Topographic Map (GTM) [4].

Kohonen’s SOM is a neural network which creates a topology-preserving
map because there is a topological structure imposed on the nodes in the
network. It takes into consideration the physical arrangement of the nodes.
Nodes that are “close” together are going to interact differently than nodes
that are “far” apart. The GTM was developed by Bishop et al. as a proba-
bilistic version of the SOM, in order to overcome some of the problems of this
map, especially the lack of objective function.

Without taking into account the probabilistic aspects of the GTM algo-
rithm, this can be considered as a projection from latent space to dataspace
to adapt the nodes to the datapoints (in this chapter called GTM structure),
using K-Means with soft responsibilities as clustering technique to update the
prototypes in dataspace.

In this chapter we review several topology-preserving maps that make use
of the general structure of the GTM. We first review four clustering techniques
used in our algorithms in section 5.2. Then we define the common structure
based on the GTM in section 5.3.1, and develop the four topology preserving
mappings in section 5.3. Finally we compare all the algorithms with the SOM
in the experimental section.

5.2 Clustering Techniques

5.2.1 K-Means

K-Means clustering is an algorithm to divide or to group samples x; based on
attributes/features into K groups. K is a positive integer number that has to
be given in advance. The grouping is done by minimizing the sum of squares
of distances between data and the corresponding prototypes my.

The performance function for K-Means may be written as

K
J= i L 2 1
> min i —m? (5.1)
=1
which we wish to minimise by moving the prototypes to the appropriate po-
sitions. Note that (5.1) detects only the prototypes closest to data points and
then distributes them to give the minimum performance which determines the

clustering. Any prototype which is still far from data is not utilised and does



134 M. Pena, W. Barbakh, and C. Fyfe

not enter any calculation to determine minimum performance, which may re-
sult in dead prototypes, which are never appropriate for any cluster. Thus
initializing prototypes appropriately can play a big effect in K-Means.

The algorithm has the following steps:

e Step 1. Begin with a decision on the value of K = number of
clusters.

e Step 2. Put any initial partition that divides the data into K
clusters randomly.

e Step 3. Take each sample in sequence and compute its distance
from the prototypes of each of the clusters. If a sample is not
currently in the cluster with the closest prototype, switch this
sample to that cluster and update the prototype of the cluster
gaining the new sample and the cluster losing the sample.

e Step 4. Repeat step 3 until convergence is achieved, that is until
a pass through the training samples causes no new assignments.

Considering a general formula for the updating of the prototypes in clus-
tering techniques we may write a general formula

N )
> i ht(x; i
m;, z:%\fmem(mk/x,) * wezg' (x;) xx 7 (5.2)
> i1 mem(my /x;) * weight(x;)

where

o weight(x;) > 0 is the weighting function that defines how much influence
a data point x; has in recomputing the prototype parameters my in the
next iteration.

o mem(my/x;) > 0 with Zle mem(my,/x;) = 1 the membership function
that decides the portion of weight(x;) * x; associated with mg.

The membership and weight functions for KM are:

NEEY if 1 =ming||x; — mgl| ,
mem g (my /x;) = {0 , otherwise ; (5.3)
weightgn (x;) = 1.

The main problem with the K-Means algorithm is that, as with the GTM,
the initialisation of the parameters can lead to a local minimum. Also the
number of prototypes K has to be pre-determined by the user, although this
is really one of the objectives of clustering.

5.2.2 K-Harmonic Means

Harmonic Means or Harmonic Averages are defined for spaces of derivatives.
For example, if you travel % of a journey at 10 km/hour and the other % at
20 km/hour, your total time taken is % + % and so the average speed is
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24 — 2 In general, the Harmonic Average of K values, a1, ..., ax, is
10120 0 t30
defined as

K
==Kk 1
pIy é
Harmonic Means were applied to the K-Means algorithm in [22] to make

K-Means a more robust algorithm. The recursive formula to update the pro-
totypes is

HA({aivi:]-v"'aK}) (54)

N
K
1
i=1 Zk:l d(x;,my)?

