
Chapter 3 

The Principal Curve and Surface models 

In this chapter we define the principal curve and surface models, first for a p dimensional 

probability distribution, and then for a p dimensional finite data set. In order to achieve 

some continuity in the presentation, we motivate and then simply state results and theorems 

in this chapter, and prove them in chapter 4. 

3.1. The principal curves of a probability distribution. 

We first give a brief introduction to one dimensional surfaces or curves, and then define the 

principal curves of smooth probability distributions in p space. 

3.1.1. One dimensional curves. 

A one dimensional curve f is a vector of functions of a single variable, which we denote by 

X. These functions are called the coordinate functions, and X provides an ordering along 

the curve. If the coordinate functions are smooth, then f will be a smooth curve. We can 

clearly make any monotone transformation to X, say m(x), and by modifying the coordinate 

functions appropriately the curve remains unchanged. The parametrization, however, is 

different. There is a natural parametrization for curves in terms of the arc-length. The 

arc-length of a curve f from &J to X1 is given by 

If Ilf’(.z)ll z 1 then 1 = Xl--Xc. This is a rather desirable situation, since if all the coordinate 

variables are in the same units of measurement, then X is also in those units. The vector 

f’(X) is tangent to the curve at X and is sometimes called the velocity vector at X. A curve 

with I\f’ll E 1 is called a unit speed parametrized curve. We can always reparametrize any 

smooth curve to make it unit speed. If w is a unit vector, then f(X) = 00 + Xo is a unit 

speed straight curve. 

The vector f”(X) is called the acceleration of the curve at X, and for a unit speed 

curve, it is easy to check that it is orthogonal to the tangent vector. In this case jr’/ Ilf”ll 
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Figure (3.1) The radius of curvature is the radius of the circle 

tangent to the curve with the same acceleration as the curve. 

is called the principal normal of the curve at X. Since the acceleration measures the rate 

and direction in which the tangent vector turns, it is not surprising that the curvature of 

a parametrized curve is defined in terms of it. The easiest way to think of curvature is in 

terms of a circle. We fit a circle tangent to the curve at a particular point and lying in the 

plane spanned by the velocity vector and the principal normal. The circle is constructed to 

have the same acceleration as the curve, and the radius of curvature of the curve at that 

point is defined as the radius of the circle. It is easy to check that for a unit speed curve 

we get 

r,(X) dgf radius of curvature off at X 

= 11 lIf”(9II 
The center of curvature of the curve at X is denoted by cj(X) and is the center of this circle. 

3.1.2. Definition of principal curves. 

We now define what we mean by a curve that passes through the middle of the data -what 

we call a principal curve. Figure 3.2 represents such a curve. At any particular location 

on the curve, we collect all the points in p apace that have that location as their closest 

point on the curve. Loosely speaking, we collect all the points that project there. Then 

the location on the curve is the average of these points. Any curve that has this property 
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Figure (3.2) Each point on a principal curve is the average of the 
points that project there. 

is called a principal curve. One might say that principal curves are their own conditional 

expectation. We will prove later these curves are critical points of a distance function, as 

are the principal components. 

In the figure we have actually shown the points that project into a neighborhood on 

the curve. We do this because usually for finite data sets at most, one data point projects 

at any particular spot on the curve. Notice that the points lie in a segment with center at 

the center of curvature of the arc in question. We will discuss this phenomenon in more 

detail in the section on bias in chapter 4. 

We can formalize the above definition. Suppose X is a random vector in p-space, 

with continuous probability density h(z). Let 5 be the class of differentiable l-dimensional 

curves in IRP, parametrized by A. In addition we do not allow curves that form closed loops, 

so they may not intersect themselves or be tangent to themselves. Suppose X E Af for each 

f in 5. For f E 5 and z E lRp, we define the projection index Xf : IRp H Af by 

Xf (4 = yxCX : lb - f(Ul = i;f 112 - f(P)ll). (3.lj 



Chapter 3: The Principal Curve and Surface model.8 17 

The projection index Xf(z) of z is the value of X for which f(X) is closest to z. There might 

be a number of such points (suppose f is a circle and z is at the center), so we pick the 

largest such value of X. We will show in chapter 4 that Xf(z) is a measureable mapping 

from RP to R’, and thus Xl(X) is a random variable. 

