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Chapter 1 

I n t r o d u c t i o n  

The goal of these lectures is an exposit ion of the geometr ic  approach  to singular 
pe r tu rba t ion  problems. Singularly per tu rbed  equat ions gain their special s truc- 
ture  f rom the presence of differing t ime scales. The  fundamenta l  tool  in their 
analysis, f rom the perspective taken here, is the set of theorems due to Fenichel. 
The  first step is then to explain these theorems and their significance. At the 
same time, new proofs of Fenichel 's three main results will be outlined. 

1 . 1  B a c k g r o u n d  a n d  m o t i v a t i o n  

The basic equat ions we consider are of the form 

x' (1.1) 
y '  = c g ( x , y , ~ ) ,  

where ' -- d -- d-~, X E R n, y C R t and e is a real parameter .  We shall compile 
various hypotheses  about  the system (1.1), which are denoted with the letter H. 

(H1) The  functions f and g are bo th  assumed to be C ~ on a set U • I where 
U C R g is open, with N = n + l, and I is an open interval, containing 0. 

Note  tha t  we are assuming full smoothness  on the nonlinear terms which is 
unnecessary but  great ly  simplifies the discussion. If  less smoothness  is present in 
a given problem the precise smoothness  required can be easily re traced th rough  
the proofs. 

System (1.1) can be reformulated with a change of t ime-scale as 

ex  = f ( x , y , c )  (1.2) 
= g(x, y, 

w h e r e ' =  d and 7 = ct. The  t ime scale given by ~- is said to be slow whereas 
tha t  for t is fast, as long as e r 0 the two systems are equivalent. Thus  we call 
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(1.1) the fast system and (1.2) the slow system. We have two distinguished limits 
for these equations, one naturally associated with each scaling as e --* 0. In (1.1) 
letting e --* 0 we obtain the system 

x' = / ( x ,  y, 0) (1.3) 
y' -= O. 

According to (1.3) the variable x will vary while y will remain constant. Thus x 
is called the fast variable. If we let e --* 0 in (1.2), the limit only makes sense if 
/ ( x ,  y, 0) = 0 and is thus given by 

/ ( x ,  y, 0) = 0 (1.4) 
~t = g(x, y, 0). 

One thinks of the condition f ( x ,  y, 0) = 0 as determining a set on which the flow 
is given by 9 = g(x, y, 0). It is natural to a t tempt  to solve x in terms of y from 
the equation f ( x , y ,O)  = 0 and plug it into the second equation of (1.4) (the 
reader should check that the dimensions are right to expect such a solution if 
non-degeneracy conditions hold). Notice that this set is exactly the set of critical 
points for (1.3). We thus have the "formal" picture that  (1.3) has large sets of 
critical points and that  (1.4) blows the flow on this set up to produce non-trivial 
behavior. 

In either limiting formulation, one pays a price. On the (large) set f ( x ,  y, O) = 
0 the flow is trivial for (1.3). Whereas under (1.4) the flow is non-trivial on this 
set, but the flow is not defined off this set. The primary mathematical goal 
of geometric singular perturbation theory, henceforth denoted by the acronym 
GSP, is to realize both these aspects (i.e., fast and slow) simultaneously. This 
apparently contradictory aim will be accomplished within the phase space of 
(1.1) (or, equivalently, (1.2)) for e non-zero but small. 

There are two basic reasons why GSP is a powerful tool for analyzing high- 
dimensional systems: 

1. In many applications, quantities will vary on widely differing time scales, 
and thus are naturally formulated in the form (1.1). 

2. It affords a reduction of a possibly high-dimensional system, such as (1.1), 
into the lower-dimensional systems (1.3) and (1.4). 

The first reason given above justifies the theory from an applied point of 
view, but also offers us the opportunity of invoking many different applications 
as examples to guide the theory. The second rationale means that we can hold 
the hope of analyzing singularly perturbed systems of twice the size of those 
analyzed without this theory. For example if n = l = 2, we would study 2- 
dimensional systems, the analysis of which is well understood, and, through 
GSP, make conclusions about 4-dimensional systems, which are ostensibly far 
less tractable. Moreover, the resulting behavior is not restricted to being merely 
a shadow of that present in (1.3) and (1.4), for new structures can result from 
the patching together of solutions of (1.3) and (1.4). The early examples will 
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not reflect such effects, but we will progressively develop richer dynamical be- 
havior. The later applications will exhibit intrinsically higher-dimensional phe- 
nomena, despite their being rendered susceptible to analysis by reduction to 
low-dimensional systems. It should be noted here that the theory of singular 
perturbations commands a large literature that does not fit into the category 
of GSP as discussed here. Indeed, this classical theory predates GSP and the 
interested reader is referred to [11] and [44] for good expositions of this theory. 

The phenomena that we will isolate for (1.1) will generally involve the con- 
struction of specific orbits, such as homoclinic, heteroclinic, or periodic orbits. 
These are constructed by following certain invariant manifolds (for instance, sta- 
ble and unstable manifolds of critical points) through their ambient phase space 
and using the reductions i.e., (1.3) and (1.4), to keep track of their position and 
configuration at different points of their travel. These "special" orbits may be of 
significance due to their r61e in the overall dynamics of the equation, for instance 
homoclinic orbits are often a signature of chaotic motion, or as special solutions, 
such as travelling waves, of a related partial differential equation. 

Summary of goals 

�9 Determination of flow near sets f(x, y, 0) = 0 for (1.1): 

- Fenichel's theorems, 

- Fenichel coordinates and normal form, 

- slow manifold flow. 

�9 Effective tracking of invariant manifolds through the phase space of (1.1): 

- use of differential forms, 

- transversality, 

- exchange lemmas. 

�9 Applications to the existencc and properties of special orbits of (1.1): 

- perturbed slow structures, 

- travelling waves and stability, 

- homoclinic abundance. 

1.2 Fen iche l ' s  first t h e o r e m  

The set of critical points f(x, y, 0) = 0 for (1.3) is formed by solving n equations 
in R N, where N = n + l, and thus is expected to be, at least locally, an l- 
dimensional manifold. Indeed, it is natural to expect it to have a parametrization 
by the variable y. We shall thus assume that  we are given an/-dimensional  man- 
ifold, possibly with boundary, M0 which is contained in the set { f (x ,  y, 0) = 0}. 
The fundamental hypothesis on M0 will be that,  as a set of critical points, the 
directions normal to the manifold will correspond to eigenvalues that  are not 
neutral. In the following, the notation 7~(A) denotes the real part of A. 
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D e f i n i t i o n  1 The manifold Mo is said to be normally hyperbolic if the lineariza- 
tion of (1.1) at each point in Mo has exactly l eigenvalues on the imaginary axis 
n (~ )  = O. 

Fenichel's first theorem asserts the existence of a manifold that is a pertur- 
bation of M0. It will be connected with the flow of (1.1) when e r 0. We need 
a definition to clarify this connection. The notation x �9 t is used to denote the 
application of a flow after time t to the intial condition x. The existence of a 
flow for (1.1) follows from the basic theorems of ODE. 

D e f i n i t i o n  2 A set M is locally invariant under the flow from (1.1) if it has 
neighborhood V so that no trajectory can leave M without also leaving V.  In 
other words, it is locally invariant if for all x E M,  x .  [0, t] C V implies that 
x .  [0, t] C M,  similarly with [0, t] replaced by [t, 0] when t < O. 

Fenichel's theorems will actually address the perturbation of a subset of ~/0, 
because of technical difficulties near the boundary. 

(H2) The set M0 is a compact manifold, possibly with boundary, and is normally 
hyperbolic relative to (1.3). 

The set M0 will be called the critical manifold. We are now in a position 
to state the first theorem that Fenichel proved, under the hypotheses (Hi)  and 
(H2). 

T h e o r e m  1 (Fen iche l ' s  I n v a r i a n t  M a n i f o l d  T h e o r e m  1) If e > O, but 
sufficiently small, there exists a manifold Me that lies within O(e) of Mo and is 
diffeomorphic to Mo. Moreover it is locally invariant under the flow of (1.1), 
and C r, including in e, for any r < +oc. 

This theorem follows from Fenichel's early work, [15], as singular perturba- 
tions are a special case of the more general decomposition by exponential rates 
that  he considered in that  context. However, his later paper, see [18], specifically 
addresses singular perturbations. There are a number of alternative formulations 
and proofs of this basic theorem, see, for instance, the work of Sakamoto [51]. 

The manifold M~ will be called the slow manifold. It should be noted that  the 
only connection to the flow is through the statement that the perturbed manifold 
M~ is locally invariant. This seems weak but, in fact, is not as it entails that 
we can restrict the flow to this manifold, which is lower-dimensional, in order 
to find interesting structures. The fact that the manifold is locally invariant, 
and not invariant, is due to the (possible) presence of the boundary and the 
resulting possibility that  trajectories may fall out of M~ by escaping through 
the boundary. This cannot be avoided as most applications do indeed supply us 
with manifolds that  have boundaries. A comment is also in order about  normal 
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hyperbolicity; there are many applications in which interesting phenomena occur 
because normal hyperbolicity of manifolds breaks down, such as in relaxation- 
oscillations, but we shall not consider such cases in these lectures. As is the case 
for center manifolds, it should be noted here that  the exponent r cannot be set 
to +oz.  

In order to significantly simplify the notation, as well as the structure of the 
proofs, we shall restrict at tention throughout these lectures to the case that  M0 
is given as the graph of a function of x in terms of y. Tha t  is we assume there 
is a function h~ defined for y C K,  with K being a compact  domain in R l, 
and so that  

M0 = { ( x , y )  : x = h ~  

This is a natural  assumption as it can always be satisfied for Mo locally. Indeed, 
on account of normal hyperbolicity (H2) the matr ix  

Dxf (2 ,  ~), 0) 

is invertible for any (2, ~)) E M0 and hence x can locally be solved for y by the 
Implicit Function Theorem. We are thus just assuming that  such a solution can 
be made globally over M0. 

Thus, consider x = h~ wherein y E K and make the following assumption. 

(H3) The set M0 is given as the graph of the C ~ function h~ for y E K.  
The set K is a compact ,  simply connected domain whose boundary is an (l - 1)- 
dimensional C ~ submanifold. 

Under the hypotheses (H1)-(H3), we can restate  Fenichel's first theorem in 
terms of the graph of a function. 

T h e o r e m  2 I re  > 0 is sufficiently small, there is a funct ion x = he(y), defined 
on K ,  so that the graph 

M~ = { ( x , y )  : x = h~(y)}, 

is locally invariant under (1.1). Moreover h ~ is C r, for any r < +(x~, jointly in 
y and e. 

R e m a r k  The diffeomorphism between M~ and M0 follows easily in this formu- 
lation through the diffeomorphism of the graph to K.  

An equation on M~ can easily be calculated using Theorem 1. We substi tute 
the function h~(y) into (1.1) and see that  the y equation will decouple from that  
of the x equation. We thus obtain an equation for the variation of the variable 
y. Since y parametrizes the manifold M~, this equation will suffice to describe 
the flow on M~. It  is given by 

y' = eg(h~(y), y, e). (1.5) 
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In the alternative slow scaling we can recast (1.6) as 

9 = g(h~(Y), Y, e), (1.6) 

which has the distinct advantage that a limit exists as e --+ 0, given by 

9 = g(h~ Y, 0), (1.7) 

which naturally describes a flow on the critical manifold M0, and is exactly 
the second equation in (1.2). Using this theorem and this resulting equation 
(1.6), the problem of studying (1.1), at least on M~ is reduced to a regular 
perturbation problem. In the next three sections we shall give examples in which 
this is applied. 

1.3 An equation from phase-field theory 

An equation with spatial derivatives of even powers in formulated by Caginalp 
and Fife [7] to describe the behavior of phase transitions. In a model case in 
which a scalar equation can be used as a reasonable model, Gardner and Jones 
[19] studied the stability of travelling waves. As an example of the above theory, 
it will be shown here how to construct the basic travelling wave. Consider the 
equation 

0 r  406r  2 A 04r  02r  
0-7 = ~ ~ x  ~ + e ~t~-~x 4 + ~ x  2 + 1(r (1.8) 

where f ( r  = r162 - a)(1 - r is the bistable nonlinearity with a < �89 and 
A > 0. The parameter  e is intended to be small, see [19], and thus (1.8) is 
easily seen to be a perturbation of the well-known, scalar bistable reaction- 
diffusion equation. We shall seek travelling wave solutions of (1.8), namely 
r = r  - ct), satisfying 

{ 0 as { --* - o o  (1.9) r 
1 a s  ~ ~ + o c .  

The wave is then seen to satisfy the ODE 

_ cr = e4r + e2Ar + r + f ( r  (1.10) 

where the derivatives are taken with respect to the travelling wave variable {. 
The equation (1.10) can be rewritten as a system of six equations 

~I = U2 

U2 = U3 

s = ~4 
s = U5 

s : U6 

e~6 = -Au5 - u 3  - c u 2  - f ( U l ) ,  

(1.11) 
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where" = a4~. This system is already formulated in slow variables and we have re- 
placed ~ by r as the independent variable to conform to our established notation. 
The correspondence with our notation is: 

is the fast variable, and 

U4 
X ~ 

U5 

U6 

is the slow variable. The critical manifold M0 can be taken as any compact  
subset of 

= = = 0 ,  u 3  = -c 2 - 

which shall be chosen to be large enough to contain any of the dynamics of 
interest. The eigenvalues of the linearization at any point of M0, other than the 
double eigenvalue at 0 are seen to be solutions of the quartic 

#4 + A#2 + 1 = 0, 

which are not pure imaginary if 0 < A < 2. 
The equations for the slow flow on the critical manifold 21//0 are given by 

/~1 = u2 (1.12) 
iL 2 : - - C U  2 - -  f ( U  1 ) .  

The slow manifold M~, which exists by virtue of Theorem 1, is given by the 
equations 

( u a , u 4 , u s , u 6 )  = h ~ ( u l , u 2 )  = ( - c u 2  - f(ul),O,O,O) "k 0@). 

and the equations on ME are 

~ 1  ---- U2 
iz2 = - c u 2  - f ( u l )  + O(e) .  (1.13) 

It is a well-known fact that  (1.12) has a heteroclinic orbit connecting the critical 
point (0, 0) at - o o  with (1, 0) at +oo, for a particular value of c, say c = c*. 
One checks easily that  (0, 0) and (1, 0) are still critical points of (1.13), for e 
sufficiently small (why?). The s t rategy is then to show that  there is a c = c(e) 
defined for e small, with c(0) = c*, at which there is such a heteroclinic orbit for 
(1.13). The idea is to show that  the heteroclinic orbit  for (1.12) exists by virtue 
of a transverse intersection of stable and unstable manifolds and thus perturbs.  

Appending an equation for c to (1.12), the heteroclinic, on M0, can be 
viewed as the intersection of the unstable manifold of the curve of critical 
points {(0,0, c) : Ic - c* I small }, say W -  with the stable manifold of the curve 
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{(1,0, c) : Ic - c*] small }, say W +, see Figure 1. this intersection will be viewed 
in the plane u = a. In u = a, W -  is given by the graph of a function, say 
u2 = h - ( c ) ,  and W + is given by the graph of another  function, say u2 = h+(c). 
These curves are each monotone, which is the usual proof of the uniqueness 
of the wave and its speed, see for instance Aronson and Weinberger [2]. The 
transverse intersection is related to this fact and it will be shown specifically in 
Chapter  4 that  the following quanti ty 

Oh-  Oh + ) 
0c It=c- # 0. (1.14) 

This is a Melnikov type calculation. 

u 

2 

t 

1 

- -  w 

Figure 1 
The intersection of the unstable and stable manifolds. 

The next step is to check whether this intersection per turbs to M~. Indeed, 
on M~ the relevant unstable and stable manifolds will again be given as graphs. 
The manifold W -  N {ul = a)  will be given by u2 = h -  (c, e) and W + A {Ul -- a)  
will be given by u2 =- h+(c, e). An intersection point is found by solving these 
equations simultaneously for u2 = u~(e) and c -- c* (e). This will follow from the 
Implicit Function Theorem if the determinant  of the matr ix  

1 Oh-- I 
o~ , 1 

at c = c*, and e -- 0, is non-zero. But this is exactly the s ta tement  (1.14). 
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1 .4  A t r a v e l l i n g  w a v e  in s e m i c o n d u c t o r  t h e o r y  

An example due to Szmolyan, see [53], concerning the problem of finding a trav- 
elling wave in a system of equations governing the behavior of a semiconductor 
material  will be presented. In the following, E is the electric field, n is the total  
concentration of all the electrons and u is the concentration of one individual 
species of electrons. There are two species of electrons present, and so the con- 
centration of the other species is n - u. The concentration variable u satisfies 
a second order equation. We bypass the PDE ' s  and formulate immediately the 
travelling wave equations, which are thus a system of four equations, given by 

U ! = W 

2 ,  n-1 (1 ol(E))u W' : e(Ul(E) - c)w + e ul (E)u ' - f '~  + + - n 
E' : c~ ! 

n' = c (~q (E)u  + ~ ' 2 ( E ) ( n -  u) - cn + V), 

(1.15) 

where 
G ( E )  = Id (E)  + o~(E)~'2 (E)  

1 + c~(E) 

The graph of G ( E )  will be important  and is given in Figure 2. 

