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! INVARIANT MANIFOLDS

M. Hirsch', C. PughZ, M. ShubS

§1. Introduction. Let V be a smooth compact submanifold of a smooth Riemann
manifold M. Let f be a diffeomorphism of M 1leaving V invariant

f(v) = Vv .

We say that f 1is normally hyperbolic at V iff the tangent bundle of M,
restricted to V, splits into three continuous subbundles

i
H

TM=NeoTen
invariant by the tangent of f, Tf, such that
(a) Tf expands NY more sharply than TV
(b) Tf contracts N° more sharply than TV.
This says that the normal (to V) behavior of Tf 1is hyperbolic and dominates the
tangent behavior.

A more powerful hypothesis is

(a') Tf expands NY more sharply than Tf" expands TV

(b') Tf contracts N° more sharply than Tf" contracts TV.
Here r s a nonnegative integer. This condition is rv-normal hyperbolicity of f
at V. Precise formulations will be given later in §1.

Now we state the

(1.1) FUNDAMENTAL THEOREM OF NORMALLY HYPERBOLIC INVARIANT MANIFOLDS. Let f
be r-normally hyperbolic at V. Through V pass stable and unstable manifolds
invariant by f and tangent at V to TV @® NS, N Ty, They are of class c’.
The stable manifold is invariantly fibered by o submanifolds tangent at V to the

subspaces NS, Similarly, for the unstable manifold and NY.  These structures are
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unique, and permanent under small perturbations of f. Similar results hold for

flows.
See §2 and Theorem 4.1 for more details and the proof.

The converse of the persistence part of the theorem has recently been proved
by R. Marié in his thesis at IMPA [32]. Mafié also analyzes the definition of normal
hyperbolicity going beyond the Birkoff center. See our (2.17). A. Gottlieb in his
thesis at Brandeis University has also investigated necessary conditions for the
persistence of invariant manifolds [15].

(1.1) has been proved many times. Where V = one point, it is the stable
manifold theorem [22]. For the general compact V, Sacker proved it in [47]; his
methods involve partial differential equations. Previous work was done by
J. Hadamard [16], 0. Perron [37,38,39], N. Bogoliubov and Y. Mitropolsky [8,9],

J. Hale [17,18], S. Diliberto [13], and W. Kyner [30]. In [14] Neil Fenichel has
independently proved many of the results of §§2,3,4 of this paper; his methods are
similar to ours.

Anosov remarks in [3, p.23]:

"Every five years or so, if not more often, someone 'discovers’
the theorem of Hadamard and Perron, proving it by Hadamard's
method of proof or by Perron's."

In this paper we push Hadamard's idea, which we call the graph transform [22]. How-
ever, even in the case V = a point, our proof of smoothness of the stable manifold
is new; see [40].

One of our objectives is to allow more general submanifolds V in (1.1). A
case of interest is where V is replaced by a foliation F of M and f is
normally hyperbolic to each leaf of F. There are stable and unstable manifolds of
leaves and persistence under perturbation of f. An example of such an F is the
orbit foliation for an Anosov flow -- f 1is the time-one map of the flow.

Anosov [3] showed that if the Anosov flow is slightly perturbed then the new
foliation is isomorphic to the original one by a homeomorphism of M; this is his
celebrated structural stability theorem. Instead of perturbing the flow, one may
perturb just the time-one map. The new diffeomorphism f' 1is not generally a
time-one map. Nevertheless it turns out that there is a new foliation F' near F
invariant under f'. We show that this is true quite generally, except that F' s
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not quite a foliation. It has C" 1leaves but their tangent planes might vary only
continuously. This kind of "lamination" is unavoidable, as Anosov showed [3, §24];
it can occur, for example, in the stable manifolds of orbits of even an analytic
Anosov flow.

A further generalization of (1.1) allows V to be merely a leaf of a foliation
or a union of leaves. An example is the nonwandering set of an Axiom A flow [48],
f being the time-one map of the flow. We are led to consider rather general
immersed submanifolds i: V -~ M, the main restriction being that the tangent bundle:
of V is pulled back via i from a subbundle of TM over the closure of i(V).
This lets compactness of M be exploited without requiring compactness of V.