E L s
i=1 d?k(Z{;1 d%l)z 1
K

myg = ZN 1
=l BT, )

where d;j; is the Euclidean distance between the i*" data point and the k**
prototype so that d(x;, my) = ||x; — myg||.

In [22] extensive simulations show that this algorithm converges to a better
solution (less prone to finding a local minimum because of poor initialisation)
than both standard K-Means or a mixture of experts trained using the EM
algorithm.

Zhang subsequently developed a generalised version of the algorithm
[20, 21] that includes the p** power of the L? distance which creates a “dy-
namic weighting function” that determines how data points participate in the
next iteration in the calculation of the new prototypes my. The weight is
bigger for data points further away from the prototypes, so that their partic-
ipation is boosted in the next iteration. This makes the algorithm insensitive
to initialisation and also prevents one cluster from taking more than one pro-
totype.

The aim of K-Harmonic Means was to improve the winner-takes-all par-
titioning strategy of K-Means that gives a very strong relation between each
datapoint and its closest prototype, so that the change in membership is not
allowed until another prototype is closer. The transition of prototypes between
areas of high density is more continuous in K- Harmonic Means due to the
distribution of associations between prototypes and datapoints.

The soft membership! in the generalised K-Harmonic Means is

[[x; — my[| 772
i) = 5.7
mem(my,/x;) SE e — ]| (5.7)

allows the data points to belong partly to all prototypes.

1 Soft, membership means that each datapoint can belong to more than one proto-
type.
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The boosting properties for the generalised version of K-Harmonic Means
(p > 2) are given by the weighting function [9]:

K L —p—2
weight(x;) = L=y [1%i = (5.8)

K _ b
(D k1 IIxi — my[|=P)?

where the dynamic function gives a variable influence to data in clustering in
a similar way to boosting [6] since the effect of any particular data point on
the re-calculation of a prototype is O(||x; — my||??~P~2), which for p > 2 has
greatest effect for larger distances.

5.2.3 Neural Gas

Neural Gas (NG) [14] is a vector quantization technique with soft competition
between the units; it is called the Neural Gas algorithm because the proto-
types of the clusters move around in the data space similar to the Brownian
movement of gas molecules in a closed container. In each training step, the
squared Euclidean distances

dz‘k = HXz — mk||2 = (Xi — mk)T * (Xi — mk) (59)

between a randomly selected input vector x; from the training set and all pro-
totypes my, are computed; the vector of these distances is d. Each prototype k
is assigned a rank r;(d) = 0,..., K — 1, where a rank of 0 indicates the closest
and a rank of K-1 the most distant prototype to x. The learning rule is then

my, = my, + ¢ * hy[rp(d)] * (x —my) . (5.10)

The function
h,(r) = el=7/P) (5.11)

is a monotonically decreasing function of the ranking that adapts not only

the closest prototype, but all the prototypes, with a factor exponentially de-
creasing with their rank. The width of this influence is determined by the
neighborhood range p. The learning rule is also affected by a global learning
rate . The values of p and e decrease exponentially from an initial positive
value (p(0), £(0)) to a smaller final positive value (p(T), (T')) according to

p(t) = p(0) * [p(T)/p(0)] /") (5.12)

and
e(t) = &(0)  [(T)/e(0)] /™), (5.13)

where t is the time step and T the total number of training steps, forcing
more local changes with time.
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5.2.4 Weighted K-Means

This clustering technique was introduced in [3, 2]. We might consider the
following performance function:

K
Ja=> Y lxi—my|?, (5.14)

i=1 k=1

which provides a relationship between all the data points and prototypes, but
it doesn’t provide useful clustering at minimum performance since

0J 1 &
A
— =0=my = — x4, Vk . 5.15
8mk k N ; 19 ( )
Minimizing the performance function groups all the prototypes to the centre
of the data set regardless of the initial position of the prototypes which is
useless for identification of clusters.

We wish to form a performance function with following properties:

e Minimum performance gives an intuitively ’good’ clustering.
e It creates a relationship between all data points and all prototypes.