(1.18) 

where ~i(E) and a ( E )  are phenomenologically determined, positive, smooth 
functions, the exact structure of which is not directly important .  The nature 
of a certain combination of these functions that  appears  in the slow equations 
will be of most relevance. Of interest will be orbits of (1.15) that  are homoclinic 
to critical points. These correspond to travelling waves of the original P D E  
that  decay to a fixed constant s tate at -4-oo. Clearly the variables E and n are 
slow, while u and w are fast. We thus have the correspondence x = (u, w) and 
y = (E, n) with the notation above. The critical manifold M0 will be given by 
the equations 

n 
w = 0, u - (1.16) 

1 + ~(E) 
and is thus easily seen to be defined, for our purposes, on any compact  domain 
of R 2. The eigenvalues of the linearization at any critical point of M0, apar t  

from the double eigenvalue at 0, are • (1 + a ( E ) )  �89 . Since (~ is positive, these 
are then non-zero and the uniform normal hyperbolicity assumption is satisfied. 

The limiting slow equations i.e., equations (1.7) for this example, are given 
by 

n - 1  

- ~ :  ( 1 . 1 7 )  
i~ = ( G ( E )  - c ) n  + % 
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c 1 

%- 

( ]  

Figure 2 
The graph of the function G. 

The equations on the per turbed manifold M~, which exists by Theorem 1 for 
e positive, but sufficiently small, are given by 

j ~  _ _  n - - 1  

),2 (1.19) 
i~ = ( e ( E )  - c) n + 7  + 0(~). 

The goal is to find an orbit for (1.19) that  is homoclinic to a rest state. This 
orbit will be the desired travelling wave, as it is a homoclinic orbit for the system 
that  happens to live on M~. The s t rategy is to find a homoclinic orbit for (1.i7) 
and prove that  it per turbs to such for (1.19) when e is sufficiently small. 

We first analyze (1.17) when 3 is also set equal to 0. In this case a simple 
t ransformation converts it into a Hamiltonian system, namely we let m = log n, 
and from (1.17) we obtain 

e T M  - - 1  

- )`2 ( 1 . 2 o )  
/n = G ( E ) - c .  

Since the variable n is a concentration, we are only interested in solutions with 
n > 0, and thus the t ransformation is valid for the solutions that  will ul t imately 
be of interest to us. It  is easily checked that  the function 

e m - m 

H ( E , m )  - A2 r ( E ) ,  

where F ' (E )  = G ( E ) - c ,  is a Hamiltonian for (1.20). If c is in the interval (cl, c2), 
see Figure 2, then (1.20) has 2 critical points, the left one being a saddle, which 
we denote !) , and the right one a center. It  is an exercise (left to the reader-see 
[53]) to check that ,  from the Hamiltonian above, one can conclude the existence 
of an orbit  homoclinic to ~), see Figure 3. In principle, this could be concluded 
from sketching the level curves of H,  but this can be avoided by invoking some 
qualitative arguments  about  the nature of the level curve containing the saddle. 
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Figure 3 
The homoclinic orbit in M0. 

One would not expect this homoclinic orbit to survive a perturbation,  such 
as to equation (1.19), as it is not caused by a transversal  intersection. However, 
we have not used the parameter  7. Undoing the t ransformation we see that  
(1.17) will also have a homoclinic orbit to a saddle, which, with an abuse of 
notation, we continue to denote by Y, but now ~ has its second coordinate given 
by n = 1. Since this point is a saddle an application of the Implicit Fhnction 
Theorem shows that  there is a nearby saddle critical point for 7 sufficiently small 
(note that  n stays equal to 1). We denote this curve of critical points by C. The 
next step is to show that  the unstable manifold of the curve g intersects its 
stable manifold transversely in (E, n, 7)-space at 7 = 0 (we append the equation 
7'  = 0). There is then a hope of its perturbing to M~. 

As is common in transversali ty arguments,  we consider the intersection of 
these manifolds with the set n = 1. Again by the Implicit Function Theorem, 
it is easily checked that ,  for 7 sufficiently small, these intersections are, indeed, 
curves. We denote them by 

E = h - ( 7  ) and E = h+(7),  

for W~(C) N {n = 1} and WS(C) n {n = 1} respectively, see Figure 4. The inter- 
section is transversal  if 

M-- (ah+ ah-) 
kor  07 I-~=o#O. (1.21) 

This is a type of Melnikov calculation and can be checked to hold. The reader 
is asked to have faith that  such a result holds, or can consult [53]. 
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Figure 4 
The The stable and unstable manifolds in n : 1. 

It remains to show that, for some 7, there is a homoclinic orbit for (1.19). By 
the same argument as above the saddle perturbs for all 7 and e sufficiently small. 
We now think of the system (1.19) with equations for 0' and e appended. The 
unstable manifold of this surface of critical points, call it again W ~, will intersect 
its stable manifold W ~ when ? : 0. We wish to find a curve of intersections given 
by 0' as a function of e. If W ~ is given by E = h - ( 7 ,  e), and W ~ by E : h+(v, e), 
inside the set n : 1. We need to simultaneously solve the equations 

E -  h - (v , e )  = 0 (1.22) 
E - h  +(7,e) = 0 ,  

by E and 7 as functions of e. This can be achieved, by the Implicit Function 
Theorem, exactly when the determinant of the matrix 

1 Oh_._.%- ) 

1 03' 

is non-zero. But this is, again, exactly the condition M ~ 0. The transversality 
condition thus indeed supplies us with a homoclinic orbit. 

A note on notation used in the examples is in order here. Many of the 
examples have the goal of finding travelling waves of a certain PDE. We usually 
use the variable ( for the travelling wave variable i.e., ~ = x - ct, as the variable 
t has a meaning in the original PDE. However, we shall abuse the notation 
here and always revert to independent variables that conform to our general 
framework, once the ODE's in a given example are derived. As a result the 
variable t may have nothing to do with "time" in the original PDE. 
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The above examples are pleasing applications of GSP but do not use the 
per turbat ion that  is supplied by the original equations to the equation on the 
slow manifold. Indeed, all the information is present in the limiting slow equation 
and it is merely checked that  the object of interest, namely the homoclinic or 
heteroclinic orbit, is not destroyed by the perturbation.  In the next subsection, 
we consider an application that  actually uses the perturbing terms i.e., the order 
e terms for the equations on M~ to create the homoclinic orbit. 

1.5 So l i tary  waves  of  the  K d V - K S  e q u a t i o n  

We shall base this section on a paper  by Ogawa, see [47]. The results, and ap- 
proach, are very similar in spirit to the work of Ercolani et al., see [13], except 
that  in the latter work periodic orbits are considered. The basic equations are 
a per turbed form of the Korteweg-deVries equations. The higher order terms 
perturbing the KdV part  are characteristic of the Kuramoto-Sivashinsky equa- 
tions, and the full model has arisen in a number of places, including in models 
of shallow water on tilted planes, see [56]. The partial differential equations are 
then 

Ut + U U ~  + U x ~  + e ( U x ~  + U~x~) = 0, (1.23) 

where x 6 R and t > 0. We seek travelling wave solutions of (1.23). These will 
be solutions of (1.23) that  are functions of the single variable ~ = x - c t .  We 
are specifically interested in those that  are asymptot ic  to the rest s ta te  u = 0 
as ~ ---* +oo, these will then be solitary waves. The wave U = U(~) must satisfy 
the ODE 

c U  (1) --[- V V  (1) -gr- V (3) -~-c ( U  (2) -~- V (4)) : O, (1.24) 

where (1) = ~ .  Using the boundary condition at - o o ,  (1.24) can be integrated 
once to yield the equation 

( ) - c U  + - ~ -  + U  (2) + e  U (1) + U  (3) = 0 .  (1.25) 

This, in turn, we rewrite as a system of ODE's ,  wherein u = U / c  

e@ 

----V 

= w (1.26) 

( ) e...L_ v : ~ c  U - - - 2 - - - w - -  v~ , 

Note the location of the small parameter  e means w h e r e ' =  d and 7- = vfc~. 
that  (1.26) is already formulated on a slow time scale. The corresponding fast 
equations are 

U I = s 

v '  = e w  (1.27) 

W r : U - - 7 - - w - -  ~/~ �9 
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The critical manifold M0 is given by the conditions w = u -  ~ suitably restricted 
to any compact domain K of (u, v) space. Since (1.27) has only three equations, 
there is only one normal direction to this 2-dimensional manifold. The derivative 
of the fast part in the w-direction is - 1 / v ~  and hence M0 is normally hyperbolic, 
in fact attracting. Fenichel's Invariant Manifold Theorem then guarantees the 
existence of M~. The flow on M~ is found by writing out (1.6) for this case 

( 1 . 2 8 )  u 2 
= u - T + O ( e ) .  

This equation has the limiting form, on M0, of 

= v  
2 (1.29) 

~) - - - - u - - - -  
2 

which can be easily analyzed as it is a simple one-degree of freedom Hamiltonian 
system. Indeed, (1.29) has a homoclinic orbit to the critical point (0,0), see 
Figure 5. 

) 
Figure 5 

The homoclinic orbit in M0. 

However, it is inevitably not transversal. Moreover, the constant c offers no 
relief to this dilemma as it does not enter into (1.29). This is the point at which 
this example departs from its similarity to those of the preceding sections. We 
must then consider the O(e) terms in (1.28). We know that  M~ is given by a 
function w = h ( u ,  v ,  c) and, by smoothness, can be expanded in c, so that  

u 2 

w = u - - -  + e h l ( u , v )  + O(e2). (1.30) 
2 

We need to calculate the term h l ( u , v ) ,  which is also likely to depend on the 
parameter  c. The only remaining information about M~ is the local invariance 
relative to the equation and this must then be used to evaluate hi. 

To this end, we differentiate (1.30) 

w '  = u' - uu '  + ~ \-5-u-u + 0v / + O(~2)" (1.31) 
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We subst i tu te  the expressions for u ~, v' and w',  f rom (1.28), and also the expres- 
sion for w, given by (1.30) into (1.31), and, after cancelling the O(1) terms,  we 
have ( 1 - ( ~ h l  + 0(c2))  - v = cv - cur  + O(e2). (1.32) 

Equa t ing  the terms of O(e) in (1.32) we obtain  

h l - ~ V / C ( U V - v ( l + - - - ~ ) ) .  (1.33) 

We cannot  expect  (1.28) to have a homoclinic orbit  forced merely by adding 
the O(r term. The  parameter  c will also need to be used, in the jargon:  it 
is a codimension two problem. We shall augment  the sys tem (1.28) with bo th  
equat ions for e and c 

~V 
u 2 ( ( 1 ) )  

i~ = u - T + e v G  u -  1 + ~  

~ = 0  
~ = 0 .  

v + O(~ ~) 
(1.34) 

We seek homoclinic orbits  for (1.34) with small c. These will be found at values 
of c tha t  depend on c. From the original equat ions one can see tha t  0 remains 
a critical point and must  lie on M~ (why?). We thus look for orbits  homoclinic 
to 0. The  critical point  0 can, in reference to (1.34), be const rued as a surface 
of critical points,  say 8 ,  parametr ized by c, e. This in turn  spawns an unstable  
manifold W~'(8) and stable manifold W~(8)  which meet  in a curve at e = 0, 
namely  the homoclinic orbits found already, see Figure 5. In the set v = 0 
we parametr ize  W u and W ~ respectively, near the intersection away from the 
critical point,  as u = h - ( c ,  c) and u = h + (c, c). 

We next define 
d(c,e) = h-(c ,c)  - h+(c ,c) ,  

and observe tha t  zeroes of d render homoclinic orbits. Since there are homoclinic 
orbits  independent ly  of c when e = 0, we have tha t  d(c, 0) = 0, and thus tha t  
d(c, e) = ed(c, ~). The Melnikov function is here given by 

(oh+ oh-) 
d(c,O) = M ( c ) =  \ Oe cge ]~=o. (1.35) 

It  is a simple applicat ion of the Implicit  Funct ion Theorem to see tha t  there 
is a curve of homoclinic orbits given by c = c(e) for e small, if there exists a c 
(=  c(0)), at  which 

M(c) = 0 and M'(c) # O. (1.36) 

The  funct ion M(c) can be calculated explicitly, see Lecture  3 below, as 

- c /~2  _ ( 1 . 3 7 )  M(c) = a o~ ' 
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where u comes from the underlying, already known, homoclinic orbit and a ~ 0. 
It is clear then that  (1.36) at a unique value of c. 

It is interesting to note in this application that the perturbing terms supply 
a speed selection that  is not evident without them. The reduced equations 
i.e., those on M0, are the travelling wave equations for the KdV equation. No 
particular speed for this equation is determined by the travelling waves as they 
exist at every speed. However, when the perturbing terms, supplied by the 
Kuramoto-Sivashinsky formulation, are added a specific wave speed is selected. 
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Chapter 2 

Invar iant  M a n i f o l d  
T h e o r e m s  

Fenichel's Theorem as stated in the first lecture gives us only part  of the picture 
in a neighborhood of a slow manifold. The existence of the slow manifold is 
guaranteed by the Theorem and the equation on the manifold can be computed 
as shown in the examples. However, at this point, we know nothing of the flow 
off the slow manifold and this must now be addressed. Our goal here is the 
derivation of a normal form, that  we shall call "Fenichel Normal  Form" for the 
equations near a slow manifold. This goal will be reached in the third lecture. In 
this lecture, Fenichel's Second Theorem that  describes the stable and unstable 
manifolds of a slow manifold will be presented. These are per turbat ions of the 
stable and unstable manifolds, respectively, of the critical manifold. They are 
related to those invariant manifolds in the same way that  the slow manifold is 
related to the critical manifold. 

2.1 S tab le  and  u n s t a b l e  m a n i f o l d s  

The slow manifold discussed in the first lecture possesses a t tendant  stable and 
unstable manifolds that  are per turbat ions of the corresponding manifolds when 

= 0. The following theorem holds under (H1)-(H3) and its conclusion is 
depicted in Figure 6. 

T h e o r e m  3 (Fen iche l  I n v a r i a n t  M a n i f o l d  T h e o r e m  2) I f  c > 0 but suJ:fi- 
ciently small, there exist manifolds WS(M~) and WU(M~) that lie within O(c) 
of, and are diffeomorphic to, WS(Mo)  and WU(Mo) respectively. Moreover, they 
are each locally invariant under (1.1), and C r, including in e, for any r < +co. 
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Figure 6 
The slow manifold and its stable and unstable manifolds. 

The Fenichel Normal  Form will be produced through a series of coordinate 
changes. Initially, these will be made with the purpose of facilitating the proofs 
of the theorems. The final set of coordinate changes will follow from the theorems 
themselves. We shall restrict, as stated earlier, to the case of critical manifolds 
that  are given as graphs. 

Without  loss of generality, we can assume that  h~ = 0 for all y E K.  
Indeed, we can replace x by 5c = x - h ~  and recompute the equations. For each 
point y E K ,  there are subspaces S(y) and U(y), corresponding, respectively, to 
stable and unstable eigenvalues. Since the eigenvalues are bounded uniformly 
away from the imaginary axis over K,  the dimensions of S(y) and U(y) are 
independent of y. Let d imS(y )  = m and d imU(y)  = k. Since K is simply- 
connected by (H3), we can smoothly choose bases for S(y) and U(y). Changing 
the coordinates to be in terms of these new bases, we can set x = (a, b), where 
a E R k and b C R m, so that  our equations have the form 

a' = A(y)a + F l (x , y , e )  
b' = B(y)b + F2(x,y,e)  (2.1) 
y' = cg(x,y,e),  

where the spectrum of the matr ix  A(y) lies in the set {A : T~(A) > 0} and the 
spectrum of the matr ix  B(y)  lies in {A : ~()~) < 0} . Both F1 and F2 are higher 
order in x and e; to be precise, we have the estimates 

levi < 7(Ixl + c), (2.2) 

i = 1, 2 and "y can be taken to be as small as desired by restricting to a set with 
lal and Ibl small. 

With this notat ion established, we can determine WS(M~) and WU(M~) as 
graphs and give the following restatement  of Theorem 3 

T h e o r e m  4 If e > 0 is su]~ficiently small, then, for some A > O, 
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(a) there is a function a = hs(b,y,c) defined for y E K and Ibl < A,  so that 
the graph 

WS(M~) = {(a,b,y) : a = h~(b,y,e)} 

is locally invariant under (2.1). Moreover, h~(b,y,e) is C r in (b,y,()  for 
any r < + ~ .  

(b) there is a function b = h~(a, y, c) defined for y C K and lal <_ A,  so that 
the graph 

W~(M~) = { (a ,b ,y ) :  b = hu(a,y,c)}  

is locally invariant under (2.1). Moreover, hu(a,y,c) is C r in (a,y,e)  for 
any r < +c~. 