More general still is the concept of a pseudo-hyperbolic subset A for a map
f. Instead of the tangent bundle of a submanifold, one has a Tf-invariant sub-
bundle E1 of TAM which has a Tf-invariant complement E2 that Tf contracts
{or expands) more sharply than E]. This notion is useful for developing the strong
stable and unstable manifolds of a normally hyperbolic submanifold or lamination, anc
aiso for studying center manifolds. '




Now we define several kinds of normal hyperbolicity. Let V be a smooth (= dm)
compact submanifold of a smooth manifold M. Suppose f: M>M is a C1 diffeo-
morphism and f(V) = V. Let TVM, the tangent bundle of M over V, have a
Tf-invariant splitting

TVM=NUGBTV®NS.
For any p €M put

TEITV=Vvf  TFIN = N > = N3,
lp Yy [p N, TFIN N

u s
s T fF=NFf@V f@&NTF.
Thus p D Vp b
Definition 1. f is immediately relatively r-normally hyperbolic at V iff
f is € and there exists a Riemann structure on TM such that for all pE€V,
0<k<r:
(a) m(NF) > v fi
P p
and
(b) IN*f < m(v_f)¥ .
p P

Recall that the minimum norm m{(A) of a linear transformation A is defined
as

m(A) = inf {|Bx|: |x]| =1} .

When A is invertible, m(A) = HA_]H_].

Definition 2. T 1is immediately absolutely r-normally hyperboliec at V iff
f is €' and there is a Riemann structure on TM such that for all pEY,
C<k<r:

(a) inf m(NYF) > sup IV fI¥

p P p P
and

(b) sup INSFI < inf m(v £)K .
P P p P




.

Definition 3. T 1is eventually relatively rv-normally hyperbolic at V iff f:
is € and for all pEV, n>0, 0<kc<r: |
ucn
m{N"f")
(a) —F—p>2"c
vafnﬂ

and

(b) -——Jl————-f_Cun

for some constants O <u <1 <iA<eo, 0<«<C<=, andsomeFinsler on TM.

Definition 4. f 1is eventually absolutely vr-normally hyperbolic at V iff f
is C" and for all p€Y, n>0, 0<k<r:
(a) inf m(N4F™) > A—-sup v f"ﬂk
p p=C P
| P
and
(b) UNSE"Y < cu” inf m(v_£)K
P - p p
for some constants O <p<1 <A <o, 0<C<wx», and some Finsler on TM,

The reason for these names is this: "r-normally hyperbolic" means that the
behavior of f normal to V dominates the behavior of fk tangent to V for
0 <k <r; "relative" means this dominance is required at each point of V, while
"absolute" is the stronger requirement that the normal behavior at every point of V
dominates the tangent behavior at every point. "Eventual", as contrasted to "imme-
diate", means that the dominance is required of all iterates f' for n exceeding
some n.

Remark 1. Immediate absolute r-normal hyperbclicity (Definition 2) is the
strongest property. In our original exposition of invariant manifolds [23] we used
it, but most of our proofs were valid with Definitions 1 or 3.

Remark 2. I1f £ s normally hyperbolic at V (in any of the three senses) so

is f'], because N for £ ' is N for f, and N> for £ o5 N for £
Remark 3. Immediate relative r-normal hyperbolicity (Definition 2) implies
eventual relative r-normal hyperbolicity (Definition 3). Eventual relative
r-normal hyperbolicity is independent of the Finsler on TM: if (a), (b} in Defini-
tion 3 hold for a particular Finsler, they hold for any Finsler, perhaps with dif-

ferent constants. This is because V is compact.




Question. Does Definition 3 = Definition 1? When dimV =1 or f|V is an
isometry the answer is yes. The proof is not hard.

Remark 4. Immediate Absolute « Eventual Absolute is proved in {2.2).

CONVENTION. Without modifiers to the contrary "r-normally hyperbolic" means
"immediately, relatively r-normally hyperbolic," and "normally hyperbolic" means
‘"1-normally hyperbolic."”

(1.2) PROPOSITION. If f is eventually normally hyperbolic at V then the
splitting of TVM igs uniquely determined by f.

Proof. Let NM@TVe@ N = TM = @ Tve R be Tf-invariant splittings
exhibiting the normal hyperbolicity of f at V for Riemann structures R, R.
If y=x+v+y€E N; and x € N:, v E TpV, y € N;, x+v # 0, then

T, 5 g = INGE () +VF () + N () |

‘Using continuity of Nu, TV, NS, comparability of R and R, and
1im IN;f"H/ﬁnm(fon) =0, pu<u<1l, we see that |Tpf“(§)|§ cannot tend to zero

nowe

fast enough. Thus, N; C N; and by symmetry N; C N;, $0 N; = RS. Working with

f'1, the same is proved for the unstable planes. This proves (1.2?.