(5.14) provides an attempt to reduce the sensitivity to prototypes’ initial-
ization by making a relationship between all data points and all prototypes
while (5.1) provides an attempt to cluster data points at the minimum of the
performance function. Therefore it may seem that what we want is to combine
features of (5.1) and (5.14) to make a performance function such as:

N K K
h= [Z i = m’f”] min [|x; — my | . (5.16)

i=1 Lk=1

As pointed out by a reviewer, there is a potential problem with using ||x; —mg||
rather than its square in the performance function but in practice, this has
not been found to be a problem. We derive the clustering algorithm associated
with this performance function by calculating the partial derivatives of (5.16)
with respect to the prototypes. We call the resulting algorithm Weighted K-
Means (though recognising that other weighted versions of K-Means have
been developed in the literature). The partial derivatives are calculated as

K

= —(x; —m){lx; —m, [ +2) " [x; —myll} = —(x; ~mp)ag , (5.17)
k=1

8J17i
om,

when m,. is the closest prototype to x; and

8.]171‘
8mk

i —me|*

= —(x; —my) —(xi —my)biy , (5.18)

i — ol
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otherwise.
We then solve this by summing over the whole data set and finding the
fixed point solution of

Z OJui _ (5.19)

om,

which gives a solution of

. ZieVT X + ZieV},j;ﬁr X;bir
> ey, Gir + Eievj,j;ﬁr bir

(5.20)

We have given extensive analysis and simulations in [3, 2] showing that
this algorithm will cluster the data with the prototypes which are closest to
the data points being positioned in such a way that the clusters can be iden-
tified. However there are some potential prototypes which are not sufficiently
responsive to the data and so never move to identify a cluster. In fact, these
points move to (a weighted) prototype of the data set. This may be an advan-
tage in some cases in that we can easily identify redundancy in the prototypes
however it does waste computational resources unnecessarily.

5.2.5 The Inverse Weighted K-Means

Consider the performance algorithm

le 2 —mk|p] i s (5.21)

=1

Let m, be the closest prototype to x;. Then

Ja(x;) = [Z I — mk””} [[x; — m,|"

sz m,||"
= ||X; — 1M, n- p+ . 5.22
I =4 >:22)
Therefore
O2) — 0= ) — ) —
n—2
— —m,)||x; — m, _
s = )i [ Y
J#T
= (x; — m,)a;, (5.23)
8J X; Xi; — my "
ﬁ = p(xi — mk)u = (Xi — mk)bik . (524)

omy, [Ix; — my||p+2
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At convergence, I/ (g—r‘r]fr) = 0 where the expectation is taken over the data set.

If we denote by Vi the set of points, x for which m;, is the closest, we have

0.J.
SR /xew{(n ) — ) [ — [P
1
n(x = m,)x = m, "7 P(x)} dx
; [[x — mj|[P
I — m, "
+ / p(x—mg)—— 1 _P(x)dx=0, (525
Z x€EV ( )Hx_mkaJrQ (x) ( )

k#r

where P(x) is the probability measure associated with the data set. This is,
in general, a very difficult set of equations to solve. However it is readily
seen that, for example, in the special case that there are the same number
of prototypes as there are data points, that one solution is to locate each
prototype at each data point (at which time gT‘]i = 0). Again solving this

over all the data set results in

Eie%. XiQir + Eievj,j;ﬁr Xibir
Eie%. air + Eievj,j;ﬁr bir

From (5.25), we see that n > p if the direction of the first term is to be
correct and n < p + 2 to ensure stability in all parts of that equation. In
practice, we have found that a viable algorithm may be found by using (5.24)
for all prototypes (and thus never using (5.23) for the closest prototype). We
will call this the Inverse Weighted K-Means Algorithm.

(5.26)

m, —

5.3 Topology Preserving Mappings

5.3.1 Generative Topographic Map

The Generative Topographic Mapping (GTM) is a non-linear latent variable
model, intended for modeling continuous, intrinsically low-dimensional prob-
ability distributions, embedded in high-dimensional spaces. It provides a prin-
cipled alternative to the self-organizing map resolving many of its associated
theoretical problems. An important, potential application of the GTM is vi-
sualization of high-dimensional data. Since the GTM is non-linear, the rela-
tionship between data and its visual representation may be far from trivial,
but a better understanding of this relationship can be gained by computing
the so-called magnification factors [5].