These theorems also apply when e = 0 and render the stable and unstable 
manifolds of the known critical manifold, the existence of which is also guar- 
anteed by the usual stable and unstable manifold theorems at critical points 
(their smooth variation in y requires a little work to show but follows from The- 
orem 4). These latter two theorems then assert that  these manifolds perturb.  
At this point, there is little justification for naming these manifolds as stable 
and unstable, other than their status gained as per turbat ions of the e -- 0 case. 
It will be seen below, see Theorem 5, that  they enjoy certain decay and growth 
estimates respectively. 

Theorem 1 can be concluded from Theorem 3 by taking the intersection 
of WS(M~) with W~(M~). Locally, the Implicit Function Theorem gives the 
intersection as a graph, and these functions can be patched together since K 
is a compact  set. Moreovwe, we need only give the construction of the stable 
manifold, as that  of the unstable manifold follows immediately by a reversal of 
time. The proof to be given is very geometric in flavor and is based on the use of 
cones. The immediate  result will be of a Lipschitz manifold and the smoothness 
proof for these manifolds will only be sketched here. 

It is appropr ia te  at this point to say some words about  the history of these 
invariant manifold theorems, although one can only address such a task in an 
incomplete manner.  There are two approaches taken to proving invariant man- 
ifold theorems and both have an extensive history. The first is that  due to 
Hadamard ,  see [21], and relies on the geometry present in the splitting due to 
the decay rates. The second approach is due to Perron, see [48], and is based on 
proving the existence of the invariant manifold as a fixed point of a certain inte- 
gral equation. Fenichel adopted the Hadamard  approach in his seminal papers, 
see [15, 16, 17, 18]. These lectures are, t e a  great extent, based on his adapta t ion 
of the method to the case of singularly per turbed ODE's  [18]. Simultaneous to 
Fenichel's work, Hirsch, Pugh and Shub [25] used the more analytic approach 
to achieve related results. Sakamoto [51] used the Lyapounov-Perron approach 
to derive Fenichel's results. An extensive exposition of Fenichel's Theorems, as 
well as their proofs, are given by Wiggins [58]. Other results in this direction 
have been obtained by many different authors including, but not limited to, 
Knobloch, Lin and Szmolyan. 
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The proofs given here are an extreme geometric version of Fenichel's. Many 
of the ideas lying behind the proofs were learnt by the author from Conley in 
his lectures on dynamical systems at Wisconsin. They have also been used by 
McGehee [42] and Bates and Jones [3] in the case of single fixed points. 

2.2 Preparation of equations 

The set K will need to be somewhat enlarged. Since M0 is given by h ~ 
which is assumed to be C ~162 on K,  which is compact, a set /~ can be found 
so that  K C int/~ and h ~ is defined, and C ~ for all y �9 /~. Moreover, 

]~Io = { ( x , y ) : x  = h~ � 9  is a set of critical points and we can choose 

/~ so that  ~/0 is normally hyperbolic. 
The equations will be further prepared before the proofs can be given. The 

coordinates given above in terms of a and b separate the stable and unstable 
parts, but do not necessarily give good estimates for decay and growth. We set 
the quantities )~+ > 0 and ~_ < 0 so that 

A+ < TE(A) for any/k �9 a (A(y)) and y � 9  (2.3) 

A_ > T~()~) for any ~ �9 a (B(y))  and y � 9  (2.4) 

We shall refine the coordinates for a and b so that appropriate decay estimates 
on the linear parts are exposed. 

L e m m a  1 Coordinates can be chosen so that, in the new inner product, the 
following estimates hold 

< a, A(y)a > > )~+ < a, a >, (2.5) 

< b,B(y)b > < ~_ < b,b > .  (2.6) 

P r o o f  The coordinates can be found locally using e-Jordan form. These can be 
patched together over all of K using a partit ion of unity. 

In all proofs of the Center Manifold Theorem a modification has to be made 
to the equation in the center directions. This serves the purpose of mitigating its 
neutral character. We must perform the same modification here to deal with the 
slow directions, which are, effectively, center directions. The set /~ can further 
be chosen so that its boundary is given by the condition t)(y) = 0 for some C ~ 
function t~(y) and ~(y) satisfies V~(y) ~ 0 for all y E 0 / ( .  The function ~(y) is 
assumed to have been normalized so that Vt~(y) = ny is a unit outward normal 

for a/~. We let p(y) be a C ~ function that  has the following values 

1 if y e K c, (2.7) 
0(Y) = 0 if y �9 K, 
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The existence of such a function can be achieved locally with a C ~176 bump func- 
tion and then the full function is created with a parti t ion of unity. We now 
modify the third equation of (2.1) by adding the term 5p(y)ny, where 5 is some 
number  that  remains to be chosen. 

We shall need to append an equation for the small parameter  e. However, 
for the purpose of making estimates later, we shall actually use a multiple of e 
as the new auxiliary variable. Thus, we set c = 77a and append the equation 
~/' = 0 to the system (2.1). We then arrive at the system 

a' = A(y)a  + F l (x , y ,  e) 
b' = B(y)b + F2(x ,y ,e)  (2.8) 
y' = Tag(x, y, e) + 5p(y)ny 
~ = O, 

in which it is understood that  x is a function of a and b, and e is a function 
of ~. Clearly if Theorem 4 is restated with e replaced by y and proved in 
that  formulation, the original version of Theorem 4 can easily be recaptured by 
substi tuting e back in. 

2 . 3  P r o o f  o f  T h e o r e m  4 

We are now ready for the proof of Theorem 4. The strategy will be to find a 
function a = h~(b,y,~) defined for y C /~ and then restrict it to K ,  where the 
new equation agrees with the old as p = 0 in K .  

P r o o f  The first step is to set the neighborhood of ~/0 in which we shall work. 
The neighborhood will be cal led/9 and is determined by the conditions: 

Define the set 

y e K, lal _< A, Ibl _< A, ,q C [O,'qo]. 

F8 = { (a ,b ,y ,~ )  : ( a , b , y , q ) . t  E D, for all t > 0} .  .(2.9) 

We shall prove that  Fs is the graph of a function given by a in terms of the 
remaining variables and this will be the function h~(b,y,~). The next step^is 
to show that  F8 contains the graph of a function. Set ( = (b, y, 7/) and let Dr 

denote the cross-section o f /9  at fixed r = r 

as depicted in Figure 7. 
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Figure 7 
The neighborhood D and the cross-section. 

We need to show that  there is at least one point (a, r e / )  for which (a, r E 
/)  for all t > 0. To achieve this, the Wazewski Principle is used. Let b + be the 
immediate exit set of /P and/~0 be the eventual exit set. I f / ) +  is closed relative 
to b ~ then /9 is called Wazewski set and the map W : /~0 ~ / ~ +  that  takes 
each point to the first from which it exits /9, is continuous. We need to check 
the boundary o f / )  and find the immediate exit set. 

lab = A :  
< a,a >' = 2 {< a ,A(y )a  > + < a, F1 >} ,  

> 2 {A+A2 _ A (A + t0)} ,  

using Lemma 1 and (2.2). If t0 is chosen less than A, we see that 

< a,a > ' >  2(A+ - 27)A 2 > O, 

(2.10) 

(2.11) 

if 7 is chosen small enough, which can be achieved by choosing A and so suffi- 
ciently small. The set lal = A is then a part of the immediate exit set, as lal 
increases there. 

Ibl = A: 
It can been similarly that,  with small enough A and e0, 

< b, b >l< 0. 

y e o_f(: 
< y ' ,ny  > =  e < g(x , y , e ) , ny  > +6 < ny ,ny  >, 

since on 0 K  p = 1. Setting M = supb {M,  IDg]}, the above can be estimated 
a s  

< y ' ,ny  > > 5 - e o M  > O, 
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if 5 > eoM,  which can be assumed as 5 was arbitrary. 

both of these sets are invariant and thus render neither entrance nor exit sets. 

The immediate exit set is thus seen to be the set lal -- A, and / )  is easily 
checked to be a Wazewski set. The set /9r is a ball of dimension k. Suppose 

that  Fs ~/P~ = 0, then /9~ C /~0 and /)~ lies in the domain of the Wazewski 
map W, so, restricting W, we have 

w : D ~ - ~ +  = {ral = A} .  

If we follow this by a projection 7r(a, ~) = a, we see that  ~r o W maps a k- ball 
onto its boundary, while keeping that boundary fixed. This contradicts the No- 
Retract  Theorem, which is equivalent to the Brouwer Fixed-Point Theorem, see, 
for instance, [41]. Thus there is a point in /)~ N F~. Since r was arbitrary, this 
gives, at least, one value for a as a function of (b, y, 7), and we name it hs(b, y, 7). 

The next step will be to show that  the graph of the above derived function 
is all of F~. At the same time, it will be shown that the function is, in fact, 
Lipschitz with Lipschitz constant equal to 1. A comparison between the growth 
rates in different directions will be derived in the next lemma. Let (ai(t), ~(t)) ,  
i = 1, 2 be two solutions of (2.8), set Aa = a2(t) - a l ( t )  and A~ = ~ 2 ( t )  - ~ l ( t ) .  

Further, we define 
M ( t )  = IAal ~ - I A r  ~. 

L e m m a  2 I f  M ( t )  = 0 then M ' ( t )  > O, as long as the two solutions stay in D,  
unless A a  = 0 . 

P r o o f  The lemma follows from estimates that  we will make on each of the 
quantities < Aa, Aa > etc. The equation for Aa is 

Aa '  = A(y2)a2 - A ( y l ) a l  + F l ( x2 , y2 ,~2a)  - F l ( x l , y l , ~ l a ) ,  (2.12) 

which we rewrite as 

where 

and 

Aa '  = A ( y 2 ) A a +  [A(y2) - A ( y l ) ] a l  +AxF1  +A y F 1  + AeF1, (2.13) 

AxF1 =F(x2,y2,e2) -Fl(Xl,y2,e2), 

AyF1 =Fl(xl,y2,c2) -F,(x~,yl,~2) 

AeF1 = F l ( X l , y l , c 2 )  - F l ( X l , y l , e l ) .  

Using the fact that  F1 involves only higher order terms, one can derive the 
estimates 

IAxFll <_ "7 l ax [ ,  (2.14) 
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and 
[ACFll < a7  [/X~l, (2.15) 

wherein ~ can be made as small as desired by reducing the defining parameters 
o f / ) .  Since F l (0 ,y ,0 )  = 0, we can write 

F~(x,y,~) = xP~(~,y,~) + ~ ( z , y , ~ ) ,  

from which we obtain the estimate 

I/x~f~l ~ C{A IAyl +~0 IAyl}. (2.16) 

We can estimate < Aa, Aa >r=  2 < Aa I, Aa > by taking the inner product of 
(2.13) with Aa. Each term can then be estimated using Lemma 1, (2.14), (2.16), 
(2.15) and the continuity of A in y. We then obtain 

< Aa,, Aa > ~ A+ IAal 2 - {c lA IAyl I/Xal + 7 I/Xxl I/Xal + 
c2(A + e0)I/~yl I/Xal + a7 I/xnl IAal}, 

(2.17) 

for some constants c 1 and c2. We can bound IAxl by c3 (IAal + IAbD and each 
term with IAbl, IAyl or IA~I by [A{I. The estimate (2.17) can then be written 
a s  

< Aa, Aa >'_> 2 (A+ - ~1)IAal 2 -/~2 ]/Xal I/x41, (2.18) 

where ~1 and ~2 can be made small. If M(t )  = 0, we can then replace IA~I 
throughout by [Aa I. The net result is that 

< Aa, Aa > ' >  2 {A+ - (~1 + ~2)} IAal 2. (2.19) 

Note that  if A and e0 are chosen sufficiently smM1, then the coefficient of IAal 2 
in (2.19) can be made positive, say greater than A+ - ~. 

The estimate on IA~I must be broken down into pieces. In a similar fashion 
to the above we can estimate 

</Xb,/Xb > ' ~  2 {A_ + ~} I/Xal 2 , (2.20) 

where a can be made as small as desired by choosing the parameters of the 
neighborhood small. We can write, as above, 

Ay'  = aAqg(x2, Y2, •2a) + z/a {A~g + Ayg + Acg} 
+5 (p(y2 )ny 2 - p(Yl )ny, ).  

Moreover, the terms in parentheses can be estimated as follows: 

(2.21) 

I/X~gl ~ ~, I/',xl, (2.22) 

IA~I < M IAyl, (2.23) 

[A~g[ < a-)I/M/I, (2.24) 
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where "~ can be made as small as desired by reducing the size of the neighborhood. 
The following estimate can then be deduced 

< Ay', Ay > < aM IA~] ]Ay] + ~la  {~c3(IAal + ]Abl)+ (2.25) 
M ]Ay] + a'~ ]AT]} [Ay] + c4 IAyl 2 , 

and, again in a similar fashion to the above estimates, we can conclude that 

< Ay, Ay >'_< 2aC IAal 2 . (2.26) 

Combining the estimates (2.19), (2.20), (2.26) and the fact that  AT' = 0, we 
conclude that 

when M(t) = 0. The coefficient of the right hand side is 

A+ - )~_ - (/3 + ~ + o-C).  

Since a and ~ can be made as small as desired by adjusting the parameters of 
the neighborhood and (r can be made small, this quantity is positive and the 
Lemma follows. 

The decomposition of e into ~ and a is used at this last step. It seems 
somewhat artificial but, in fact, is not, as it corresponds to imposing an "e- 
Jordan form" on the neutral directions coming from y and e. 

The Lemma can be interpreted in terms of "moving cones". This notion will 
be important in the next lecture and so it is worth exposing further at this point. 
Define the cone 

c = {(a, r  lal > I l}, (2.2S) 

and then Lemma 2 can be restated in terms of C as follows: If z2 E zl + C then 
z2 �9 t C zl �9 t + C so long as z2 �9 t and Zl - t stay i n / ) ,  see Figure 8. 
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Figure 8 
The moving cones. 
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The proof of Theorem 4 can now be completed, at least for the Lipschitz 
case. The set F~ will be our stable manifold. We have shown that  it coatains 
the graph of a function, which we denote by a = h~(b,y,71). Suppose that Fs 
contains more than one point with the same values of b, y and ~/. There would 
then be al and a2 so that  both (al,b,y,71) and (a2,b,y,71) lie in F~. At t = 0, 
we would then have IAal > IA(t. By Lemma 2, 

IAa(t)l >_ IA~(t)l, 

for all t > 0. In the estimate (2.18) we can then replace ]A~[ by I/Xal to obtain 

{IA 12} ' - . 

From which it can be easily concluded that Aa grows exponentially, which con- 
tradicts the hypothesis that  both points stay i n /9  for all t _> 0. 

The same argument can be used to show that hs is also Lipschitz. If (al, ~1) 
and (a2, ~2) are both in F~ and la2 - a l l  _> 1~2 -~11, then la2 - a l l  can be seen 
to grow exponentially, contradicting the hypothesis again that  both points lie in 
Fs. We have now shown that  the set F~ is the graph of a Lipschitz function. This 
manifold is WS(M~), when y is restricted to the set K ,  in which the modified 
equation agrees with the original. 

2 . 4  D e c a y  e s t i m a t e s  

Some justification should be given to the terminology "stable manifold". Since 
the base manifold M~ no longer consists of equilibria, we cannot characterize 
W'(M~)  as the stable manifold of a set of critical points, however we can say 
that  the solutions in WS(M~) will decay to ME at an exponential rate, with the 
caveat that  the decay will only last as long as the solution under consideration 
stays in the neighborhood D. In the following d(., .) is the Euclidean distance. 

T h e o r e m  5 There are ~s > 0 and (~s < 0 so that if v C W~(M~) and v.[O,t] C 
D, with t > O, then 

d(v .  t, ME) < t% exp {a~t}. (2.29) 

Furthermore, there are ~;u > 0 and c~u > 0 so that if v e WU(M~) and v .  [t, 0] C 
D, with t < O, then 

d(v . t, ME) <_ ~ exp {a~t}.  (2.30) 

The proof follows from the results of the next lecture. 
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Chapter 3 

F e n i c h e l  N o r m a l  F o r m  

In this lecture, the third Theorem of Fenichel will be presented. This result gives 
a more detailed picture of the structure of the flow on the stable and unstable 
manifolds. An application will be given to settling in a cellular flow field in 
which this extra  s tructure is used to show that  the full flow in question is slaved 
in a precise manner  to a two-dimensional flow. This two-dimensional flow can 
be analysed to reveal the salient features of the flow. 

Of central interest will be, however, the derivation of a normal form for 
singularly per turbed equations in the neighborhood of a slow manifold. The 
derivation of this normal form, which we call Fenichel Normal Form, will rest on 
Fenichel's Third Theorem and will be the main goal of this chapter. 

We shall thus focus on the proof of the existence of the stable manifold in 
Theorem 3, the proof for the unstable manifold follows immediately by a reversal 
of time. 