Definition 

The Principal Curve8 of h are those members of $ which are 8elf consi8tent. A curve f E 5 
is self consistent if 

E(XlXf(X)=X)= f(X) V&Af 

We call the class of principal curves 7(h). 

3.1.3, Existence of principal curves. 

An immediate question might be whether such curves exist or not, and for what kinds of 

distributions. it is easy to check that for ellipsoidal distributions, the principal components 

are in fact principal curves. For a spherically symmetric distribution, any line through the 

mean vector is a principal curve. 

What about data generated from a model as in equation 2.8, where Xi is 1 dimensional? 

Is f a principal curve for this distribution? The answer in general is no. Before we even 

try to answer it, we have to enquire about the distribution of Xi and ei. Suppose that the 

data is well behaved in that the distribution of si has tight enough support, so that no 

points can fall beyond the centers of curvature of f. This guarantees that each point has 

a unique closest point to the curve. We show in the next chapter that even under these 

ideal conditions (spherically symmetric errors, slowly changing curvature) the average of 

points that project at a particular point on the curve from which they are generated lies 

outside the circle of curvature at that point on the curve. This means that the principal 

curve will be different from the generating curve. So in this situation an unbiased estimate 

of the principal curve will be a biased estimate of the functional model. This bias, however, 

is small and decreases to zero as the variance of the errors gets small relative to the radius 

of curvature. 

3.1.4. The distance property of principal curves. 

The principal components are critical points of the squared distance from the points to their 

projections on straight curves (lines). Is there any analogous property for principal curves? 
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It turns out that there is. Let d(z, f) denote the usual euclidian distance from a point z to 

its projection on the curve f: 

(3.2) 

and define the function D’ : 5 + pi’ by 

D’(f) g Ed’(X, f). 

We show that if we restrict the curves to be straight lines, then the principal components 

are the only critical values of D’(f). Critical value here is in the variational sense: if f and 

g are straight lines and we form ft = f +eg, then we define f to be a critical value of D2 iff 

dD2(f,)/d&o = o. 

This means that they 8re minima, maxima or saddle points of this distance function. If we 

restrict f and g to be members of the subset of 5 of curves defined on a compact A, then 

principal curves have this property as well. In this case f6 describes a class of curves about 

f that shrink in as 6 gets small. The corresponding result is: dD2(fs)/d&~ = 0 iff f is 

a principal curve of h. This is a key property and is 8n essential link to all the previous 

models and motivation in chapter 2. This property is similar to that enjoyed by conditional 

expectations or projections; the residual distance is minimized. Figure (3.3) illustrates the 

idea, and in fact is almost a proof in one direction. 

Suppose L: is not a principal curve. Then the curve defined by f(X) = E(X IX,(X) = 

X) certainly gets closer to the points in any of the neighborhoods than the original curve. 

This is the property of conditional expectation. Now the points in any neighborhood defined 

by XL might end up in different neighborhoods when projected onto f, but this reduces the 

distances even further. This shows that k cannot be a critical value of the distance function. 

An immediate consequence of these two results is that if a principal curve is a straight 

line, then it is a principal component. Another result is that principal components are self 

consistent if we replace conditional expectations by linear projections. 

3.1.4.1 A smooth subset of principal curves. 

We have defined principal curves in a rather general fashion without any smoothness re- 

strictions. The distance theorem tells us that if we have a principal curve, we will not find 

any curves nearby with the same expected distance. We have a mental image of what we 
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Figure 3.3 The conditional expectation curve gets at least as close 
to the points as the original curve. 

would like the curves to look like. They should pass through the data smoothly enough so 

that each data point has an unambiguous closest point on the curve. This smoothness will 

be dictated by the density h. It turns out that we can neatly summarize this requirement. 

Consider the subset 7,(h) c 7(h) of p rincipal curves of h, where f E z(h) ifF f E 7(h) 

and Xf(z) is continuous in z for all points z in the support of h. In words this says that if 

two points z and y are close together, then their points of projection on the curve are close 

together. This has a number of implications, some of which are obvious, which we will list 

now and prove later. 

l There is only one closest point on the principal curve for each z in the support of h. 

l The curve is globally well behaved. This means that the curve cannot bend back and 

come too close to itself since that will lead to ambiguities in projection. (If we want 

to deal with closed curves, such as a circle, a technical modification in the definition 

of X is required). 

l There are no points at or beyond the centers of curvature of the curve. This says that 

the curve is smooth relative to the variance of the data about the curve. This has 

intuitive appeal. If the data is very noisy, we cannot hope to recover more than a very 

smooth curve (nearly a straight line) from it. 
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i 

(4 (b) 

Figure 3.4 The continuity constraint avoids global ambiguities (a) 
and local ambiguities (b) in projection. 