There are two principal limitations of the basic GTM model. The computa-
tional effort required will grow exponentially with the intrinsic dimensionality
of the density model. However, if the intended application is visualization,
this will typically not be a problem. The other limitation is the initialisation
of the parameters, that can lead the algorithm to a local optimum.
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The GTM defines a non-linear, parametric mapping y(x; W) from a ¢-
dimensional latent space to a d-dimensional data space x € R®, where nor-
mally ¢ < d. The mapping is defined to be continuous and differentiable.
y(t; W) maps every point in the latent space to a point in the data space.
Since the latent space is g-dimensional, these points will be confined to a
g-dimensional manifold non-linearly embedded into the d-dimensional data
space. If we define a probability distribution over the latent space, p(t),
this will induce a corresponding probability distribution into the data space.
Strictly confined to the g-dimensional manifold, this distribution would be sin-
gular, so it is convolved with an isotropic Gaussian noise distribution, given
by

/2 d
p (xlt, W, 6) = (%) exp{—§2 i — yalt, W)’ } (5.27)

where x is a point in the data space and ( denotes the noise variance. By
integrating out the latent variable, we get the probability distribution in the
data space expressed as a function of the parameters 8 and W,

p(x|W, 8) = / p (x]t, W, ) p(t) dt . (5.28)

Choosing p(t) as a set of K equally weighted delta functions on a regular
grid,

1 K
p(t) = & Dot —tr), (5.29)

the integral in (5.28) becomes a sum,

=

p(x|W,3) = Z (x[tr, W, 8) (5.30)

k:

Each delta function centre maps into the centre of a Gaussian which lies in the
manifold embedded in the data space. This algorithm defines a constrained
mixture of Gaussians[11, 12], since the centres of the mixture components
can not move independently of each other, but all depend on the mapping
y(t; W). Moreover, all components of the mixture share the same variance,
and the mixing coefficients are all fixed at 1/K . Given a finite set of indepen-
dent and identically distributed (i.i.d.) data points, {xX ,}, the log-likelihood
function of this model is maximized by means of the Expectation Maximisa-
tion algorithm with respect to the parameters of the mixture, namely W and
B. The form of the mapping y(t;w) is defined as a generalized linear regres-
sion model y(t; W) = ¢(t)W where the elements of ¢(t) consist of M fixed

basis functions ¢; (t)ij\il, and W is a d x M matrix.
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If we strip out the probabilistic underpinnings of the GTM method, the
algorithm can be considered as a non-linear model structure, to which a clus-
tering technique is applied in data space to update the prototypes, in this case
the K-Means algorithm. In the next sections we present four algorithms that
share this model structure.

5.3.2 Topographic Product of Experts ToPoE

Hinton [10] investigated a product of K experts with

K
p(x10)  [] plxlk) . (5.31)

k=1

where O is the set of current parameters in the model. Hinton notes that using
Gaussians alone does not allow us to model e.g. multi-modal distributions,
however the Gaussian is ideal for our purposes. Thus the base model is

px,l6) ﬁ (%)_ exp (=g llm i) (5.32)

To fit this model to the data we can define a cost function as the negative
logarithm of the probabilities of the data so that

N K
Jzzzgﬂmk—xiﬂz. (5.33)
i=1

k=1

In [7] the Product of Gaussian model was extended by allowing latent
points? to have different responsibilities depending on the data point pre-
sented:

A g
p(xi]O) ox kl;[l (g) exp <_§||mk — X1;||27"z'k) : (5.34)

where 7;;, is the responsibility of the k*" expert for the data point, x;. Thus
all the experts are acting in concert to create the data points but some will
take more responsibility than others. Note how crucial the responsibilities are
in this model: if an expert has no responsibility for a particular data point, it
is in essence saying that the data point could have a high probability as far
as it is concerned. We do not allow a situation to develop where no expert
accepts responsibility for a data point; if no expert accepts responsibility for
a data point, they all are given equal responsibility for that data point (see
below).