3.1 S m o o t h n e s s  o f  i n v a r i a n t  m a n i f o l d s  

The change of variables will need to be smooth and thus we need that  the 
manifolds constructed in the Fenichel Theorems are smooth. In order to prove 
the smoothness of the invariant manifolds, the variational equation is used. This 
procedure will be sketched without details. The equation of variations of (2.1) 
(with an equation for e and the modification added), which was the last version 
of the equation before Fenichel's Theorems were used, is given by 

5a' = A(y)Sa + D (A(y)a) by + DF15z 
ab' = B(y)Sb + D (B(y)b) by + DF25z 
by' = eDg~z + gSe + ~p'(y)Sy 
5c I = O, 

(3.1) 

where 5z = (Sa, 5b, by, ~c). We imagine coupling this with the underlying equa- 
tion to achieve a system in R 2N+2. The linearization of this big system at a 
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point in M0 is easily seen to be in block form, each block having dimension 
N + 1. This matrix has the form 

A(y) 
B(y) 

0 
0 

A(y) 
(3.2) 

B(y) 
0 

0 

with O's in all the vacant places. 
A perusal of (3.2) gives that the block associated with (Sa, 5b, 5y, &) is, in 

fact, exactly the same as the linearization of (2.1) at a point in M0. The strategy 
for smoothness is then to reconstruct the invariant manifolds for this larger 
system, taking care to balance the unboundedness due to the variational equation 
by its linearity. In particular, for the stable manifold, this renders a function 

~a = / I s  (a, b, y, ~, ~b, 5y, 5e), 

and the proof follows by showing that H~ is, in fact, the derivative of h~ i.e., 

Hs(a, b, e, 5b, 5y, 5e) = Dhs(a, b, y, ~)(Sa, 5b, 5y, &). 

This is achieved by using the characterization of the manifolds in terms of the 
set F~ and its uniqueness properties. 

3 .2  S t r a i g h t e n i n g  t h e  i n v a r i a n t  m a n i f o l d s  

The first part of Fenichel Normal Form can be implemented from the theorems 
already proved. Indeed, we shall straighten out the stable and unstable manifolds 
of the slow manifold M~. Using the functions that  give these manifolds, we shall 
transform them to coordinate planes. First, set 

al = a - h s ( b , y , e ) ,  51 -~- b, (3.3) 
Y l  = Y, e l  ~ {[, 

which has the effect of transforming W~(M~) to the subspace al = 0. This 
transformation is invertible by inspection and is as smooth as h~. Next, set 

a2 = al ,  b2 = bl - hu(al + hs(bl ,y l ,e l ) ,b l ,e l ) ,  
Y2 = Yl, ~2 ~ ~1, 

(3.4) 

which has the effect of moving W~'(M~) to the subspace b2 = 0. This latter 
transformation can also be checked to be invertible, using the fact that  WS(M~) 
is tangent to b = 0 along M0, and obviously as smooth as h~ and hs. We shall 
drop the subscripts and revert to the notation (a, b, y, e) for a point in the new 



74 

coordinate system. We thus have that  the sets a = 0 and b = 0 are invariant 
in D, it thus must follow that  a = 0 implies a '  = 0 and b = 0 implies b t = O. 
This imposes a certain character on the equations. Indeed, the variable a can 
be factored out of the equation for a' ,  and analogously for b'. We thus arrive at 

a '  = A(a ,b ,y , e )a  
b' = F(a, b,y,e)b (3.5) 
y' = eg(a,b,y,~), 

where A and F are matrices with A(0, O, y, O) = A(y) and F(0, 0, y ,0)  = B(y).  
Note that  the function g has been transformed appropriately and, with an abuse 
of notation, is also denoted by g. The  matr ix  A therefore inherits the spectral  
properties of A and F those of B, if a, b and e are all sufficiently small. As a 
side benefit of this coordinate change, we have obtained that  M~ is given by 
a = b = 0 .  

3.3 Fenichel fibering 

The above change of coordinates has refined the stable and unstable directions 
to the point that  est imates can be easily invoked from the linearized system. We 
still need to refine the equations for the slow directions. This involves using what 
has become known as "Fenichel Fibering", see, for instance, Wiggins [57]. It  can 
be motivated by asking a question: we have seen that  the stable and unstable 
manifolds of M0 per turb to analogous objects when e is sufficiently small, do 
the individuM stable and unstable manifolds of points in M0 also perturb? The 
answer would appear  to be negative as the base points themselves do not per turb 
as critical points. However, this judgement is premature.  

A minor technical difficulty arises here on account of the modification that  
we have performed to the equations. The equations (2.8) agree in D with the 
original equation (1.1) and we can restrict our at tention to that  set. However, 
points may leave D but re-enter it at a later time. Once trajectories of (2.8) have 
left D, their evolution is no longer governed by the original equation and they 
are no longer of interest. We must,  therefore, restrict at tention to the solutions 
while they are only in D. To facilitate this discussion, we need a definition. 

D e f i n i t i o n  3 The forward evolution of a set A C D restricted to D is given by 
the set 

A . D t =  { x . t : x  E A andx.[O,t]  C D } .  

With this definition in hand, we can state Fenichel's Third Invariant Manifold 
Theorem. In the following ve E Me is smooth in e, including e -- 0, and we are 
assuming (H1)-(H3). 

T h e o r e m  6 (Fen iche l  I n v a r i a n t  M a n i f o l d  T h e o r e m  3) For every ve E Me, 
there is an m-dimensional manifold 

c W'(M,), 
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and an l -d imensional  manifold 

W ~ ( v , )  C W~'(M,), 

lying within O(c) of, and dif feomorphic to, WS(vo)  and W~(vo)  respectively. 
Moreover, they are C r for  any r, including in v and e. The fami ly  {W~(vc) : ve �9 ME} 
is invariant  in the sense that 

WS(v~)  "D t C WS(vE �9 t), (3.6) 

i f  ve . s E D for  all s E [O,t], and the fami ly  {WU(ve)  : v, E Me}  is invariant  in 
the sense that 

WU(vE) "D t C W ~ ( v ,  �9 t), (3.7) 

i f  vE . s �9 D for  all s E [t,0]. 

Naturally the Theorem will again be proved in the case that  M0 is given by 
a function over K,  and we shall produce a function to describe the fiber W~(vE). 
It will also be assumed that  the above coordinate changes have been made so 
that M, is given by a = b =  0, and W ~ ( M , )  is given by a = 0. Some further 
technical difficulties are caused by the fact that  the flow has been modified near 
the boundary of D. To alleviate this difficulty we shall assume that  there is a 
compact s e t / ~  so that  K C i n t / ~  C / ~  C i n t / (  and p = 0 o n / ( .  The original 
equations are then seen to hold on the (larger) s e t / ( .  

Just as for Theorem 1 and Theorem 3, we shall actually prove, and later use, 
this theorem in the case that  the invariant manifolds can be given by graphs. 
We are assuming the form of the equations given by (3.5). 

T h e o r e m  7 I f  e > 0 but sufficiently small, then 

(a) in a = 0 (which is W ~ ( M ~ ) )  there is, for  each v = v~ = (Z),e) E M~, a 
func t ion  y = h~(b) defined for  ]b I < A ,  so that the graphs 

W ~ ( v )  = {(0, b ,y , e ) :  y = h~(b)} 

f o r m  a locally invariant  fami ly  as in (3. 6). Moreover, h~ (b) is C r in v and 
e joint ly  for  any r < +co.  

(b) in b = 0 (which is W ~ ( M e ) )  there is, for  each v = v~ = (~,~) E ME, a 
func t ion  y = hV(b) defined for  ]a] < A, so that the graphs 

W ~ ( v )  = { (a ,O ,y , e )  : y = h~(a)} 

f o rm  a locally invariant  fami ly  as in (3.7). Moreover, h~(b) is C r in v and 
e joint ly  for  any r < +co.  
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P r o o f  o f  T h e o r e m  7 We work entirely inside W*(M~), which has become 
a = 0. The  a rguments  for W~(M~) are analogous.  In a = 0, the  variables 
(b, y, ~?) will suffice. The  spli t t ing of  decay rates between b and ~ = (y, ~?) will be 
crucial. Define the cone 

: : >_ }, 

where r = (9, 7)) is fixed. Set v = (0, ~) = (0, ~), 7)) and ~ = e~. In the, by now 
familiar, s t ra tegy  we shall characterize W~(v) as 

F , = { u = ( b , y , ~ ) : u . t E v . t + C ,  for a l l t > 0 } .  (3.8) 

We use the modified equat ions exactly as in the proof  of Theorem 4 so tha t  
W~(M~) is posit ively invariant and (3.8) is well-defined. We need to show tha t  
the set F~ is the graph  of a Lipschitz function. As in the proof  of Theorem 3, 
we take cross-sections, but  in this case of the cone v + g. Fix/~ and set 

The  first task is to show tha t  there is a point  u E S~ for which u �9 t E v - t + C 
for all t >_ 0. A l emma analogous to L e m m a  2 can be proved here and will 
be s ta ted  wi thout  proof. If  (b~(t), (~(t)) are solutions of (2.8) with i = 1, 2, set 

M(t) = Ib2(t) - bl(t)l 2 -1 r  - Cl(t){ 2. 

L e m m a  3 If M(t) = 0 then M'(t) > 0, unless b2 = b~. 

One can now apply the flow to the set E = Sf,. By a similar topological  
a rgument  to tha t  used in the proof  of Theorem 4, it can be seen that ,  for each 
t _> 0 there is at  least one point  in the set {v �9 t + C} N E �9 t. Call this point  ut 
and consider the set {ut �9 ( - t )  : 0 < t < +or  C E. Since E is compact ,  we can 
find a sequence t,~ ~ + e c  so tha t  ut~ �9 (-t ,~) converges to, say, ft. One can then 
see tha t  ~ has the desired property,  namely  tha t  ~ �9 t E v - t + C for all t >_ 0. 
This a rgument  const ructs  a point r = (y, ~) for each b = D so tha t  {bl < zX. The  
y componen t  of r is h~(b). The  uniqueness a rgument  folows in the same way as 
in the proof  of Theorem 4. Conver t ing back to the variable e gives the functions 
of  Theorem 7 

The  invariance of the family follows from the cone character izat ion of the 
fiber, and the proof  of the existence of Lipschitz fibers is complete.  

The  fibers give a very useful match ing  between the points  in W~(Me) and 
par tners  they have in M~. One can then see tha t  the decay of points in W~(M~) 
to  M~ is actual ly  to the base point  of the fiber, this gives a decay result with 
"asympto t ic  phase";  similarly for points in WU(Me). The  proof  of Theorem 5 
actual ly  follows from Corol lary 1 

C o r o l l a r y  1 as > 0 and ~ < 0 so that if u E W~(v) then 

]u. t -  v .  t I < ~8 exp { ~ t } ,  
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for  all t > 0 for  which v . [0, t] C D and u .  [0, t] C D. Furthermore,  there are 
~ > 0 and a~ < 0 so that i f  u E W~'(v) then 

lu" t - v .  tl <_ ~ exp {a~t} ,  

for  all t > 0 for  which v . [t, 0] C D and u .  It, 0] C D. 

P r o o f  A differential inequality on Ib2(t) - bl (t)[, where v .  t = (bl (t), (1 (t)) and 
u .  t = (b2(t) , (2( t ) ) ,  can be derived using the fact that  u .  t E v .  t + K for all 
t _> O. This then leads to the decay estimate.  

The cone characterization of the fibers is not the usual approach taken. 
Fenichel constructs a graph transform map and most other authors follow this 
lead. However, the cone approach has a very appealing intuition and gives a real 
characterization of the fibers in terms of the flow. I believe that  Bates (private 
communication) was the first to observe the relevance of cones in this context. 
R e m a r k  We shall also use the fibers to construct stable and unstable manifolds 
of subsets of M~, so that  if A C M~, 

W ~ ( A )  = U~cAW~(v) ,  (3.9) 

W ~ ( A )  = UveAW~(v) .  (3.10) 

3.4 S e t t l i n g  in a ce l lular  f low field 

The problem of the settling under the influence of gravity of particles, with small 
inertia, through a fluid flow field can be formulated as a singular per turbat ion 
problem. The underlying flow will be assumed to be two-dimensional and of a 
particular form, namely a cellular fluid flow. Stommel [52] studied this si tuation 
in the case of zero inertia and concluded that  both suspension in the ceils as well 
as settling could take place. In the following model, y(t)  is the position of the 
center of the particle in space (y = (yl, Y2)). 

Y'l ~ Vl  

if2 = v2 (3.11) 
ezil = -Vl  + sin Yl cos y~ 
e~2 = -v2  - W -  cosy1 siny2, 

where v( t )  is therefore the velocity of the particle and W is the settling velocity 
scaled so that  0 < W < 1. The small parameter  e > 0 is the Stokes' number  
and measures the inertial response time of the medium to the particle. 

The question of interest here is whether the suspension of particles can still 
occur if inertial effects are included. In the limit that  Stommel studied inertial 
effects were neglected and the equations were those governing the motion of a 
fluid particle. In other words, the particle in the fluid was considered to be 
behaving as a fluid particle would under the combined influence of the fluid 
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flow and the gravitat ional field. The introduction of inertial effects, when small, 
supplies a singular per turbat ion of the case considered by Stommel. 

The critical manifold is any appropriate  subset M0 as follows 

M0 C {vl = s inyl  cosy2, v2 = - W  - cosy1 siny2}. (3.12) 

The normal eigenvalues are both - 1  and hence M0 is not only normally hyper- 
bolic, but, in fact, at tracting.  The W~(Mo) thus fills an entire neighborhood 
of M0. Note that  the equations (3.11) are periodic in both Yl and Y2 and thus 
M0 can be restricted to any domain that  contains a fundamental  domain and 
conclusions that  are global in yl,y2 can be drawn. Setting e = 0 in (3.11), it is 
then not hard to see that  any initial condition has its w-limit set in the set of 
critical points. Thus the stable manifolds of these critical points fills the entire 
space. The slow manifold M~ is then given by the equations 

vl = sin Yl cos Y2 -4- O(e) 
v2 = - W  - cosy1 siny2 + O(e), 

(3.13) 

over an appropriate  domain. It is also a t t ract ing and, if the flow is considered 
on the space with both Yl and Y2 identified modulo 2~, is globally at tracting.  To 
see this last point, one follows a t ra jectory with given initial condition by using 
the approximation of the c = 0 flow to get close to M~ i.e., until the t ra jectory 
lies in W~(M~). 

The equations on M~ are given by 

Yl = sin Yl cos Y2 -4- O(s (3.14) 
Y2 = - W  - cosy l s iny2  + O(e), 

which reduce to the following on M0 

Yl : sinyl  cosy2 (3.15) 
Y2 = - W -  cosy1 siny2. 

This lat ter  system is exactly the Stommel model, confirming the expectat ion that  
the zero inertia case should appear  as the singular limit of the small inertia case. 
An interesting point to note here is that  the variables of physical space, namely 
yl,  y2 parametr ize  the slow manifold and thus the analysis of the trajectories on 
this manifold has a pleasing interpretation in terms of the flow of particles in 
physical space. 

The phase portrai t  of (3.15) was given by Stommel and is shown in Figure 9. 
The space is divided into two distinct types of behavior. Inside each cell, there 
is a region in which the particles are t rapped,  this is bounded by the heteroclinic 
orbits, see Figure 9. The other particle trajectories will settle through the cells 
and never be t rapped.  The size of the t rapped region increases as W decreases 
to 0, giving in the limit the usual cellular flow, as expected as gravity is then 
no longer present, in which all trajectories are trapped.  The issue is, to what 
extent, these proportions of t rapped versus settling particles change when e is 
introduced. 
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Y 2  

Y ! 

Figure 9 
The Stommel flow. 

The fate of the heteroclinic orbits surrounding the trapped region when e 
is turned on must be determined. The following analysis is taken from the 
paper by Jones, Maxey and Rubin [31]. Indeed, there are two possible scenarios: 
if it opens so that  the unstable manifold is "inside" the stable manifold then 
more particles can be t rapped in a cell by staying inside the heteroclinic orbit. 
Moreover, particles that  were settling can become trapped in the cell by being 
"caught" by a heteroclinic in some lower cell. However, if the heteroclinic breaks 

shown in Figure 10 then particles that are settling will not be t rapped in a 
cell but will continue to pass through. There is a possibility that some particles 
are still trapped. Indeed the critical point interior to the cell, which necessarily 
survives the perturbation (why?), will obviously be trapped, but if there is a 
surviving periodic orbit that  surrounds this critical point then it will bound a 
region of t rapped particles. This appears not to occur, as shown by numerical 
investigations. 
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Y2 

Y ! 

Figure 10 
The case in which settling predominates. 

As for the Ogawa waves, see Chapter 1, one must calculate the O(e) terms 
in order to see whether the heteroclinic orbit persists, the equations up to O(e) 
are given by 

Yl = sinyl cosy2 + e s i n y l ( W s i n y 2  + cosy1) + O(e 2) 
Y2 = - W  - cosyls iny2 + ecosy2(W cosy1 + siny2) + O(e2). 