§2. The Linear Theory of Normal Hyperbolicity. Let V be a compact C]
submanifold of a smooth manifold M and let f be a CT diffeomorphism of M
leaving V invariant. The definitions of normal hyperbolicity have several irri-
tating features: it is required to know beforehand a Tf-invariant splitting of
TVM; a particular Riemann structure on TM must be found for definitions 1, 2; the
whole sequence of iterates Tf" must be considered in definition 3.

The third problem is treated by

(2.1) PrROPOSITION. T ie eventually relatively Y-normally hyperbolie at V
iff all high powers fn, n > some N, are immediately relatively vr-normally

hyperbolic at V.

Remark. Let us re-emphasize that we are unable to decide whether N =1 in
general.




-~

Proof of (2.1). lLet f be immediately relatively r-normally hyperbolic at

.¥. Then
m(Nf) INSFI
inf > A>1>u>sup -—E——E
PEV IV fI pEV m(fo)

‘0<k<r, for some A, p. Clearly we can Tet C =1 in Definition 3 and f is

eventually relatively r-normally hyperbolic at V.

Assume eventual relative r-normal hyperbolicity. Since Cu" <1 and
An/C >1 for large n, it is clear that we get immediate relative r-normal
hyperbolicity of f", n large. This proves (2.1).

Now let us consider the first problem -- a priori existence of an invariant
splitting M=o e NS. Let

b _ b _ .

T (TVM) = I~ = {bounded sections V -+ TVM}

b b

and let fb: " + L be defined by

fb(o)=Tfooof'] cezb_

zb is a Banachable space and fb is the automorphism of Zb canonically induced
by f. The closed subspace Zb(TV) of sections having values in TV is fi-
invariant. Thus fy induces a map ?b on the factor space ol zb/Eb(TV).

(2.2) PROPOSITION. f s immediately absolutely l-normally hyperbolic at V
iff the spectrum of fb]Zb(TV) lies in an annulus, centered at 0, disjoint from
the spectrum of ?b' For absolute normal hyperbolicity, "immediate" © "eventual.'

As no invariant normal bundle was necessary to define ?b and spectra are
independent of norms, the definition of absolute normal hyperbolicity offered by
(2.2} is canonical. The proof of (2.2) is based on some general facts about hyper-
bolic Banach bundle automorphisms and will be given later in this section, after
the proof of (2.10).

It seems reasonable to seek a similar "spectral condition" equivalent to rela-
tive normal hyperbolicity. Precisely, we want an operator canonically associated te
f which is hyperbolic iff f is eventually normally hyperbolic at V. So far we
have been unable to find one. Thanks are due to Ethan Akin for pointing out how ou
first attempt in this direction goes wrong.




St t;ying'td'"iBtrinsica]ly“ characterize eventual normal hyperbolicity, we
" Took at the abstract normal bundle N of V in TM,

N= TVM/TV
"and the natural Tf-action on N,
K f([w]) = [T_f €N
. (IwD) = [ b (w)] [w] .
(2.3) PROPOSITION. Eventual velative normal hyperbolicity is independent of
choice of Finsler and is equivalent to the congjunction of (a), (b):

(a) RNf is a hyperbolic Banach bundle automorphism (see below) having
tnwaritant splitting Me R = N;

-and
(b) For some Finslers on TV, N and for some integer n > 0, NF"  dominates
T TV = vF
m(RYf") N2 £
inf ———ll——— >1 > sup ___2—77_
pev IV f ] pev m(fo )

Remark 1. This criterion does not assume V has a Tf-invariant norma1 bundle
Besides, according to (2.5), below, (a) is equivalent to spec((Nf) )fWS = § where
(Nf)b is the Nf-induced operator on the space Zb(N) of bounded sect1ons v+ N,
It is only condition (b) which fails to be spectral.

The proof of (2.3) is given below, after that of (2.2).

Remark. 1In (2.2,3) we care only about 1-normal hyperbolicity. Corresponding
results for r > 2 are valid. See (6.3), for instance.

Question, Is there an intrinsic way to detect immediate relative normal
hyperbolicity?