2 The latent points, ty, generate the m; prototypes, which are the latent points’
projections in data space; thus there is a bijection between the latent points and
the prototypes. my act as prototypes of the clusters.
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We wish to maximise the likelihood of the dataset X = {x; : i =1,--- , N}
under this model. The ToPoE learning rule (5.36) is derived from the minimi-
sation of —log(p(x;|©)) with respect to a set of parameters which generate
the my,.

We may update W either in batch mode or with online learning. To change
W in online learning, we randomly select a data point, say x;. We calculate
the current responsibility of the k** latent point for this data point,

cap(—yd)
Sy exp(—d3,)

where d,, = ||x, — mg||, the Euclidean distance between the p*" data point
and the projection of the ¢ latent point (through the basis functions and
then multiplied by W). If no prototypes are close to the data point (the
denominator of (5.35) is zero), we set 7 = +, Vk. 7 is known as the width of
the responsibilities and is usually set to 20.

We wish to maximise (5.34) so that the data is most likely under this
(k) _
g =

rin = (5.35)

model. We do this by minimising the -log() of that probability: define m

Zu]\flzl WeodPhew, 1.6 mglk) is the projection of the k*" latent point on the d**

dimension in data space. Similarly let argln) be the d" coordinate of x;. These
are used in the update rule

K
Aiwwd = Z 77(;5]%, (:L'Eiz) — m&k))rik 5 (536)
k=1

where we have used A; to signify the change due to the presentation of the i*"
data point, x;, so that we are summing the changes due to each latent point’s
response to the data points. Note that, for the basic model, we do not change
the @ matrix during training at all.

5.3.3 The Harmonic Topograpic Map

The HaToM has the same structure as the GTM, with K latent points that are
mapped to a feature space by M Gaussian basis functions, and then into the
data space by a matrix of weights W. In HaToM the initialisation problems
of GTM are overcomed replacing the arithmetic means of K-Means algorithm
with harmonic means, i.e. using K-Harmonic Means [22].

The basic batch algorithm often exhibited twists, such as are well-known
in the Self-organizing Map (SOM) [13], so we developed a growing method
that prevents the mapping from developing these twists. The latent points are
arranged in a square grid in a similar manner to the SOM grid.

We developed two versions of the algorithm [17]. The main structure for
the data-driven HaToM or D-HaToM is as follows:
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1. Initialise K to 2. Initialise the W weights randomly and spread
the centres of the M basis functions uniformly in latent space.
2. Initialise the K latent points uniformly in latent space.
3. Calculate the projection of the latent points to data space. This
gives the K prototypes, mg.
a) count=0
b) For every data point, x;, calculate d;x = ||x; — my]|.
¢) Recalculate prototypes, my, using (5.6).
d) If count<MAXCOUNT, count= count +1 and return to 3b
4. Recalculate W using (¢7® + §1)"1®TE where E is the matrix
containing the K prototypes, I is identity matrix and ¢ is a
small constant®, necessary because initially K < M and so the
matrix 7 is singular.
5. If K < Kpax, K = K 4+ 1 and return to 2.

% usually 0.001 but other values gave similar results

We do not randomise W each time we augment K, but we use the value from
the previous iteration to update the prototypes my with the increased number
of latent points.

If we wish to use the mapping for visualisation, we must map data points
into latent space. We define the responsibility as in (5.35), and the i*" data
point is represented by y; where

K
Yi=Y Tirtr, (5.37)
k=1

where t;, is the position of the k" latent point in latent space.

In the model-driven HaToM or M-HaToM, we give greater credence to the
model by recalculating W and hence the prototypes, my, within the central
loop each time. Thus we are explicitly forcing the structure of the M-HaToM
model on the data. The visualisation of the y; values in latent space is the
same as above.

In [17], we showed that this version had several advantages over the D-
HaToM: in particular, the M-HaToM creates tighter clusters of data points
and finds an underlying data manifold smoothly no matter how many latent
points are used in creating the manifold. The D-HaToM, on the other hand,
is too responsive to the data (too influenced by the noise), but this quality
makes it more suitable for outlier detection.

Generalised Harmonic Topographic Map (G-HaToM)

The generalised version of K-Harmonic Means can be applied also to the
HaToM algorithm. The advantage of this generalisation is the utilisation of
a “p” value that, when bigger than 2, gives a boosting-like property to the
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updating of the prototypes. The recalculation of the prototypes in this case
is:

SV s
=1 af (X, le)pfz ‘

my, = , (5.38)

Yh et
=l T, 57

so that p determines the power of the L? distance used in the algorithm.