(3.16) 

We fix attention on the cell 0 ~ Yl ~ 7r, 0 < Y2 _< 7r. Let y - (c )  be the critical 
point so that  y - (0 )  = (0,~)2) and z]2 E [9,7r] and y+(e) be the analogous point 
with/)2 E [0, 9]' Further, let W -  be the unstable manifold of y - (e )  and W + the 
stable manifold of y+(e). Consider the intersection of these manifolds with the 
set Yl = 9" Each will be given as the graphs of functions, so that W -  N {Yl = 9 } 
is given by Yl = h- (e )  and W + N {Yl = 2} is given by Yl = h+(e). To see which 
way the heteroclinic opens it suffices to calculate the quantity 

Oh-  Oh + 
K= -~ ~ ) I~=o. 

Indeed, If K > 0 then the heteroclinic opens in such a way as to facilitate settling 
and inhibit trapping. It is shown in [31] that 

I =0 = w f[ ,  [ - sin 2yl + yl(cos 2 Yl + 1) 
] sin 2 Yl--Y~ + W 2 y l  dyl . 

sin 2 y l ~ ( s i n  2 yl - -W2y~)J  

(3.17) 

Oh + It is shown in [31] that ~ > 0, and, by symmetry, ~ < 0. It follows that 
M > 0 and the flow on M~ is as shown in Figure 10. 
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The above analysis shows that  on the slow manifold M, the settling of par- 
ticles is facilitated. Indeed, it is more likely that  particles with small inertia will 
settle than those with no inertia i.e., fluid particles. Thus a striking change to 
Stommel's conclusions occurs when inertia is taken into account. 

Somewhat more about the flow on the slow manifold is shown in [31]. The 
slow manifold M, can be viewed as a torus by identifying both yl and y~ modulo 
27r. It is shown injonrubmax that  on this torus there are only finitely many 
periodic orbits that  wind around the torus. These are settling trajectories and 
are expected to be the asymptotic motion of the particles. If W is sufficiently 
small, it appears, from numerical computations, that there is a unique such 
periodic trajectory. In fact, there is one periodic orbit that  has a special status 
as the fixed point of a certain map and all the others are obtained as period 
doubling bifurcations from this base orbit, see [31]. 

Since the slow manifold is at tracting as discussed above, this predominance of 
settling will hold for the entire system. It is important  to consider here exactly 
what more one obtains from knowing that  the stable manifold, now filling a 
neighborhood of M,, is fibered by the individual stable manifolds. To each point 
z = ( y l , y2 , v l , v2 )  C R 4 the Fenichel fiber map assigns a point 7t-(z) C M~ so 
that 

.tl 
decays exponentially. This means that the point z will inherit all the asymptotic 
characteristics of the point 7r- (z). For instance, asymptotic settling rates can be 
concluded from the period of the attracting periodic orbits on M,. These settling 
rates will then also be valid for all initial conditions, including those off M~. If 
any non-trivial region of initial conditions is t rapped in the cells, other than the 
critical point, on M,, then the corresponding region in R 4 is determined to be 
the stable fibers to the points in this set. If, as expected, almost everything, 
except for the t rapped critical points, settles in M,, then so does everything off 
M, except for the stable fiber of that critical point. When there is a unique 
periodic orbit on the torus (Me), almost all trajectories on M~ will tend to this 
orbit, and thus so will almost all off M~. The only remaining possibility is that 
a periodic orbit surrounding the critical point persists then it, and its interior, 
will consist of t rapped points. Thus the union of the stable fibers to this set 
would render the full set of initial conditions that  lead to trapping. 

We have used, in this example, the Fenichel Theorems to great effect in 
showing that  even the smallest inertial effects of particles settling under a gravi- 
tational cellular flow field will encourage their settling and inhibit any potential 
trapping. Moreover, the Fenichel fibers have allowed us to see that  the motion 
on M, determines all the asymptotic features of the system. 

3.5 N o r m a l  f o r m  

Using the fibers constructed in Theorem 7, we can complete the transformation 
to Fenichel Normal Form. Indeed, Theorem 7 gives a map from (b, v) to a point 
(b, h~(b)). The inverse of this map will send each point in WS(M~) to the base 
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point of its fiber. The fact that  the inverse exists can be seen by observing that  
the construction of the fiber did not use the fact that  v~ E M~, and could easily 
have been based also at the point u = (b, ~), where ~ = h~(b). It  then follows 
that  v would lie on the fiber for the point u and would give the inverse of the 
map. We denote this inverse map (b, y, e) H ~ by 7r-. 

The final step in deriving the Fenichel Normal  Form is to straighten out the 
fibers inside each of WS(M~) and W~'(M~). To this end, set 

a3 = a,  b3 = b, ( 3 . 1 8 )  
Y3 = 7r-(b,y,e) c3 = e, 

so that  the y-coordinate of each point is changed into that  of its fiber base-point. 
The fibers on the unstable manifold are straightened out analogously by 

a4 = a3, ba = b3, (3.19) 
Y4 =~+(a3,Y3,e3)  r163 

which takes each point in W~'(M~) = {b = 0} to the base point of its unstable 
fiber. 

The transformations to arrive at the coordinates (aa,b4,y4,e4) have now 
modified the equations on both WS(M~) (a4 = 0) and W~'(M~) (b4 = 0). We 
shall drop the subscripts and, with an abuse of notation, revert to the use of 
the original letters, with the understanding that  the new coordinates are being 
used. On these sets, the slow flow has become independent of both a and b. It  
follows that  if, either a = 0 or b = 0 we have g(a, b, y, e) is a function only of y 
and e, Thus we can write 

g(a,b,y ,e)  = h(y,e)  + H(a ,b ,y ,e ) (a ,b) ,  (3.20) 

where H(a,  b, y, ~) is a bilinear function of a and b. 
Put t ing  the pieces together, we can give the final Fenichel Normal  Form for 

singularly per turbed equations in the neighborhood of a slow manifold 

a '  = A(a ,b ,y , e ) a  
b' = F (a ,b ,y , e )b  
y' = e {h(y,e)  + H(a ,b ,y ,e ) (a ,b )}  , 

(3.21) 

which holds in the set D = {(a,b,y ,e)  : ]a I < A,]b] <_ A , y  E K,  e e [0,e0]}. A 
simplified version of this normal form was derived by Jones and Kopell, see 
[28]. The current version was derived by Jones, Kaper  and Kopell, see [27], 
and simultaneously discovered by Sandstede (private communication).  Tin [54] 
has used it extensively and derived it in the more general context of per turbed 
invariant manifolds without a singular s t ructure in which Fenichel first derived 
his Theorems. 
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Chapter 4 

Tracking wi th  Differential  
Forms 

The Fenichel Normal  Form will be a key in proving the Exchange Lemma.  The 
Exchange Lemma concerns the passage of certain invariant sets (which will, in 
fact, be manifolds in their own right) near a slow manifold. In order to track the 
appropriate  information about  these invariant sets during the passage, we shall 
use differential forms to quantify this information. 

4 .1  M o t i v a t i o n  

With the equations in Fenichel Normal  Form (3.21) in a neighborhood D of 
M~, when e is sufficiently small, a picture can be drawn in which the stable 
and unstable manifolds are coordinate planes and the spine, along which they 
intersect, is the manifold M~. Indeed, as shown in Figure 11, the set a = 0 is 
WS(M~), b = 0 is W~(M~) and a = b = 0 is M~. Of interest will be the situation 
in which a locally invariant manifold will be followed from some remote part  of 
the phase space and studied as it passes near M~. We shall call this manifold 
the "shooting manifold" and usually denote it by E~. This manifold should not 
be confused with any of the manifolds that  have been constructed above under 
the guise of the Fenichel Invariant Manifold Theorems. The purpose of following 
such a manifold will be to construct a homoclinic, or heteroclinic, orbit. The 
shooting manifold will then be the unstable manifold of a certain invariant set, 
such as a curve of critical points or periodic orbit. This invariant set will, in 
general, be unrelated to the slow manifold it is passing. 
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Figure 11 
The passage near a slow manifold. 

The shooting manifold will enter the neighborhood D a n d  pass through D 
being modified by virtue of its flight near M~. It is viewed as entering with cer- 
tain information and exiting with certain other information. This "exchange" 
of information will be the subject of the Exchange Lemma. It is instructive 
to consider what information is significant. A typical method for constructing 
homoclinic, or heteroclinic, orbits is by locating the (transverse) intersections of 
relevant stable and unstable manifolds. To determine a transverse intersection 
requires precise knowledge of the tangent spaces to the manifolds. It is the in- 
formation encoded in the tangent spaces to the shooting manifold that  will thus 
be of interest. The shooting manifold arrives at the boundary of D carrying cer- 
tain tangent vectors and, during its passage through D, they will be exchanged 
for other tangent vectors. The goal of the ensuing analysis will thus be to see 
how to figure out the tangent vectors upon exit from D in terms of those at the 
entrance to D. 

The general problem of following tangent spaces through phase space can 
be attacked in numerous ways. The approach adopted here will be to use dif- 
ferential forms that  give "coordinates" to subspaces of a given space. These 
are particularly well suited to studies involving singular perturbations. Indeed, 
individual tangent vectors are hard to follow as vectors can switch from being 
predominantly in fast directions to the slow directions. The use of differential 
forms gives a satisfactory resolution to this problem as they afford a way of 
tracking the entire tangent space, without reference to individual vectors. 

The consideration of an example will put this chMlenge of tracking invariant 
manifolds during their passage near a slow manifold in perspective. The canon- 
ical example that  is the easiest to visualize is that  of finding the travelling pulse 
solution in the FitzHugh-Nagumo equations and this will be described in the 
next section. 
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4 . 2  F i t z H u g h - N a g u m o  e q u a t i o n s  

The paradigmatic example for the construction of homoclinic orbits in singu- 
larly perturbed systems is the travelling pulse problem of the FitzHugh-Nagumo 
equations. These equations arose originally as a simplification to the Hodgkin- 
Huxley equations, formulated independently by FitzHugh and Nagumo. This is 
the first example in which both fast and slow structure will appear in the orbits 
of interest. The mathematical  proof of the existence of these travelling pulses 
was originally given independently by Carpenter [10] and Hastings [24]. A geo- 
metric proof was later given by Langer [38], which paper spawned the Exchange 
Lemma through at tempts to simplify difficult parts of Langer's proof and gen- 
eralize the construction. It should be noted here that  the geometric approach 
is needed in order to assess the stability of the travelling wave. The topological 
construction of the wave is inadequate for proving stability, see [26], The full 
partial differential equations are 

u t  = u x x  + f ( u )  - w (4.1) 
w~ = c(u - 7w), 

where f ( u )  = u ( u  - a)(1 - u) is the usual bistable nonlinearity and e is a small 
parameter.  The travelling pulse is a solution of (4.1) which is a function only of 

= x - c t ,  and thus satisfies the system 

U I ~ -  "U 

v' = - c v - / ( u ) + w  
w' = ~ ( u - T w )  
c ~ : 0, 

(4.2) 

so that  (u, v) are fast variables and (w, c) are slow variables. The problem here is 
to construct an orbit homoclinic to the rest state u = v = w = 0. The first step 
is to construct a singular orbit consisting of fast transitions (heteroclinic orbits) 
between critical manifolds with intervening trajectories of the slow system. The 
critical manifolds must lie in the set {v = 0, w --=- ] (u)} ,  which is the graph of 
a cubic inside the plane v = 0. Pieces of this critical set will form critical 
manifolds, namely in regions where i f (u)  ~ 0. Of particular interest will be 
critical manifolds in the left branch of the cubic, say M L, which is defined as the 
graph of the cubic restricted to an interval [ul, u2] where ul < 0 and i f ( u )  < 0 on 
this interval, and also in the right branch, say Mo n, defined similarly on [u3, u4], 
see Figure 12. Both M L and M R are easily seen to be normally hyperbolic with 
1-dimensional stable manifolds and 1-dimensional unstable manifolds. 
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V 

Figure 12 
The slow manifolds and their stable 

and unstable manifolds 
for the Fi tzHugh-Nagumo system. 

The singular homoclinic orbit, which exists at e = 0, will form a template  on 
which the full orbit is built when e > 0. It  consists of two fast pieces, $-1, ~2, 
and two slow pieces 81 and 32. These are determined as follows, see Figure 13. 

~1 heteroclinic orbit  when e = 0, with w = 0 and c = c*, exactly as constructed 
for the scalar bistable reaction-diffusion equation, 

~-2 heteroclinic orbit when e = 0 from M R to M L, exists at given c = c* and 
fixed w -- w* which is determined by the construction of this heteroclinic 
orbit, 

81 solution of limiting slow system zb = - ~ ( u -  7w) on M R, connecting end of 
F1 to beginning of .T2, 

$2 solution of limiting slow system @ = - ~  ( u -  7w) on M0 n, connecting end of 
iT1 to rest state. 
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Figure 13 
The  singular homoclinic orbit. 

The  idea for cons t ruc t ing  the t rue  travelling pulse (homoclinic orbit)  at  a 
value of c near to c* is to carry  W_ ~, the unstable  manifold of the curve of 
critical points u = v = w = 0 and Ic - c* I < 5 for some fixed 5 > 0, a round  the 
phase space when 0 < e << 1, see Figure 14. 

W 

t l  

Figure 14 
The  shoot ing manifold. 

It  will be controlled by the information available from the e = 0 case. Indeed,  
the singular solution gives a templa te  along which the manifold W_ ~ is carried. 
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The ultimate goal will be to force it to intersect the stable manifold of the same 
curve of critical points. 

The transversality shown above for the bistable equation shows that, when 
e = 0, W_ ~ will transversely intersect Ws(MR). It will then also follow, by, 
for instance, the Implicit Function Theorem, that, when e > 0 but small, W_ ~ 
transversely intersects WS(M~). We need to see how W_ ~ is affected during its 
time near the slow manifold. This is necessarily an e ~ 0 consideration, as when 

= 0, W_ ~ will stay in w = 0. The Exchange Lemma, see [29], [28], will precisely 
answer this question. It is expected that W_ ~ will emerge from a neighborhood of 
M0 R near to the point where the singular orbit exits the neighborhood, at least 
if e is small enough, which is given as the point at which 9~2 emerges. What  is 
needed is the tangent space to W ~ at this exit point as then the next stage of 
carrying the shooting manifold over the next fast jump can be realized and a 
transversality set up to see how the manifold intersects the stable manifold of 
the slow manifold M L. 

To see that the problem of determining the tangent space to W ~ upon exit 
from D is non-trivial, one should consider the dimensions of the manifolds in- 
volved. The shooting manifold W_ ~ is 2-dimensional, while the manifold M R 
is also 2- dimensional. But then the unstable manifold to the slow manifold, 
namely W~(MR) is 3-dimensional. It is natural to expect that W_ ~ will be 
crushed against the unstable manifold of M R . This intuition comes from the 
A-Lemma, see [49], which applies when M0 n is a single critical point. The A- 
Lemma has been generalized to the case of critical manifolds, for the purpose of 
applying it to singular perturbation problems, by Deng, see [12], and this has 
the consequence that, indeed, W_ ~ does become close to W'*(MR). However, 
this information is insufficient as W~(Mo n) is 3-dimensional and W_ ~ is only 2- 
dimensional. Clearly the fast unstable direction must be present in the tangent 
space to W_ ~. The question is: which slow direction is picked out by the tangent 
space to W_ ~ at the exit point? The Exchange Lemma will give a precise an- 
swer to this question and we will then be able to finish the construction of the 
FitzHugh-Nagnmo homoclinic orbit. 

4.3 Variat ional  equat ion  and differential  forms 

The statement of the Exchange Lemma and the sketch of its proof will be post- 
poned until after the technique of using differential forms has been introduced. 
Consider a general ODE 

z' = F(z), (4.3) 

where F is a smooth (C ~ )  function on an open subset U of R N. The variational 
equation of (4.3) can be written as 

p' = DF(z)p, (4.4) 

where z satisfies (4.3) and p E R N. The coordinates of p can be conveniently 
expressed using differential forms, Pi = dzi(p), recalling that dz~ is a linear 
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form on tangent vectors. 
convention, as 

we can also write 
dz~(p)' = OjFi(z)dzj(p).  