Figure 3.4 illustrates the way in which the continuity constraint avoids global and local 

ambiguities. Notice that 7,(h) depends on the density h of X. We say in the support of 

h, but if the errors have an infinite range, this definition would only allow straight lines. 

We can make some technical modifications to overcome thii hurdle, such 8s insisting that h 

has compact support. This rules out any theoretical consideration of curves with gaussian 

errors, although in practice we always have compact support. Nevertheless, the class 7,(h) 

will prove to be useful in understanding some of the properties of principal curves. 

3.2. The principal surfaces of a probability distribution. 

3.2.1. Two dimensional surfaces. 

The level of difficulty increases dramatically 88 we move from one dimensional surfaces or 

curves to higher dimensional surfaces. In this work we will only deal with %-dimensional sur- 

faces in p space. In fact we shall derrl only with Zsurfaces that admit a global parametriza- 

tion. This allows us to define f to be a smooth 2-dimensional globally parametrized surface 
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if f : A I-+ RP for A c R2 is a vector of smooth functions: 

fd4 

f(A) = fy) il fPW 

fl(h~2) 

= fzh~z) 

i i I fpPl,b) 

(3.3) 

Another way of defining a 2-surface in p space is to have p - 2 constraints on the p coordi- 

nates. An example is the unit sphere in IRS. It can be defined as {z : z E IRS, llzll = 1). 

There is one constraint. We will call this the implicit definition. 

Not all Zsurfaces have implicit definitions (mijbius band), and similarly not all surfaces 

have global parametrizations. However, locally an equivalence can be established (Thorpe 

1978). 

The concept of arc-length generalizes to surface area. However, we cannot always re- 

parametrize the surface so that units of area in the parameter space correspond to units of 

area in the surface. Once again, local parametrizations do permit this change of units. 

Curvature also takes on another dimension. The curvature of a surface at any point 

might be different depending on which direction we look from. The way this is resolved 

is to look from all possible directions, and the first principal curvature is the curvature 

corresponding to the direction in which the curvature is greatest. The eecond principal 

curvature corresponds to the largest curvature in a direction orthogonal to the first. For 

2-surfaces there are only two orthogonal directions, so we are done. 

3.2.2. Definition of principal surfaces. 

Once again let X be a random vector in p-space, with continuous probability density h(z). 

Let 5’ be the class of differentiable 2-dimensional surfaces in IRP, parametrized by A E Af, 

a 2-dimensional parameter vector. 

For f E 52 and z E IRP, we define the projection index +(z) by 

Xf (2) = m”;“m$X : II2 - f (WI = $f 11% - f(cr)ll). (3.4) 
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The projection index definea the closest point on the surface; if there is more than one, it 

picks the one with the largest first component. If this is still not unique, it then maximizes 

over the second component. Once again Xr(z) is a measureable mapping from W’ into R*, 

and +(X1 is a random vector. 

Definition 

The Principal Surfaces of h are those members of 5’ which are self consistent: 

E (X I+(X) = 4 = f(X) 

Figure (3.5) demonstrates the situation. 

Figure 3.5 Each point on a principal surface is the average of the 
points that project there. 

The plane spanned by the first and second principal components minimizes the distance 

from the points to their projections onto any plane. Once again let d(z, f) denote the usual 

euclidian distance from a point z to its projection on the surface f, and D’(f) = E@(X, f). 

If the surfaces are restricted to be planes, then the planes spanned by any pair of principal 
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components are the only critical values of D*(f). There is a result analogous to the one 

to be proven for principal curves. If we restrict f to be the members of $* defined on 

connected compact sets in R’, then the principal surfaces of A are the only critical values 

of D*(f). 