This generalised version of the algorithm includes the pt* power of the
L? distance which creates a “dynamic weighting function” [20] that deter-
mines how data points participate in the next iteration to calculate the new
prototypes my. The weight is bigger for data points further away from the
prototypes, so that their participation is boosted in the next iteration. This
makes the algorithm insensitive to initialisation and also prevents one cluster
from taking more than one prototype.

Some resuls for the generalised version of HaToM can be seen in [16].

5.3.4 Topographic Neural Gas

Topographic Neural Gas (ToNeGas) [18] unifies the underlying structure in
GTM for topology preservation, with the technique of Neural Gas (NG). The
prototypes in data space are then clustered using the NG algorithm. The
algorithm has been implemented based on the Neural Gas algorithm code
included in the SOM Toolbox for Matlab [15].

We have used the same growing method as with HaToM but have found
that, with the NG learning, we can increment the number of latent points
by e.g. 10 each time we augment the map whereas with HaToM, the increase
can only be one at a time to get a valid mapping. One of the advantages
of this algorithm is that the Neural Gas part is independent of the non-
linear projection, thus the clustering efficiency is not limited by the topology
preservation restriction.

5.3.5 Inverse-Weighted K-Means Topology-Preserving Map

As with KHM and NG, it is possible to extend the IWKM clustering algo-
rithm to provide a new algorithm for visualization and topology-preserving
mappings, by using IWKM with the GTM structure. We called the new algo-
rithm Inverse-weighted K-Means Topology-Preserving Map (IKToM).

5.4 Experiments

We use a dataset containing results of a high-throughput experimental tech-
nology application in molecular biology (microarray data [8])3. The datasets

3 http://www.ihes.fr/~zinovyev/princmanif2006/ Dataset II - ” Three types of
bladder cancer”.
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contains only 40 observations of high-dimensional data (3036 dimensions) and
the data is drawn from three types of bladder cancer: T1, T2+ and Ta. The
data can be used in the gene space (40 rows of 3036 variables), or in the sam-
ple space (3036 rows of 40 variables), where each sample contains the profiles
of the 40 genes. In these experiments we consider the first case. The dataset
has been preprocessed to have zero mean; also, in the original dataset some
data was missing and these values have been filtered out.

We use the same number of neurons for all the mappings, a 12*¥12 grid.
We used a value of p = 3 for HaToM, and p = 7 for IKToM. For several of
the results below we have utilised the SOMtoolbox [15] with default values.

5.4.1 Projections in Latent Space

The four algorithms are able to properly separate the three types of cancer in
the projection (see Figs. 5.1 and 5.2), but ToPoE requires to run for 100,000
iterations while the others do it with only 20 passes or less.
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Fig. 5.1. The ToPoE (left) and HaToM (right) projection for the gene data with
p=6. T1 in triangles (red), T2+ in circles (green) and Ta in stars (blue)

5.4.2 Responsibilities

The responsibilities of each latent point for each datapoint are shown in
Fig. 5.3.

5.4.3 U-matrix, Hit Histograms and Distance Matrix

The U-Matrix assigns to each cell the average distance to all of its neighbors.
This enables the identification of regions of similarity using different colors
for different ranges of distances.
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Fig. 5.2. The ToNeGas (left) and IKToM (right) projection for the gene data. T1
in triangles (red), T2+ in circles (green) and Ta in stars (blue)

Fig. 5.3. Responsibilities for ToPoE, HaToM, ToNeGas and IKToM. In each di-
agram the latent points are on the right axis, the data points on the left and the
vertical axis measures the responsibilities
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The hit histogram are formed by finding the Best Matching Unit (BMU)
of each data sample from the map, and increasing a counter in a map unit
each time it is the BMU. The hit histogram shows the distribution of the data
set on the map. Here, the hit histogram for the whole data set is calculated
and visualized with the U-matrix (Figs. 5.4, 5.5, 5.6).
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Fig. 5.4. Hit histogram and U-matrix for SOM (top) and ToPoE (bottom)

The hits histograms show that all SOM, ToPoE, HaToM, ToNeGas and
IKToM have separate areas in the grids that are responsible for the different
classes of genes (with higher distances in between clusters shown in the U-
matrix), with only one blue point that appears as outlier for both of them.