Moreover, we will usually suppress the tangent vector p itself and write 

Since (4.4) can be rewritten, using the summation 

p~ = OjFi(z)pj,  (4.5) 

(4.6) 

dz~ = OjF~(z)dzj, (4.7) 

which ostensibly is nonsensical as the forms dzi are constant,  but whenever 
a derivative of dzi appears,  it should be understood as applied to whatever 
particular tangent vector is currently under consideration. We can also write 
(4.7) in shorthand as 

dz' = D F ( z ) d z .  (4.8) 

4.4 Tracking tangent spaces 

We have seen that  the variational equation can conveniently be expressed using 
differential 1-forms. We shall now put this to good use by using it as a vehicle to 
calculate equations on higher order forms. It  is natural  to compute such equa- 
tions in order to ascertain how information about  tangent spaces to invariant 
manifolds is carried under the flow. If invariant sets, or more specifically mani- 
folds, are to be tracked under the influence of the flow, their configuration at a 
certain t ime is locally encoded in the tangent space to the invariant manifold at 
the relevant underlying point of the flow. The "coordinates " of a tangent space 
are given by projecting a (unit) cube in that  space onto each of the coordinate 
subspaces of the same dimension as the tangent spaces themselves. The "vol- 
ume" of the resulting object is the value of that  coordinate. These quantities 
can be algebraically calculated using differential forms as they are indeed the 
values of the various k-forms for manifolds of dimension k. In other words, if 
II  is a k-dimensional subspace of R N, using coordinates z = ( z l , . . . ,  zN), the 
coordinates of H are given by 

dzia A dzi~ A . . .  A dzik ([I), 

for all choices of ( i l , . . . ,  ik) (without repetition or permutat ion).  If II  is spanned 
by { v l , . . . , v k }  then 

dzil A . . .  A dzi~ (II) = E(-1)sgn~dzi , (v~(1))dzi2(v~(2)) . . .dz ik(v~r(k)) ,  (4.9) 
71" 

where 7r is a permutat ion of ( 1 , . . . ,  k). This is exactly the volume of the cube 
in H, that  is determined by the spanning vectors Vl , . . .  ,vk, projected onto the 
( z i l , . . .  zik) subspace. 

If  p �9 t is a solution of (4.3) and p �9 t belongs to some invariant manifold, 
to which H(t) is the tangent space at p -  t, we should be able to calculate an 
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equation for the coordinates of H(t). This can indeed be done and is related to 
the variational equation as a k-form version of it. The calculation of this equation 
in full generality is tedious and thus we shall carry out such a computation only 
on examples. Hopefully, these examples will make the general structure clear, in 
which there are, associated with any given equation, flows on the entire exterior 
algebra; in other words, flows on the space of k-forms, for any 1 < k < N. 

4.5 Example 

We shall refresh this abstract discussion by considering a specific example and 
calculating the flow on tangent spaces using differential forms for it. We shall 
apply it to the derivation of an important  transversality condition. The example 
will be that of the travelling wave for the bistable reaction-diffusion equation. 
This has appeared twice already in these lectures. In the FitzHugh-Nagumo 
travelling pulse problem, these equations arose as the c = 0, w = 0 subsystem 
that  gave the fast jump 21. This fast jump is a heteroclinic orbit and a key 
point about the FitzHugh- Nagumo pulse is that it is constructed as the trans- 
verse intersection of stable and unstable manifolds. It has also appeared as the 
limiting slow equation for the phase field model considered in the first lecture, 
namely (1.12). Indeed, a transversality condition was given in that lecture for 
the heteroclinic orbit to persist to such an orbit on the slow manifold M~. This 
transversality condition will be derived using differential forms. This example 
has thus arisen as both the slow equation, for the phase field problem, and the 
fast equation, for the FitzHugh-Nagumo pulse! 

Consider then the travelling wave problem for the bistable reaction-diffusion 
equation with an equation for the speed parameter appended 

U I ~ V 

v '  = -cv- f(u) 
c I ~ O, 

(4.10) 

1 We shall show that  W - ,  the unstable where f ( u )  = u ( u  - a)(1 - u) and a < 5" 
manifold of the curve {(0,0, c ) : c  near c*}, and W +, the stable manifold of 
{(1, 0, c) : c near c,},  intersect transversely at q* C {u = a} at the value of c, 
say c, ,  at which the heteroclinic orbit exists. 

The variational equation for (4.10), in the differential form notation of the 
above section, can be calculated as 

d u '  = d v  

d v '  = - c d v  - D f ( u ) d u  - v d c  

dc '  = O. 

(4.11) 

Since W -  and W + are both 2-dimensional manifolds, we will need to track 2- 
dimensional subspaces and thus should calculate the equations for the various 
different 2-forms. There are three different 2-forms, namely d u  A d v ,  d v  A d c  and 
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du A dc. The equations for the variation of these 2-forms can be calculated as 
shown in the preceding section. The product rule is used to see that  

(du A dv) '  = du'  n dv + du A dv' ,  

= dv A dv + du A ( - c d v  - D f ( u ) d u  - vdc)  (4.12) 
= - c d u  A dv - vdu  A dc, 

where it has been used that  du A du = dv A dv = O. The calculation of the 
equations for the remaining two forms is left as an exercise. 

Recall the reduction of the transversali ty to calculating the sign of the quan- 
t i ty (rewritten in the current notation) 

(oh- 0h+  
-~c Oc ] I t : c . ,  (4.13) 

where the intersections of W • with {u = a} are given, respectively by v = h i ( c ) .  

As a procedure for verifying transversality, the following has general applications, 
and a very definite s tructure to the argument,  thus we divide it into steps that  
can be repeated in other contexts, such as for Melnikov calculations, see below. 
Step  1 Observe first that  the vectors 

/ Oh ~ "k 
: 

are tangent respectively to W +. We seek a 2-form that  renders a multiple of 

Oh~ when applied to the tangent space of W +. We know another vector that  is 
Oc 

tangent to both W • namely the vector field itself 

We then see that  

72 = ( v , - c v  - 0 ) .  

Oh + 
= du A dv(71 i ,  72) = v Oc ' (4.14) 

at q = q*. 
Step  2 Equation (4.12) would be very useful for evaluating the left hand side 
of (4.14) were the last term known. The difficulty is that  the value of 7~ �9 t, 
where the flow referred to is that  of the variational equation over the underlying 
heteroclinic orbit, is not known for t # 0. However we do know that  

dc(7~  " t)  = 1 

as the c-component is invariant from (4.11). Moreover 72 "t is known for all t as 
it is exactly the vector field, that  is 72 �9 t = (v, - c v  - f ( u ) ,  0). This is sufficient 
to compute  du Adc, indeed 

du A dc( 7~  �9 t, 72 . t) = - v , 

and so, setting w = du A d v ( I I + ( t ) ) ,  we obtain 

w' = - c w  - v 2. (4.15) 
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Step 3 It  is an exercise to check that  exp (ct) w --* 0 as t ~ - c ~ .  Equation (4.15) 
can then be explicitly solved to render 

/ w = e -ct { -eCtv  2 } dt, (4.16) 
o o  

which shows that  w(0) = -v(0)%-~- < 0. Since v(t) > 0 for all t, we conclude 
that  

Oh- 
0c [c=c*,q=q* > O. 

A similar argument  shows that  

Oh + 
Oc I~=~*,q--q* < O. 

Put t ing  these two inequalities together, we have the desired result that  

oh- ah§ 
0c 0c J [c=~*'q=q* > 0, (4.17) 

as desired. 

4.6 T r a n s v e r s a l i t y  for the  K d V - K S  waves  

As a second application, the transversali ty condition involved in the existence 
of solitary waves in the KdV-KS equations as discussed in the first lecture, will 
be derived. This will give an application of the above prescription that  is very 
close to the Melnikov method and the reader is invited to check that  the usual 
Melnikov conditions can be derived using this differential form approach, see 
[2O]. 

Consider the equations (1.34), for which an intersection of W u (8) and W s (8) 
is sought. We need to calculate M(c)  as defined in (1.36). 

Step 1 A 3-form must be found that  renders the quantities ~ when applied to 
the tangent spaces H+(0) to the invariant manifolds W~(8)  and W~(8).  There 
are three tangent vectors to Wu(S)  and WS(8) at t = 0 that  are easily found. 
They are given by 

{oh~ 0 10~  ~i =\ a~ ,  , , / 

( ) 72 v , u -  S , 0 , 0  = (0,c~,0,0) (4.i8) 

7/3 = (0 ,0 ,0 ,1 ) ,  

where a < O. It can then be checked that  

du A dv Adc (71, ~2, ~3) = 
Oh + 
Oc ' 
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Step 2 The equation for the form du A dv A dc can be calculated as 

(du A dv A dc)'= x/~ ( u -  (l + ~))  vdu A de A dc. 

Step 3 As in the previous section, the form du A dv h dc, when applied to the 
subspace II + (t), can actually be calculated. Since 

771 ' t = (*, *, 1 ,  0 ) ,  

U 2 
72 . t  = ( v , ~  - - ~ ,  0 , 0 ) ,  

and 
73" t  = ( , , , , 0 , 1 ) ,  

it can be seen that  du A de h dc(71 �9 t, 72 �9 t, 73 " t) = v. It follows that  

( d u A d v  A d c ) ' = - y r c ( u - ( l  + ~))  v 2. 

From which, one obtains that  

] 
The expression for M(c) given in (1.37) is now easily derived using the equation. 
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Chapter 5 

Exchange Lemma 

With the above motivation, we are now in a position to give the simplest version 
of the Exchange Lemma. This will be the one originally formulated by Jones 
and Kopell, see [28]. In the next lecture, more sophisticated versions will be 
presented, but today's version is already powerful enough to prove a general 
theorem on the existence of heteroclinic orbits. 

5.1 k + 1 E x c h a n g e  L e m m a  

In the following, we are assuming the standard singular perturbation set-up and 
that the slow manifold under consideration has a k-dimensional unstable mani- 
fold, as usual. We shall track another (locally) invariant manifold, say E~ during 
its passage near the slow manifold M~; this should not be confused with the man- 
ifold M~ itself, or its at tendant  stable, unstable manifolds or fibers. Recall that 
the manifold E~ will be generated, most probably, at some other part of the 
phase space; the example of the FitzHugh-Nagumo equations should be kept in 
mind here, wherein the invariant manifold is the unstable manifold of a curve of 
critical points lying on a different slow manifold. We make the following hypoth- 
esis, in which the notation NT means that the intersection is transversal. The 
set D is the standard neighborhood of M~ in when the coordinates of Fenichel 
Normal Form are used i.e., 

D = { (a ,b ,y ) :  [a[ _< A,[b[ _< A,y  C K } .  

(H4) There is a (k + 1)-dimensional, locally invariant manifold E~, defined 
for 0 ~ e ~ 1, and smooth in e, so that 

r onTWS(Mo) # r 

at a point q COD. 
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As a technical point, we shall always assume that  E0 is cut off so as to 
intersect W s (Mo) only in a neighborhood of q. 

Since E0 is (k + 1)-dimensional and WS(Mo) is (l + m)-dimensional,  in the 
intersection of these two manifolds we have available k + l + m + 1 directions. 
Since the dimension of the phase space is N = k + l + m the intersection will be 
1-dimensional under the transversali ty hypothesis (H3). But this is optimal  as 
both manifolds are locally invariant and hence their intersection must contain 
trajectories, which means that  it must be, at least, 1-dimensional. From (H4) 
it then follows that  Ee Cl W~(Mo) must live in W*(Jo) for some point J0 �9 M0. 
Alternatively, we can write 

J0 = w (E0 n W~(Mo)). (5.1) 

The geometry is shown in Figure 15. It  is also useful to note here that  J0 = 
7r- (E0 n W*(Mo)), where 7r- is the map sending each point in W~(Mo) to the 
base point of its fiber. 

J 
J J 

J 
J 

Figure 15 
The point J0. 

Of central importance will be the t rajectory of the limiting slow flow through 
the point J0. Let ~ be some fixed (slow) time, choose 0 < ~?_ < ~ and 7+ > 0. 
Set I = [~ - ~7-, ~ + ~+]- Assume that  these quantities are chosen so that  Jo o T 
is defined for all T E I ,  where "o" refers to the action of the limiting slow flow 
i.e., that  associated with (1.7) on M0. In the following, we shall consider the set 

J0 o I c M0. (5.2) 

When e > 0 but sufficiently small, the manifold E~ will intersect W~(M,) 
transversely. However the point pe E Ee n W~(M~) will not ul t imately be the 
point of interest as the t ra jectory emanat ing from this point will not leave D near 
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W~(M~).  Indeed, it will either never leave D or else leave it near the boundary 
of M0. With reference to the FitzHugh-Nagumo example, if we wish to construct 
an orbit close to the singular orbit, the true orbit will have to leave D near the 
fast jump away from the critical manifold, and thus be close to W~(Mo) .  The 
notation q~ will refer to a point in E~ n OD. This will be the point along the 
trajectory of which we shall track the manifold E~ �9 t. We shall assume that 
the t rajectory through q~ does indeed leave D in forward time after (fast) time 
T~ > 0, so that  q~. T~ E OD. We need to able to control where the t rajectory 
leaves D. Recall that  the unstable manifold for a subset of Mo is just the union 
of the unstable manifolds of its elements, see (3.10), which is here only used in 
the e = 0 case but also makes sense when e ~ 0. 

P r o p o s i t i o n  1 Given ro E W~(Jo o I) N OD, there is a q~ E E~ N OD and a 
T~ > 0  so that q~ . T~ E OD and 

Iq~'Y~ - r o l  = O(e). (5.3) 

The proof of this Proposition uses the Wazewski Principle, in other words 
it is a topological shooting argument. The proof will be omitted. From this 
proposition we can see that trajectories can be found that exit D near prescribed 
points, for instance the point where a fast jump (when e = 0) will leave the 
neighborhood of the critical manifold, it  does not, however, tell us how the 
manifold E, is configured in a neighborhood of this point. Thus, we can think 
of the above Proposition as a C~ Lemma. The Cl-Exchange Lemma 
determines the configuration of the tangent space to E~ upon exit from D. We 
shall call it the (k + 1)-Exchange Lemma as it refers to the case in which E~ is 
(k + 1)-dimensional. The hypotheses (H1)-(H4) are assumed to hold. 

L e m m a  4 ((k + 1 ) -Exchange  L e m m a )  The manifold Ec �9 T~ is C 1 0 ( e )  close 
to WU( Jo o I)  in a neighborhood of the point ~ = q~ �9 T~. 

Lemma 4 can be restated as the claim that 

d (Tr (E , .  T~), Tro (W u (J0 o I)))  = O(e). (5.4) 

The Exchange Lemma tells us how the manifold is configured upon exit from 
the neighborhood of the slow manifold. Indeed, it gives precise information about 
the directions present in the tangent space at that point. At the risk of being 
repetitious, to understand the lemma, some thought should again be given to the 
dimensions of the manifolds involved. The shooting manifold is k +  1-dimensionM 
and the unstable manifold of M0 is k+/-dimensional.  As commented earlier, the 
Exchange Lemma addresses which of the (slow) 1 directions is picked out by the 
manifold at its exit point from D. The set J0 o I is the (slow) t rajectory through 
the point J0 and is thus l-dimensional. Its unstable manifold, W~(Jo o I)  is 
k + l-dimensional. The dimensions thus agree and the Exchange Lemma tells us 
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that the extra direction picked out is exactly that  determined by the slow flow 
itself. A picture is useful here. The basic Figure (11) that  we have been using 
is deceptive as we can only represent there a 1- dimensional slow manifold. In 
Figure 16, the stable manifold is omitted and the case of a 2-dimensional M0 is 
depicted with a 3-dimensional unstable manifold. The manifold WU(Jo o I) is 
shown and the Exchange Lemma says that  the shooting manifold E~ will exit D 
with a nearby tangent space. 

U 

W (J 0 o I) 

J 

~ 0  o I) 

Figure 16 
The unstable manifold to J0 o I.  

The application to the FitzHugh-Nagumo pulse will be given below, as well as 
the formulation of a general theorem concerning the construction of homoclinic 
orbits. However, we will first show why differential forms are relevant to the 
Exchange Lemma. 

5.2 Differential forms and the Exchange  L e m m a  

In order to show the Cl-closeness that  is given in the Exchange Lemma, the 
linear spaces Tro(W~(Jo o I)) and TO~(E~ - T~) must be shown to be O(e) close. 
This can be achieved by showing that  the Pliicker coordinates given by applying 
all the basis of (k + 1)-forms to these tangent spaces are (projectively) O(e) 
close. In other words it is not necessary that  the length of the Pliicker vectors 
are close, but only that  the associated directions of these vectors are close. 
Amongst the Pliicker coordinates there are two distinguished sets, we call block- 
1 forms and block-2 forms, as the resulting linear equations on these coordinates 
are a perturbation of a system in block form. The block-1 coordinates are those 
resulting from an application of the forms 

d a l A d a 2 A . . . A d a k A d y i ,  i = l , . . . , l ,  (5.5) 
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and the block-2 forms are all the others. When the block-2 forms are applied 
to the tangent space Tro(W~(Jo o I))  the result is always 0. One part of the 
proof of the Exchange Lemma is thus to show that  the block-2 forms applied to 
TO~ (E~. T~) are O(e). 