Let 7*(h) c GZ denote the class of principal %-surfaces of h. Once again we consider a 

smooth subset of this class. Form the subset q*(h) c 7*(h), where f E 7:(h) iff f f 7*(h) 

and Ar(z) is continuous in z for all points z in the support of h. Surfaces in %*(!A) have 

the following properties. 

l There is only one closest point on the principal surface for each z in the support of h. 

. The surface is globally well behaved, in that it cannot fold back upon itself causing 

ambiguities in projection. 

l We saw that for principal curves in 7,(h), there are no points at or beyond the centers 

of curvature of the curve. The analogous statement for principal surfaces in Y:(h) is 

that there are no points at or beyond the centers of normal curvature of any unit speed 

curve in the surface. 

3.3. An algorithm for finding principal curves and surfaces. 

We are still in the theoretical situation of finding principal curves or surfaces for a probability 

distribution. We will refer to curves (l-dimensional surfaces) and 2-dimensional surfaces 

jointly as surfaces in situations where the distinction is not important. 

When seeking principal surfaces or critical values of D*(f), it is natural to look for a 

smooth curve that corresponds to a local minimum. Our strategy is to etart with a smooth 

curve and then to look around it for a local minimum. Recall that 

D*(f) = E 11x - fP/(X))l/* 

= Ex,(x) E [11x- f(Aj(X))ll* bj(x)] . 

We can write this as a minimization problem in f and A: find f and X such that 

(3.5) 

(3.6) 

D:(f ,A) = E Ilx - f Wll* (3.7) 

is a minimum. Clearly, given any candidate solution f and A, f and Xf is at least as good. 

Two key ideas emerge from this: 
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l If we knew f as a function of A, then we could minimize (3.7) by picking X = At(z) 

at each point z in the support of h. 

s Suppose, on the other hand, that we had a function A(z). We could rewrite (3.7) as: 

G(f 3 XI = EA(x) f: E[(Xj - fdV))* I A(X)1 (3.8) 
j=l 

We could minimize 0: by choosing each fj separately so as to minimize the corre- 

sponding term in the sum in (3.8) . This amounts to choosing 

fj(X) = E(Xj IA(X) = A). (3.9) 

In this last step we have to check that the new f is differentiable. One can construct many 

situations where this is not the case by allowing the starting curve to be globally wild. On 

the other hand, if the starting curve is well behaved, the sets of projection at a particular 

point in the curve or surface lie in the normal hyperplanes which vary smoothly. Since the 

density h is smooth we can expect that the conditional expectation in (319) will define a 

smooth function. We give more details in the next chapter. The above preamble motivates 

the following iterative algorithm. 

Principal surface algorithm 

initialization: Set f(O)(X) = AA h w ere A is either a column vector (principal 

curves) and is the direction vector of the first linear principal 

component of h or A is a p x 2 matrix (principal surfaces) con- 

sisting of the first two principal component direction vectors. 

Set A(O) = A jco). 

repeat: over iteration counter j 

1) Set f(j)(.) = E(X IW1)(x) = .). 

2) Choose A(j) = x jb’. 

3) Evaluate D*(j) = Di(f(j),A(j)). 

until: D* (j) fails to decrease. 

Although we start with the linear principal component solution, any reasonable starting 

values can be used. 
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It is easy to check that the criterion D2 (j) must converge. It is positive and bounded 

below by 0. Suppose we have f(j-l) and X(j-l). N ow D;(f(i),x(i-1)) 5 D:(f(i-l),A(i-1)) 
by the properties of conditional expectation. Also Di(f(j), X(j)) 5 D:(f(j),X(jA1)) since the 

A(j) are chosen that way. Thus each step of the iteration is a decrease, and the criterion 

converges. This does not mean that the procedure has converged, since it is conceivable that 

the algorithm oscillates between two or more curves that are the same expected distance 

from the points. We have not found an example of this phenomenon. 

The definition of principal surfaces is suggestive of the above algorithm. We want a 

smooth surface that is self consistent. So we start with the plane (line). We then check 

if it is indeed self consistent by evaluating the conditional expectation. If not we have a 

surface as a by-product. We then check if this is self consistent, and so on. Once the self 

consistency condition is met, we have a principal surface. By the theorem quoted above, 

this surface is a critical point of the distance function. 