Now we come to the topic of normally hyperbolic flows. Suppose that {ft} is
a C flowon M Tleaving V invariant. The simplest definition of a flow being
normally hyperbolic is that some individual map ft is normally hyperbolic at V.

1

(2.4) THEOREM. If one fboe eventually normally hyperbolic at YV then so
are all the £t except fo = tdentity. The splitting is independent of t. Simi-
larly for absolute normal hyperbolicity.



Question. Is (2.4) true for immediate normal hyperbolicity?

For developing the basic theory of normally hyperbolic flows {(or noncompact
group actions) this definition is best. However, when dealing with a flow, one has
in mind the tangent vector field generating it, say X.

d t
xp =at | T (p)
t=0

‘We would 1ike conditions on X that guarantee its flow is normally hyperbolic.
Where V = one point, such conditions are: spec(DX) Tlies off the imaginary axis.
If V 1is a general submanifold (even the circle) then the condition that DX have
its normal (to V) eigenvalues off the imaginary axis is neither necessary nor
sufficient for normal hyperbolicity of the X-flow [19]. It thus remains an open,
fuzzy question to formulate unintegrated conditions on X at V that guarantee

-normal hyperbolicity of the X-flow.

After proving (2.2,3,4) we discuss the possible replacement of TVM by a
smaller bundle TZM where verification of normal hyperbolicity might be easier.

The next theorem contains the essence of (2.2,3).

(2.5) THEOREM. A Banach bundle automorphism is hyperbolic iff it induces a

hyperbolic automorphism on the Banach space of bounded (or eontivuous) sections.

A Banach bundle E 1is a vector bundle whose fiber is a Banach space. Chart
transfers are Banach space isomorphisms on fibers. We assume that some continuous
norm, a Finsler, has been defined on the fibers. An automorphism of E 1is a fiber
preserving homeomorphism Tinear on each fiber, such that HF|ExH, RF'1|EXH are

uniformly bounded. Here Ex is the fiber over x. We take the obvious definition
that F is hyperbolic iff it leaves invariant a continuous splitting E = E] GiEz,
and, respecting some equivalent Finsler on E, Tf expands E] and contracts EZ'
The induced automorphism on the space of sections of E is given by

Fo(o)(x) = Fooofl(x) .




m

fTo prove (2.5) we need two lemmas.

(2.6) LEMMA. If H is a closed subspace of the Banach space E then either
‘H=E orelse E has veetors x nearly orthogonal to H: d(x,H)/|x| = 1.

Proof. This is a restatement of the Hahn-Banach Extension Theorem [44].

(2.7} LEMMA. Let T,T': E > F be Banach space isomorphiems and let E be
split in two waye E = E1 GBEZ, E = Ei GBEé. Let Ty E ~ Ej be the projections,
=1, 2, kernel ™ = EZ’ kernel M, = E]. Then

lm (x)] BT, 0+ HTA0 +UT-T'Y
x € By~ T < me oI '
]ﬁz(x)]-— m{ ])- TS0 - 17-T'1
2f the denominator is positive. Here Tj = T]Ej, and T& = T'|Ej, i=1,2.

Proof.

Let x € Eé. Then x =

T X+ ToX
1 2 50

T'x| = [Tyx| < ATobix| < AT30Cfmyx] + [mox])

Also, T'x = T(ﬂ1x)-bT(w2x)4—(T'—T)(x) so that

IT'x| > m(T])|n1xI - ﬂTzﬂlﬂle - HT-T'ﬁ(|n1x|-+]w2x|) .

Combining these two inequalities gives

[m(T])- iT-T' 4 - HTéH]|ﬂ1x| 5_[HTéHi—HT2H4-HT-T'E]|WZX]

which proves (2.7).
The inequality can be re-written as

"T2“ + HTéH +IT-T'Y

(2.7") m(T,7 - T =177 17!

bmy |Esl <

when the denominator is positive.

Assume that F 1is hyperbolic.

Proof of (2.5). Then E = E]

5P - zb(E1) ® zb(Ez)

@E

2

and



~is obviously a splitting respecting which Fb is hyperbolic.

Now assume Fb is hyperbolic with splitting

b _
I =581, .

The splitting is characterized by
0o €L, ® |F;ncr| +0 as -n-> -
o €1, “’|FEU| +0 as n+w

f44]. Let Hj: 0 o Ej be the projections, j =1, 2.