The equation for the block-1 forms must then be calculated. An approxima- 
tion can be easily derived using the variational equation of the Fenichel Normal 
Form. Indeed, this calculation is instructive as it shows clearly why this normal 
form is so crucial. First, the variational equation in Fenichel coordinates can be 
obtained by differentiating (3.21) 

da' = Ada + Dz(Adz)a  
db' = Fdb + Dz(Fdz)b 
dy' = e {Dyh(y,  e) + H(da, b) + H(a, db) + DzH(a,  b)(a, b, dz)} , 

(5.6) 

where z = (a, b, y) and the arguments of H, A and F have been suppressed�9 A 
simple approximation to (5.6) can be obtained if the underlying orbit actually 
lies on M~ (which is not true for the orbit of interest but it does give the lowest 
order approximation). On M~ we have that a = b = 0 and (5.6) simplifies to 

da' = A~(y)da 
db' = B ~(y)db 
dy' = e{Dyh(y,e)dy}, 

(5.7) 

where X ( y )  = A(0,0, y,c) and B~(y) = F(0,0, y , @  Notice that the simple 
structure of (5.7) follows precisely from the elements of the Fenichel Normal 
Form. For instance, that the slow equation is not influenced by any fast (in- 
finitesmal) variables comes directly from the bilinear form H.  For this approx- 
imation, the equation for the block-1 forms can be easily calculated using the 
product rule. 

(dal A . . .  A dak A dyi)' = ~ = 1  dal A . . .  A da} A . . .  A dak A dyi 

+dal A . . .  A dak A dye, 
= dal A . . .  A A~l(y)dal A . . .  A dak A dyi 

+dal A . . .  A dak A e[o-~zhi(y , e)dyl], 

(5.8) 

where the summation convention is being used, A~t is the j l t h  entry in A and hi 
denotes the ith component of h(y, e). In the first part, the only terms that  will 
remain are those including A~l(y)dat , all the others will cancel. It follows that 

(dal A . . .  A dak A dyi)' 

Now setting 

= 

-= Tr Ae(y)[dal A . . . A dak A dyi] 
+dal A . . .  A dak A eo-~hi(y,e)[dal A . . .  A dak A dyl]. 

Yz 

(5.9) 

dal A . .. A dak A dyl 

dal A A dak A dyt 
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(5.9) can be abbreviated as 

~' = Tr A~(y)f~ + eDyh(y,e)f't. (5.10) 

Since Tr A~(y) is a scalar, an integrating factor can be introduced, which does 
not change the Pliicker coordinates projectively. An equation for 

{/0 } = e x p  - TrA~(y)  fl 

is easily computed as 
gt' = eDyh(y, e)~, (5.11) 

which is exactly the variational equation for the slow flow! This fact is the key to 
the Exchange Lemma  is used in the proof, sketched below, to show tha t  the slow 
direction is that  picked out for the remaining tangent vector for the shooting 
manifold after its passage near the slow manifold. 

5.3 The Fi tzHugh-Nagumo pulse 

In this section, we shall show how the Exchange Lemma  can be used to complete 
the construction of the Fi tzHugh-Nagumo pulse. The shooting manifold Z ~ in 
this case is W_ ~, the unstable manifold of the curve of rest states, which is 2- 
dimensional (2 = k § 1 since k = 1 here). In order to emphasize the dependence 
on e we shall write W_ ~'~. In order to apply the Exchange Lemma,  we first need 
to see that  

W_ nT W (M0n), 

but this is a s ta tement  about  the e = 0 flow, wherein W_ ~'~ lies in the plane 
w = 0. The flow in w = 0 is exactly given by the equation for the travel- 
ling waves of the scalar reaction-diffusion equation, namely (4.10). Further- 
more, W S ( M  ~ n {w = 0} is exactly W_~ which is the stable manifold of the 

curve {(1,0, c) : c  near c*}. It  therefore follows that  W_ u'~ transversely inter- 
sects W ~ ( M  - O R) inside w = 0. Since the full space only adds the w-direction, 
which is in WS(MoR), it follows that  

w_ 

and the hypothesis of the Exchange Lemma holds. 
Next,  set r0 E $-2 N 0D,  which is the intersection of the singular orbit  with 

the boundary of D along the fast jump as it veers away from M R. From Propo-  
sition 1, it follows that  there is a point ~ = q~ �9 T, in W_ ~'~ N OD which lies at 
most O(e) from r0. 

In order to carry the manifold W ~'~ over the fast jump away from M R, we 
need to assess the configuration of W_ ~'~ at this exit point ~ .  This is precisely the 
information offered by the Exchange Lemma.  Indeed, from Lemma 4 it follows 
that  W_ ~'~ at ~ is O(e) close to W~'(Jo o I). 
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The next step is then to show that 

W~'(Joo I) AT W~(ML), 

which is a statement about the e = 0 flow with, moreover, c fixed at c = c*, see 
FigurelT. 

W u (Jo oI)  

Figure 17 
The transversality over the return jump. 

The equation to be considered to verify this transversality is then 

U I ~ V 

v' = - c * v -  / ( u )  + w 
w t --~ O.  

(5.12) 

The transversality argument is then very similar to that given, except that w is 
now the parameter and c is fixed, over the first fast piece and is omitted here. 

Since W ~'~ is O(e) from W~'(JooI) and WS(M L) is O(c) from Ws(ML), there 
will also be a transversal intersection between W_ ~'~ and Ws(ML). It can easily 
be checked that W~(M L) is actually the stable manifold of the curve of critical 
points {(0, 0, c) : c near c*}. Thus we have constructed a homoclinic orbit from 
this curve of critical points to itself. Since c is actually a parameter, the orbit 
must lie in a fixed c slice and hence we have a homoclinic orbit to the rest state 
for some c near c*. 

R e m a r k  It is instructive to see how the "exchange" of information occurs in 
this passage near the slow manifold. All information in the speed parameter c 
is lost as the shooting manifold veers near to M~. However new information, 
namely in the w-direction is acquired. This is exactly the direction of the slow 
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flow in the manifold M0 R. If multiple passages near slow manifolds occur then 
each passage is characterized by a loss of information acquired at the previous 
such passage and new information from the current slow flow is substituted. 

5 . 4  G e n e r a l  a p p l i c a t i o n  

The Exchange Lemma will be used in this section to derive a very general theo- 
rem on the existence of homoclinic orbits to a 1-dimensional invariant set, due to 
Jones and Kopell, see [28]. We consider again the general singularly perturbed 
system (1.1) and suppose that  there is a particular slow manifold M~ which 
contains an invariant curve P~ for ~ sufficiently small, and moreover that  P~ is 
attracting relative to the (slow) flow on M~. One should think of P~ as being 
either a curve of critical points or a periodic orbit. 

The singular orbit will be constructed with (arbitrarily) many fast jumps 
and intervening slow pieces. We shall assume that the following ingredients are 
given from which this will be put together. Let p be some fixed integer, which 
will be the number of critical manifolds visited by the singular orbit. 

(A1) The following sets are assumed to exist for the equation (1.1): 

M~, 0 < j < p : These are each normally hyperbolic critical manifolds, given, 
as usual, by the graphs of functions i.e., each satisfying (H1)-(H3). These 
are not necessarily distinct and the number of normal stable and unstable 
directions is independent of j .  Moreover M~ = Mo ~ 

9v~, 1 < j ~ p Each being a heteroclinic orbit from M0 ~-1 to M~, including its 
a and w-limit sets. 

~0 ~ , 0 <_ j <_ p If j = 0, S~ = P0. If 0 < j < p, So 3 is a t rajectory of the slow flow 
(1.7) which connects the end-point of 9c~ to the beginning point of $-3 +1. 
I f j  = p, it is a t rajectory of (1.7) on Mo o connecting the end-point of J ~  to 
P0. The notation S0 j will refer to the trajectories of (1.7) extended beyond 
the jump points. 

The singular orbit can now be constructed in the obvious way by piecing 
together the fast jumps with in the intervening slow pieces. We call this singular 
homoclinic orbit 7-/, see Figure 18, so that  

7/= , ,J=P ~J 0 u 8o (5.13) 
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Figure 18 
The singular homoclinic orbit. 
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A transversality assumption must also be made. 

(A2) For every j so that 1 <_ j < p, 

(5.14) 

Then we have the following theorem, see [28] 

T h e o r e m  8 Under the assumptions (A1)-(A2), for e > O, but sufficiently small, 
there is an orbit homoclinic to the set Pe and O(c) close to 7-(. Moreover, there 
is a neighborhood of ~ in which it is the unique such homoclinic orbit. 

P r o o f  The proof is very simple, given the Exchange Lemma, and follows exactly 
the lines of the argument for the FitzHugh-Nagumo case. One takes W~(P~), 
the existence of which is guaranteed by Theorem 6, and follows it around the 
phase space. The first transversality hypothesis j = 1 allows us to invoke the 
Exchange Lemma (Lemma 4) and conclude that  we can make P~ exit O(e) close 
to the next fast jump where it exits the neighborhood of M 1. At that  point, 
it is a consequence of Lemma 4 that  it is O(e) close to W"($1)  and the next 
transversality assumption can be used to get it by the next manifold. One 
continues in this fashion until Wu(p~) is seen to transversely intersect WS(M{).  
Since P~ is at tracting in M~, it is easily checked that the resulting intersection 
gives an orbit homoclinic to P~. 

Theorem 8 can be applied to many problems. For instance, the reader can 
construct examples in which Silnikov orbits are easily seen to exist, see [57] 
for a discussion of the consequences of such orbits. Homoclinic orbits for the 



103 

Hodgkin-Huxley equations can be constructed using this Theorem. Bose [5] has 
constructed pulses for the Keener model [34] of two coupled nerve fibers each 
governed by the FitzHugh-Nagumo system. 

5 . 5  S k e t c h  o f  p r o o f  

The proof of the Exchange Lemma involves a fair amount of estimation and can 
only be sketched here. We will show, however, how the idea introduced above 
concerning the use of differential forms can be made into a proof. The proof 
given here is based on the approach developed by Tin, see [54] 

Recall from the above that  the forms applied to Tqr �9 t are divided into two 
blocks. Let Z(t)  denote the vector of block-1 forms and X( t )  denote the vector 
of block-2 forms, the equations can then be calculated, with all the higher order 
terms appearing as 

Z' = ( Tr A + r + e[D~h(y,c) + O1]) Z + O2X (5.15) 
X t  : (G  -~- tI/1) X + 1I/2Z , 

where r Oi and ~i are higher order terms. To be precise, 

Lio111 < ~1 laL ibl, 1102il < c2 lal, il~lL < c3(lal + ibl), (5.16) 
8[~210 <_ c4 ]bl, Ir -< c5 ia], 

where each of these estimates follows from the structure of the Fenichel Normal 
Form. Using an integrating factor as before, and keeping in mind that  we only 
care about vectors being close in a projective sense, we can scale Z and X to 
obtain 

2'  = ~ [Dyh(y,c) + O]] 2 + O2X, (5.17) 
X '  = ( G -  T r h - r  

The dominant term in the second equation is G - Tr A, and the idea is that 
its spectrum has negative real part,  on account of the fact that Tr A is the 
sum of the real parts of the eigenvalues with positive real part (for the case that 
the underlying point lies in M0). This can be used to show that  X is forced to 
decay exponentially, although the actual estimates are quite difficult due to the 
coupling. 

We need to determine Z(t )  and this is achieved by a series of approximation. 
Consider the equation 

~' = eDyh(~, c)~, (5.18) 

where /)(t) is a solution of (3.21) chosen as follows: let p~ be chosen in E~ N 
WS(M~) exponentially close to q~, which is possible (why?). Next set p~ �9 t = 
(&(t), ~)(t), e), and check that  there are t~l > 0 and ~1 < 0 so that 

ly(t) - 9(t)i <_ ~le  - ~ .  (5.19) 

Concerning Z(t)  and f~(t) we then have the 



104 

L e m m a  5 2(t) - (~(t)l < N,1 e-f~lt . 

The idea behind the proof of Lemma 5 is to estimate the terms in the equation 
satisfied by Z(t) - ~(t),  which is 

( 2 -  ~ ) '  = e[D~h(y,e)(2-gt)  

+(Dyh(y,~) -Dyh(~, e))~t + 01Z] + 02f(.. 
(5.20) 

One then uses the known estimates on the last three terms followed by the 
Gronwall inequality. Each of these terms is exponentially small, provided Z and 
~t are bounded. The first on account of (5.19), the second because IIOlll < c lal Ibl 
and ab is exponentially small as both are bounded and one of them is always 
exponentially small. Similarly for the last term as )( is exponentially decaying. 

It should be noted here that this is the key point at which the structure of the 
bilinear term, which encodes the Fenichel fibering, is used. Indeed, the bound 
on ]1Olll in terms of ab is essential. 

The next step in the proof of the Exchange Lemma is to introduce an ap- 
proximation to ~(t). Let ft(t) satisfy the same equation as ~(t),  namely (5.18), 
but with gt(0) being the block-1 forms of the space T~+(o~)W~(S~+(O~)), where 
Sy is the slow trajectory through the point y on M~. Note that  this space has 
block-2 forms all being 0. Note that ~r+(~) = 9(0) and hence ~t(t) will be the 
block-1 forms of 

T(o,~(t),~) W~( S~)(t) ), 
which are O(e) close to those of 

T(o,9(t),o) W~( Jo o I), 

for appropriate choice of the interval I and normalization. It thus remains to 

estimate gt(t) - ~(t).  But it can be shown that  ~(0) - ~(0)l is exponentially 
I 

small and, since they satisfy the same equation, we can conclude that,  for ap- 

propriate values of t ~(t) - ~t(t) is also exponentially small. The steps are now 

completed by invoking Lemma 5, which implies the Exchange Lemma provided 
that Z(0) is bounded away from 0, otherwise the estimates may be vacuous. But 
this follows from the transversality hypothesis. 
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Chapter 6 

G e n e r a l i z a t i o n s  and  F u t u r e  
D i r e c t i o n s  

The Exchange Lemma  given in the previous lecture is inadequate in two respects. 

1. The (k + 1) Exchange Lemma will be inadequate for many applications. 
For instance suppose that  the periodic orbit or curve of critical points in 
the example above were not attracting in the slow manifold, we would then 
have to follow an invariant manifold that  was larger than k + 1 as it would 
have more slow directions. The same would be true if the invariant sets, 
to which we sought homoclinic orbits, were higher-dimensional. 

2. O(e) is not good enough. If, for instance, we are considering a per turbed 
Hamiltonian system the transversali ty of the shooting manifold E~ with the 
stable manifold to the slow manifold, namely WS(M~) may only be of O(e) 
and not O(1), as we have used above. This turns out not to be a problem in 
reaching the conclusion of the Exchange Lemma,  but that  conclusion will 
itself be useless in this case as we would be following an invariant manifold 
by an O(c) approximate  version and the approximate  version would itself 
intersect the next stable manifold only at O(c), since these might cancel a 
more accurate est imate must be found in the Exchange Lemma.  

In the first few sections of this last lecture, I will give the generalizations of the 
Exchange Lemma that  address these points. In the last sections, I will discuss 
various applications and the directions for further study that  they suggest. 

6.1 The (k + a) Exchange Lemma 

We suppose now that  the shooting manifold E~ is a (k + a)-dimensional locally 
invariant manifold, again smooth in e. Recall that  k is the number of unstable 
directions for the slow manifold. The cases of interest are when 1 < a < l, 
for then the Exchange Lemma of the last lecture does not apply and yet the 



106 

dimension of the shooting manifold is still not equal to the full dimension of the 
unstable manifold of the slow manifold. However the Exchange Lemma I shall 
state in fact applies for 0 < a < 1. 

An assumption must again be made as to how the shooting manifold enters 
a neighborhood of the slow manifold. Indeed, we assume 

(H5) There is a (k + a)-dimensional, locally invariant manifold E~, defined 
for 0 < e << 1, and smooth in e, so that  

E o n ~ W ~ ( M o )  r 0, 

at a point q E OD. 

Note that in this case the intersection will be more than a t rajectory indeed, 
by a dimension count, we expect it to be a-dimensional. Let V be some suitably 
chosen neighborhood of the point q C E0 n W~(Mo) NOD and consider the set 

Jo = w (Yl, o rl WS(  Mo ) r-1 V)  (6.1) 
= ~ -  (r.o n W S ( M o )  n V ) ,  

in Mo. By the transversality hypothesis (H5) the set J0 will be a a - 1 dimen- 
sional submanifold of M0. We need a transversality hypothesis on the slow flow. 

(H6) The set J0 is a (o- - 1)-dimensional manifold and the slow flow i.e., that  
associated with (1.7), is not tangent to J0, in other words 

g(~-(q), 0) r T,r(~)Jo.  (6.2) 

With the same notation as in the previous section, I can state the (k + dr)- 
Exchange Lemma, which is due to Tin and the author, see [30]. 

L e m m a  6 (k + a ) - E x c h a n g e  L e m m a  The manifold E~ �9 T~ is C 1 0(~) close 
to WU( Jo o I) in a neighborhood of the point ~t~ -- qe �9 T~. 