3.4. Principal curves and surfaces for data sets. 

So far we have considered the principal curves and surfaces for a continuous multivariate 

probability distribution. In reality, we usually have a finite multivariate data set. How do 

we define the principal curves and surfaces for them? Suppose then that X is a n x p matrix 

of n observations on p variables. We regard the data set as a sample from an underlying 

probability distribution, and use it to estimate the principal curves and surfaces of that 

distribution. We briefly describe the ideas here and leave the details for chapters 5 and 6. 

l The first step in the algorithm uses linear principal components as starting values. 

We use the sample principal components and their corresponding direction vectors as 

initial estimates of AI and f(O). 

l Given functions j(j-l) we can find for each Zi in the sample a value Ai -(j-l) = xt~-l,(Zi). 

This can be done in a number of ways, using numerical optimization techniques. In 

practice we have j(j-l) evaluated at n values of X, in fact at nfm2’, if-“, ..a, ;\g-‘). 
j(j-1) is evaluated at other points by interpolation. To illustrate the idea let us con- 

sider a curve for which we have j(i-l) evaluated at Xi *(je2), for i = l,*.*,n. For each 

point i in the sample we can project z; onto the line joining each pair (f(j-1)(iF-2)), 
j(i-l)(QJ~~J)). s uppose the distance to the projection is dir, and if the point projects 

beyond either endpoint, then & is the distance to the closest endpoint, Correspond- 

ing to each & is a value &r; E [~~-2),~~~~)]. We then let ip-‘) be the Air that 
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corresponds to the smallest value of 4~. This is an O(n2) procedure, and as such is 

rather naive. We use it M an illustration and will describe more efficient algorithms 

later. 

l We have to estimate f(j) (A) = E (X ) X(j-‘1 = A). W e restrict ourselves to estimating 

this quantity at only n values of A(i-ll, namely if-‘), -. . , $‘lwhich we have already 

estimated. We require E(X lA(j-‘l = if-“). Th’ is says that we have to gather all 

the observations that project onto j(j-‘) at $-‘l, and find their mean. Typically 

we have only one such observation, namely zi. It is at this stage that we introduce 

the scatterplot smoother, the fundamental building block in the principal curve and 

surface procedures for finite data sets. We estimate the conditional expectation at 

A!-‘) by averaging all the observations 2~ in the sample for which @-‘l is close to 

iii-l). As long as these observations are close enough and the underlying density is * 
smooth, the bias introduced will be small. On the other hand, the variance of the 

estimate decreases as we include more observations in the neighborhood. Figure (3.6) 

demonstrates this local averaging. Once again we have just given the ideas here, and 

will go into details in later chapters. 

Figure 3.6 We estimate the conditional expectation 
E(X 1 A(i-1) = fiy-‘)) b y averaging the observations zk for which 

$+l) b =lose to $i-1) I . 
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l One property of scatterplot smoothers in general is that they produce smooth curves 

and surfaces as output. The larger the neighborhood used for averaging, the smoother 

the output. Since we are trying to estimate differentiable curves and surfaces, it is 

convenient that our algorithm, in seeking a conditional expectation estimate, does 

produce smooth estimates. We will have to worry about how smooth these estimates 

should be, or rather how big to make the neighborhoods. Thii becomes a variance 

versus bias tradeoff, a familiar issue in non-parametric regression. 

l Finally, we estimate D2 (j) in the obvious way, by adding up the distances of each point 

in the sample from the current curve or surface. 

3.5. Demonstrations of the procedures. 

We look at two examples, one for curves and one for surfaces. They both are generated 

from an underlying true model so that we can easily check that the procedures are doing 

the correct thing. 

3.5.1. The circle in two-space. 

The series of plots in figure 3.7 show 100 data points generated from a circle in 2 dimensions 

with independent Gaussian errors in both coordinates. In fact, the generating functions are 

(::)=(;::;)+(::> 
where X is uniformly distributed on [0,2a] and el and e2 are independent J/(0,1). 

The solid curve in each picture is the estimated curve for the iteration ss labelled, and 

the dashed curve is the true function. The starting curve is the first principal component, 

in figure 3.7b. Figure 3.7a gives the usual scatterplot smooth of 22 against 21, which is 

clearly an inappropriate summary for this constructed data set. 

The curve in figure 3.7k does substantially better than the previous iterations. The 

figure caption gives us a clue why - the span of the smoother is reduced. This means that 

the size of the neighborhood used for local averaging is smaller. We will see in the next 

chapter how the bias in the curves depends on this span. 