Surface plot of distance matrix (Fig. 5.7): both color and vertical-coordinate
indicate average distance to neighboring map units. This is closely related to
the U-matrix.

The distance matrix is similar to the U-matrix and therefore gives similar
results.
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Fig. 5.5. Hit histogram and U-matrix for HaToM (top) and ToNeGas (bottom)
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Fig. 5.6. Hit histogram and U-matrix for IKToM

5.4.4 The Quality of The Map

Any topology preserving map requires a few parameters (such as size and
topology of the map or the learning parameters) to be chosen a priori, and this
influences the goodness of the mapping. Typically two evaluation criteria are
used: resolution and topology preservation. If the dimension of the data set is
higher than the dimension of the map grid, these usually become contradictory
goals.
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Fig. 5.7. Distance matrix for SOM, ToPoE, HaToM, ToNeGas, and IKToM

We first analyze the quantization error for each datapoint with the distance
to its Best Matching Unit (BMU). The mean quantization error ¢. is the
average distance between each data vector and its BMU; it measures then the
resolution of the mapping.

N
de= 5 O I — (BMUG), )] (539)
i=1

ToPoE and HaToM are much worse than the other three mappings suggesting
that their prototypes are further from the data.
The distortion measure which measures the deviation between the data

and the quantizers is defined as:

N K
E =Y "h(BMU(i), k)|my — x| (5.40)

i=1 k=1
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We first calculate the total distortion for each unit, and then average for
the total number of neurons.

Another important measure of the quality of the mapping is the topology
preservation. In this case we calculate the topographic error, t., i.e. the pro-
portion of all data vectors for which first and second BMUs are not adjacent
units.

| N
te = ;u(xi) (5.41)
where u(x;) is equal to 1 if first and second BMU are adjacent and 0 otherwise.
This t. does not consider diagonal neighbors, thus the hexagonal case in
SOM always gives lower values of t. due to its six neighbors for each unit in
comparison to the four in the rectangular mapping used for the other three
algorithms. We may use a different topographic error, such as the Alfa er-
ror [1] which considers also the diagonal neighbors in the rectangular case
(though now the rectangular mappings have an advantage in that they have
8 neighbours). The formula for the alpha error is as follows:

N

1
Alfa=~ ; o(x;) (5.42)
where a(x;) is equal to 1 if first and second BMU are adjacent or diagonals
and 0 otherwise.

Table 5.1. Quantization error and topology preservation error with topology-
preserving Mappings for the gene data

Algorithm SOM ToPoE HaToM ToNeGas IKToM
Map Size (12*%12) (12*12) (12*12) (12*12) (12*12)
Mean Quantization Error 11.8813 22.4106 22.3085 8.8433 13.7959
Average total distortion 0.597 0.8924 1.3571 0.8514 1.1074
for each unit (e+003 )

Topology preservation error 0.0250 0.2500 0.7500 0.2000 0.4500
Alfa error 0 0.0250 0.6750  0.1000 0.4000

The lower clustering errors are for ToNeGas, closely followed by SOM. The
topology is completely preserved in SOM, but also quite well in ToPoE and
ToNeGas. The other two have higher topology errors in this experiment.

5.5 Conclusions

We have developed four new Topology preserving mappings based on the
Generative Topographic Mapping. Each algorithm applies a different cluster-
ing technique, providing the whole with particular advantages: HaToM can be
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used in a data-driven or model-driven version, which are useful for different
situations; both HaToM and ToNeGas overcome the problem of local minima
with their clustering technique. ToPoE does not require a growing mode, while
ToNeGas can apply the growing faster. Finally the Inverse Weighted K-Means
has proven to improve situations where the initialisation of the prototypes are
not randomly positioned. All four algorithms were applied to a high dimen-
sional dataset, and all properly separated the clusters in the projection space.
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