The proof follows the same lines as the sketch of the k + 1 case given in the 
previous lecture, see [30] or [54]. In his thesis, Tin [54], formulated a general 
theorem concerning the existence of homoclinic orbits to invariant subsets of a 
slow manifold. Let P0 be a v-dimensional invariant, compact submanifold of M01 
that is normally hyperbolic under the slow flow on M~. Further, let U0 be the 
7 + ~/-dimensional unstable manifold of P0 in M01, in the slow flow on M01 , given 
as usual by (1.7). In a similar fashion to the application given in the previous 
lecture, we assume the presence of the objects given in the next hypothesis. 
(A3) The following sets exist as stated: 
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Md, 0 _< j <_ p : These are each normally hyperbolic critical manifolds, given, 
as usual, by the graphs of functions i.e., satisfying (H1)-(H3). These are 
not necessarily distinct and the number of normal stable and unstable 
directions is independent of j .  Moreover M~ = M ~ 

~0 j, 1 < j < p: Each being a heteroclinic orbit from M~ -1 to Md. 

S j ,  0 < j < p: If j = 0, S0 a is P0 together with a curve in U0 J that  connects Po 
to the beginning point of ~1. If 0 < j < p, S j is a t rajectory of the slow 

flow (1.7) which connects the end-point of 5~0 ~ to the beginning point of 
9~ +1. If j = p, it is a t rajectory of (1.7) on M ~ connecting the end-point 
of F~ to P0. 

The singular orbit is given similarly by the expression (5.13). 
Since P0 is assumed to be normally hyperbolic in M ~ see Fenichel [15], it 

will perturb to a (locally) invariant manifold in M ~ say P~. The next theorem 
will give conditions under which the singular orbit 7-/ perturbs to an actual 
homoclinic orbit to P~ when c > 0 but sufficiently small. 

Needless to say, there are transversality hypotheses to be satisfied along each 
of the fast jumps. However, another collection of sets need to be determined in 
order to express these transversality conditions. 

(A4) The following sets exist as stated: 

Ug, 0 < j < p - l :  Subsets o f M g .  I f j  = 0, Ug is the unstable manifold in 
M~ of P0 under the flow of (1.7). They are then defined inductively along 
with the sets below by 

Ud = gJ o I,  (6.3) 

where o refers to the slow flow on M~, and I = (?j - yj, ~j + yj),  with "~j 
chosen so that the beginning point of ~o 3+1 is contained in U~. 

J0 a, 1 < j _< p - 1: Subsets of M y, that are defined by 

inductively along with the above. 

For these sets to be well-defined and to be able to apply the Exchange Lemma, 
the following transversality hypotheses must hold. 
(A5) If 1 < j < p -  2 then 

Wu(U j) NT WS(Mg +1) ~6 O, 

along .T'o a . 

(6.5) 

(A6) If 1 < j < p - 2 then the slow vector field is not tangent to the set j j + l ,  
which is assumed to be a (a - 1)-dimensional manifold. 
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A final condition is needed for the last jump.  The set V0 is the stable manifold 
of P0 in M ~ relative to the slow flow. 

(A7) Along ~'~ 
Wu(Up-1)o N T WS(Yo) r ~. 

The following theorem has been proved by Tin, see [54]. 

T h e o r e m  9 Under the assumptions (A3)-(A T), if e > O, but sufficiently small, 
then there is an orbit homoclinic to P~ that is within O(e) of the singular homo- 
clinic orbit 7-t. 

6.2 Exponent ia l ly  small Exchange Lemma 

The est imate in the Exchange Lemma can be significantly tightened if we are 
willing to drop the comparison with the ~ = 0 case. Indeed, a perusal of the 
proof shows that  the O(e) est imate comes in when going from the tangent space 
to the unstable manifold of the appropriate  subset of Me to that  of the slow 
tra jectory in M0. Since the Fenichel theory does supply us with a full s tructure 
when e ~ 0, we can easily make the comparison with the e ~ 0 object. 

Furthermore,  the transversali ty at entry to D can be significantly weak- 
ened, as we only need to assume that  the transversali ty occurs when e ~ 0. 
The transversali ty can be measured by taking bases for the tangent spaces and 
wedging the entire set of vectors (taking care not to repeat  the vector field and 
keeping the basis bounded away from 0 and oc as e ~ 0) to make a volume 
form. For the Exchange Lemma with Exponential ly Small Error  we make the 
following hypothesis. 

(H6) There is a (h + a)-dimensional,  locally invariant manifold E~, defined for 
0 < e << 1, and smooth in e, so that  

EenTWS(M~) # 0, 

at a point q C OD and the transversali ty is of O(e p) for some p. 

Set 
Je = 7r- (Ee Cl WS(M~)),  (6.6) 

where again 7r- is the Fenichel map sending points to the base points of their 
fiber. Notice that,  in this case, the Fenichel map cannot be replaced by an w- 
limit set as there is a genuine flow on the manifold M,.  By the same token, 
the set J ,  contains directions from the slow flow and thus J,  has one higher 
dimension than J0. We can then replace J0 o I in the s ta tement  of the Exchange 
Lemma by Je �9 T for some appropriately chosen T. 
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L e m m a  7 E x c h a n g e  L e m m a  w i t h  E x p o n e n t i a l l y  S m a l l  E r r o r  The man-  
ifold E~ . T~ is C 1 0 ( e x p  {=~}) close to WU( J~ �9 T )  at q~ . T~, for  some c > O. 

This Lemma  was first proved by Jones, Kaper  and Kopell [27] in the a = 1 
case and later by Jones and Tin [30] for the general case. It  is crucial that  
the full s tructure of the Fenichel Normal Form be used in order to obtain this 
result. In particular,  the decomposition of the slow vector field as a bilinear 
form, which comes from the fibering, is crucial. The exponential closeness, and 
its relation to the bilinear form, was noticed independently by Sandstede (private 
communication).  

6 . 3  P e n d u l u m  f o r c e d  b y  t w o  f r e q u e n c i e s  

In this section, I will outline an application that  uses the Exchange Lemma 
with Exponential ly Small Error. Consider the pendulum forced by two separate  
frequencies 

q" + sin q -- e (Sq' + 7(71,72)) 
T~ = ew,(71,72) (6.7) 
7~ = ~ ( 7 1 ,  ~) ,  

where 7 and wi, i = 1, 2 are all periodic, with period 2~r in each of their argu- 
ments and also assumed to be smooth. Equation (6.7) is rewritten as a system 

q~ = p 

p '  = - sin q + e (Sp + 7(71,72)) 

7~ = ~:(71,72). 

(6.8) 

M0 ~ C {p = 0, q = : ~ } .  (6.9) 

Since both of these points are saddles of the pendulum, the manifolds M ~  are 
normally hyperbolic and hence the Fenichel Theorems apply. Various identifica- 
tions can be made in the phase space. Since the vector field is periodic in 71 and 
~-~, both 71 and 72 can be identified modulo 2~r. The critical manifolds would 
then become tori. We have not set the theory up to cover such manifolds and 
hence we shall take this point of view. I shall assume that  M ~  is defined on a 
sufficiently large region that  it will contain a fundamental  domain of the torus. 
Thus M ~  can be viewed as a torus after the fact by identifying 71 and 72 after 
the results have been obtained. 

The slow flow on M ~  is given by the equations: 

~'1 = b-)l (T1,7-2) (6 .10 )  
+2 = ~ 2 ( 7 1 , 7 2 ) ,  

The fast flow is obtained, as usual, by setting e -- 0. There are critical manifolds 
given by any of the critical points of the pendulum. We set then 
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which are also the exact equations on M ~  as the fast variables do not appear  
in the slow equations at all. I shall assume that ,  on M0 ~ there are two periodic 
orbits, one at tract ing,  say Pa, and the other repelling Pr, see Figure 19. Of 
interest will be the construction of orbits homoclinic to P~, which will require 
use of the (k + 1)- Exchange Lemma with the exponentially small error. From 
the point of view of applying the Exchange Lemma,  the construction of orbits 
homoclinic to Pr, although possible, is not as interesting (why?). 

m 
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Figurel9 
The slow flow. 

f 

Note that  the fast flow decouples completely from the slow variables, when 
c = 0. Since there is a heteroclinic orbit from (0,-Tr)  to (0, 7r) every point on 
M o is connected to its par tner  on M +.  There is therefore a problem in even 
constructing the singular orbit as it has to be decided which heteroclinic orbit  
is picked out. One can formulate a Melnikov function F + (7, T1, T2) whose zeroes 
indicate the location of heteroclinics that  exist for small values of e from M~- to 
M +.  Another Melnikov function F -  (7, T1,72) indicates the potential  heteroclinic 
orbits from M + back to M~-. I assume that  the function 7 and the quanti ty 5 
are chosen so that  the zero sets F -  = 0 and F + = 0 cross Pa transversely, for 
an example see [27]. The quantity 5 is then fixed. 

A singular orbit  is constructed with p jumps as follows. If j is odd then 
M0 ~ = M o and if j is even M0 J = M +.  The singular orbit is then composed of 
the following pieces 

. ~  1 _< j < p, being each the heteroclinic jump from M~ to M03+1 from a point 
(7-1,T2) where F + = 0, if j is odd and from a point where F -  = 0 if j is 
even. 

s J  1 <_ j _< p are pieces of Pa between end-points of ~0 ~ and the beginning point 
of 5r~ +1 . 
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The singular orbit is constructed as usual 

~t~ P J " = u 

It is shown in [27] that  there is a (real) homoclinic orbit nearby this singular 
orbit. The strategy is, by now, standard. One follows the unstable manifold of 
P~ around the phase space using the singular orbit as a template. The Melnikov 
calculation gives the required transversality upon entering each slow manifold 
and the exponentially small error in the Exchange Lemma Lemma 7 allows the 
passage of the unstable manifold near each slow manifold and sets the shooting 
manifold up for its next jump. The exponentially small error is needed as the 
transversality over the jumps is only O(~). If the unstable manifold were only 
tracked up to O(e) during its passage near the slow manifold, a transversal 
intersection with the next manifold could not be guaranteed. The details are 
given in [27] 

6 .4  R e c e n t  r e s u l t s  a n d  n e w  d i r e c t i o n s  

In this final section, I shall highlight some recent pieces of work that  indicate 
directions in which the theory described above needs to be extended. 

6 . 4 . 1  O r b i t s  h o m o c l i n i c  t o  r e s o n a n c e  

The problem of orbits homoclinic to resonance has been considered recently by 
many authors. The equations are as follows 

= J D ~ H ( x , I )  +Sfl(x,Z,O,~X) 
i = @l(x,  Z, e, ~) (6.11) 

= D I H ( x , I )  + ~g2(x,I,O,.k), 

where all the functions are smooth and periodic of period 2zr in 0 The resonance 
occurs at a point (2,-f) which is a critical point of the e = 0 system, that  is 
assumed to be a saddle point for the x equation. This is only a circle of critical 
points, but, as is typical in such resonance problems, can be blown up to expose 
some interesting structure. Setting I =/~ + x/~h, one arrives at the system, with 
e = x / ~  

2 = JD~H(x ,h , e )  +e2ft(x ,h,O, .X,e)  
h = egl(x, h,O, ~, e) (6.12) 

= D i H ( x ,  [r) + eg3(x, h, O, ~, e), 

which has a manifold of critical points M0 given by x = 2, this is now an annulus. 
The system (6.12) is not in the usual singular perturbation form due to the term 
D~H(x,_T), but it does possess a manifold of critical points parametrized by 0 
and I. In fact, this is all that  is used by the results given in these lectures and 
everything applies to (6.12) as if both h and ~ were slow variables. The normal 
hyperbolicity of M0 C {x = 2} follows from the fact that 2 is a saddle of the 
x-equation. 
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Figure 20 
The scaled slow flow. 

The original motivation for the study of (6.11) is a 2-mode truncation model 
of the nonlinear Schr6dinger equation. It is desired to find orbits that are ob- 
served in certain spatio-temporal chaotic patterns, see McLaughlin et al. [4]. 
The slow flow will have the form of a "bow-tie" as shown in Figure 20 and the 
fast flow will be a "fish", see Figure 21. Of interest are orbits that  are ho- 
moclinic to various different invariant sets in the slow flow, in particular: the 
saddle, the center(s) and the periodic orbits surrounding the centers. This has 
been treated by many authors using a combination of Hamiltonian techniques 
and those of singular perturbation theory. In the earliest work, Kovacic and 
Wiggins [35] found orbits con:aecting the center to itself involving one fast jump, 
however they needed some negative damping to get the orbit. Mclaughlin et 
al. [43] found saddle to saddle connections, with one fast jump in the case of 
dissipative perturbations. Simultaneously, KovaSi5 also solved this problem [36]. 
For Hamiltonian perturbations, Kova~i~ [37] and Haller and Wiggins [22] found 
periodic to periodic orbits, amongst others, with one fast jump. Haller and 
Wiggins, in further work [23], found multi-jump orbits for the problem with 
Hamiltonian perturbations. These are different, however, from those that  one 
would construct using an Exchange Lemma argument as the time spent near the 
slow manifold is not great. Tin and Camassa [9] have found multi-jump orbits in 
a problem that is very close to the above but in the non-resonant case. In some 
ways, this case is harder as it is not a singular perturbation problem. This, and 
related work [8], [55], have made an important  contribution to the problem of 
whether slow manifolds in atmospheric flows exist, see [40]. Two aspects of this 
problem are worthy of mention in the current context. First, Tin [55] developed 
a new strategy for proving transversality as the traditional Melnikov method was 
not applicable. Second, an Exchange Lemma that works for perturbed invariant 
manifolds in more general situations than found in singular perturbat ion theory 
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was needed. Tin [54] developed such an Exchange Lemma for passages near 
"non-slow" manifolds. 

x 2 

x 1 

Figure 21 
The fast flow. 

In the most recent contribution to the orbits homoclinic to resonance prob- 
lem, Kaper and Kovacic [32] have applied the Exchange Lemma to build on the 
single jump pulses and found multi-jump orbits homoclinic to all the available 
different invariant sets, for the details see [32]. 

The problems considered here only apply to an approximation to the real 
problem, namely the 2-mode truncation. The real problem is in infinite dimen- 
sions and this needs to be resolved. In particular, the Fenichel structure are not 
clearly understood in infinite dimensions. The Exchange Lemma also appears 
to be hard to generalize.There are many problems and issues in this area that,  
I believe, will receive much attention over the coming years. 

6.4.2 Stabil ity of travelling waves 

Much of the motivation for the Exchange Lemma came from the need to com- 
pute directions of transversality for assessing the stability of travelling waves. 
As seen in many of the examples above, travelling waves are constructed as ho- 
moclinic orbits for particular systems of ODE's. These will be constructed then 
as intersections of stable and unstable manifolds of the relevant critical point. 
A parameter  is obviously needed to make this situation robust. In most cases 
of travelling waves the parameter  is supplied by the speed. It was shown by 
Evans [14] that the direction in which the unstable manifold crosses the stable 
manifold as the speed parameter  varies renders some crucial information about 
the stability of the wave. Indeed, it determines the parity of the number of 



114 

eigenvalues of the linearization of the PDE at the wave that lie in the right half- 
plane. Determining the nature of the transversal intersection in many of these 
travelling wave problems then becomes an important issue. 

This direction is implicit in the Exchange Lemma analysis but has not, up 
to this point, been explicitly incorporated into the theory. In recent work, Bose 
and Jones [6] have studied the example of travelling pulses in coupled nerve 
fibers. Keener [34] formulated a model for this situation in terms of a pair 
of coupled FitzHugh-Nagumo equations. The fibers are coupled by reciprocal 
diffusive coupling. The PDE's are 

Ul t  : U l x x  "F f ( ~ l )  --  Wl Jr- d(u2 - u l )  

w i t  ~-- {[(u I - 7 W l )  

u2t  = U2x= + f ( u 2 )  - w2  q- d ( u l  - u s )  

w2t = c ( u 2  - 7w2). 

(6.13) 

It is clear that  there will be an "in-phase" wave, when e is sufficiently small, for 
which u2 = ul ,  which is just the individual FitzHugh-Nagumo pulse constructed 
above on each fiber. However, its stability is not obvious. Bose and Jones [6] 
have proved the stability using the appropriate generalization of Evans' idea 
due to Alexander, Gardner and Jones [1]. The Exchange Lemma is crucial in 
tracking the relevant unstable manifold and studying its intersection with the 
stable manifold. This contains much more information than is in the individual 
travelling pulses. However, the transversality given by the Exchange Lemma 
does not readily give the "direction" information required in applying the Evans 
stability idea. Bose [5] developed a way of keeping track of this sign information 
in the proof of the Exchange Lemma and this is a key ingredient in the stability 
analysis of these "in-phase" waves. 

A general theory is needed for tracking the invariant manifolds in the Ex- 
change Lemma including the "sign" of a relevant basis. I anticipate that the 
Exchange Lemma will have many further applications in the stability analysis 
of travelling waves. Indeed, the eigenvalue equations that  occur in the stability 
analysis are ODE's living naturally in the tangent bundle to the travelling wave 
phase space. If the underlying problem is singularly perturbed then so are the 
eigenvalue equations. The eigenvalues occur at values of the eigenvalue param- 
eter at which certain heteroclinic orbits exist. The structure of these orbits, 
and consequently the distribution of eigenvalues, promises to be significantly 
illuminated by direct application of the Exchange Lemma. 
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