The square root of the average squared orthogonal distance is displayed at each iter- 

ation. If the true curve was linear the expected orthogonal distance for any point would 

be m = 1. We will see in chapter 4 that for this situation, the true circle does not 



28 Section 3.5: Demoncrtratione of the procedures 

. ,L;-?-‘E. 
“/ . 
./ * l = \ . 

f . . < 
.’ . 

/ . \. . 
. 

/ * ’ . ‘\ ’ 
. 
’ I ’ \ ’ 

‘I ’ 
\ n 

- ‘\ 

\’ l . 1. 

\: + / ’ . 
. 9 0, I / . . 

\ ’ /. . 
\ ’ / - 

. h / 
. . - . “,, ‘+ 

. 
. 9 :, 

. h / 
. . - . “,, ‘+ 

Figure 3.7a The dashed curve ia the usual 

scatterplot smooth. D(S) = 3.35 

Figure 3.7~ D(](‘)) = 3.34 

Figure 3.7b The dashed curve is the 
principal component line. 0(3(O)) = 3.43 

Figure 3.7d D(i@)) = 3.03 
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Figure 3.7e D(f@)) = 2.64 

Figure 3.7g D(j@)) = 2.25 
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Figure 3.7b D(i@)) = 1.91 
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Figure 3.7i D(i(‘)) = 1.64 

Figure 3.7k D(i(“)) = 0.97. The span is 

automatically reduced at this stage. 

Figure 3.7j D(j@)) = 1.60 

Figure 3.71 D(jW) = 0.96 
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minimize the distance, but rather a circle with slightly larger radius. Then the minimizing 

distance is approximately us(l - 1/4p2) = .99. Our final distance is even lower. We still 

have to adjust for the overfit factor or number of parameters used up in the fitting proce- 

dure. This deflation factor is of the order n/(n - 4) where p is the number of parameters. 

In linear principal components we know q. In chapter 6 we suggest some rule of thumb 

approximations for q in this non-parametric setting. 

This example presents the principal curve procedure with a particularly tough job. 

The starting value is wholly inappropriate and the projection of the points onto this line 

does not nearly represent the final ordering of the points projected onto the solution curve. 

At each iteration the coordinate system for the i(j) is transferred from the previous curve 

to the current curve. Points initially project in a certain order on the starting vector, as 

depicted in figure 3.8a. The new curve is a function of i(O) measured along this vector 

as in figure 3.8b obtained by averaging the coordinates of points local in A(‘). The new 

i(l) values are found by projecting the points onto the new curve. It can be seen that the 

ordering of the projected points along the new curve can be very different to the ordering 

along the previous curve. This enables the successive curves to bend to shapes that could 

not be parametrized in the original principal component coordinate system. 

3.5.2. The half-sphere in three-space. 

Figure 3.9 shows 150 points generated from the surface of the half-sphere in 3-D. The 

simulated model in polar co-ordinates is 

(3.11) 

for X1 E [0,2r] and X2 E [0,x/2). The vector e of errors is simulated from a U(0, I) 

distribution, and the values of X1 and X2 are chosen so that the points are distributed 

uniformly in the surface. Figure 3.9a shows the data and the generating surface. The 

expected distance of the points from the generating half-sphere is to first order 1, which is 

the expected squared length of the residual when projecting a spherical standard gaussian 

3-vector onto a plane through the origin. Ideally we would display this example on a motion 

graphics workstation in order to see the 3 dimensions.* 

l This dissertation is accompanied by a motion graphics movie called Principal Curves and 
Surfcrccs. The kslf-spkere is one of 4 examples demonstrated in the movie. 
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(4 (b) 

Figure 3.8 The curve of the the iirst iteration is a function of i(O) 
measured along the starting vector (a). The curve of the the second 
iteration is a function of i(l) measured along the curve of the first 
iteration (b). 

3.6. Principal surfaces and principal components. 

In this section we draw some comparisons between the principal curve and surface models 

and their linear counterparts in addition to those already mentioned. 

3.0.1. A Variance decomposition. 

Usually linear principal components are approached via variance considerations. The first 

component is that linear combination of the variables with the largest variance. The second 

component is uncorrelated with the first and has largest variance subject to this constraint. 

Another way of saying this is that the total variance in the plane spanned by the first two 

components is larger than that in any other plane. By total variance we mean the sum of 

the variances of the data projected onto any orthonormal basis of the subspace defined by 

the plane. The following treatment is for one component, but the ideas easily generalize to 

two. 
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Figure 3.9a. The generating surface and 
the data. D(S) = 1.0 

Figure 3.9b. Th$ principal component 
plane. I@“)) = 1.59 

. . -..:*- . -..:*- . 

/ / 

Figure 3.9c. ~(j(l)) = 1.20 Figure 3.9d. D(](‘)) = 0.78 
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If x = (A,,... , A,)’ is the first principal component of X, a n x p data matrix, and 

o is the corresponding direction vector, then the following variance decomposition is easily 

derived: 

2 Vm(Zj) = VU(X) f E 112 - OXlIz 

j=l 

(3.12) 

where Var (e) and E(e) refer to sample variance and expectation. If the principal component 

was defined in the parent population then the result is still true and Var(-) and E(-) have 

their usual meaning. The second term on the right of (3.12) is the expected squared 

distance of a point to its projection onto the principal direction.* 

The total variance in the original p variables is decomposed into two components: the 

variance explained by the linear projection and the residual variance in the distances from 

the points to their projections. We would like to have a similar decomposition for principal 

curves and surfaces. 

Let w now be any random variable. Standard results on conditional expectation show 

that: 

If w = X,(z) 

k VW(Z~) = f: E(Zj - E(Zj 1~))~ +f: Var( E(zj 1~)). (3.13) 
j=l j=l j=l 

and f is a principal curve so that E(Zj IA,(Z)) = fj(Af(Z)), we have 

$ Vm(zj) = E 112 - f(~~(zIIll’ + 2 V~(fj(X,(z))). (3.14) 
j=l 

This gives us an analogous result to (3.12) in the distributional case. That is, the total 

variance in the p coordinates is decomposed into the variance explained by the true curve 

and the residual variance in the expected squared distance from a point to its true position 

on the curve. The sample version of (3.14) holds only approximately: 

2 Vm(Zj) W 2 IlZi - j($)ll' +k VU(jj(Ki)). 

j=l i=l j=l 

The reason for this is that most practical scatterplot smoothers are not projections, whereas 

conditional expectations are. 

We make the following observations: 

* We keep in mind that X is considered to be centered, or alternativly that E(r) = 0. The 
above results are still true if this is not the case, but the equations are messier. 
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l if fj(X) = +A, the linear principal component function, then 

2 vm(fj(xf(z))) = f:a: Vm(Xa(z)) 
j=l j=l 

= Var(X) 

since o has length 1. Here we have written X for the function X,(z) = o’z. 

l if the fj are approximately linear we can use the Delta method to obtain 

$ V~(fj(Xf(z))) FJ L(fi( E(Xf(z))12 vm(Xf(z)) 
j=l 

= VW- (Q(4) 

since we restrict our curves to be unit speed and thus we have have Ilf’ll = 1. 

3.6.2. The power method. 

We already mentioned that when the data is ellipsoidal the principal curve procedure yields 

linear principal components. We now show that if our smoother fits straight lines, then 

once again the principal curve procedure yields linear principal components irrespective of 

the starting line. 

Theorem 3.1 

If the smoother in the principal curve procedure produces least squares straight line fits, 

and if the initial functions describe a straight line, then the procedure converges to the first 

principal component. 

Proof 

Let o(O) be any starting vector which has unit length and is not orthogonal to the largest 

principal component of X, and assume X is centered. We find A,!‘) by projecting zi onto 

o(O) which we denote collectively by 

where A(‘) is a n vector with elements Xi , i = 1 (0) (1) , . . . , n. We find aj by regressing or 

projecting the vector Zj = (Zrj, . . . , Znj)’ onto X(O): 

a!‘) = 
A(O)‘2 j 

J ~w’xP) 
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or 

o(1) _ X(O)'X - 
Awxw 

X’Xo(O) 
= 0(O)‘X’X0(O) 

and o(l) is renormalized. It can now be seen that iteration of this procedure is equivalent 

to finding the largest eigenvector of X’X by the power method (Wilkinson 1965). 1 