For each x in the base space X, 1let the 6x operator §_: I + I be
defined by

ch is the section vanishing except at x,
at x it has value o(x).

The crucial fact to observe is

For any ¢ € Zb, Gxo can be expressed uniquely as the sum of elements in Z], 22
8,0 = H1(6x0) + HZ(GXG)

according to the splitting. Another expression for 6x0 is

O
Q
n

5X(H]O) + GX(HZO)

since dx is linear and o = M0 + T,o. But Gx(n1o) €1, since

|Fy (8,1,0)]

| A

|F;nn]o[ +~0 as -n - -»

and similarly dx(nzo) €I, By uniqueness, the summands in the two formulas for
Gxo are equal and the commutativity of Gx and Hj is proved, j =1, 2.

This gives a splitting of Ex’ Ex = E“ ® E2x defined by




= a1
E]x = Iy zel

EZx = i

b

where ix: Ex + I~ 1is the canonical isometry onto the subspace of &-sections based

at x. Thus the projections are given by

This yields the important fact that Hﬂjxﬂ is uniformly bounded, x € X. Clearly
the splitting is F-invariant and F contracts E2, expands E]. It remains to
show that the splitting of Ex depends continuously on X.

For any pair of points x, x' € X that are sufficiently close together let

be an isomorphism, depending continuously on (x,x'), with Oy = Ix' This @ s

called a "connector", serves as parallel translation, and was constructed in [24].
By continuity 6, U6 . 1 and m(ex.x) + 1 as (x',x) = A = the diagonal of XxX.

Fix some x € X. By continuity of the splitting E1x GBEZX we mean that, for
each x,

ex.x(ij) = graph(gjx.) j=1,2

where Iix'’ E]X > sz, PR sz > Elx’ and ng1x.u + "92x'" +0 as x' - x.

. n n .
We shall consider the maps Fx: Ex + E Fo.: Ex' > Efnx' for appropriately

fxr x!
large n. Here f: X =+ X s the homeomorphism of the base covered by F. Using

the transfer maps we can let

_h
T=F
il
T =8 oF", 06,
fnx.,fnx X XX

Both T and T' are isomorphisms Ex ~E . When n is fixed and x' >~ x then

T' - T because F 1is continuous. fx



~ The space Ex is split in two ways

- - ] i
Ex E]x ® EF_’x Ex Elx ® E2x
ij - ex'xij' i=l 2.
. F L4 1 ‘ ]
We know that T carries ij onto Ejfnx and T' carries ij onto Ejf"x.
For simpler notation we suppress the x, x': E1 = E]x, Ty = Myyores o We know tha

A, Intl <
HﬂJH ﬂﬁJE <M

for some bound M, 1if x' 1is near x, because the 8's are nearly orthogonal.
By (2.7') we can choose n so large and x' so near x that

||TT]|Eéﬂn1Té|I <1,

This makes n](Ei) = E1 because “1Ei is closed and each x € E] has

d(x,n1Ei) E_lX-'W]ﬁiXI = |ﬂ1(1-ﬂi)x| = |ﬂ]ﬂéxl f_ﬂw][EéﬂﬁvéH|x|

contradicting {2.6) unless “1Ei = .
On the other hand consider S, $': € ~E _  defined by
f x
_ =N
$=F
S' =9 oF Nop ., .

- -n
Fe My X XX

The hypotheses on E], E2 become reversed, as do those on Ei, Eé. Hence by
(2.7)
[n2x| IS 0+ ESaH +1S-S'1

. S
S I o T Y ISIT- 15571

so that for n 1large and x' near x, |n2x|/|w]x] is small. Together with
mEy = E1, this means that

Ei is the graph of 9y E] + E2’ Hg1H is small

for x' near x. Hence Ei > E] as x' -~ x, and so half the splitting depends



F

continuousiy on x. Replacing F by F'] reverses all r@8les and shows the other
half to be continuous also.

Remark 1. Allowing Fb to have non-zero kernel in 22 does not destroy the
theorem. Its proof is similar except that separate estimates must be used to show
E1 near E] and E2 near E2'

Remark 2. If E 1is the restriction to X of a bundle £ defined over & D)
and if F: £+ E 1is a Banach bundle automorphism extending F then hyperbolicity
of F implies hyperbolicity of F|E where E = E|Closure(X). For the proof of
(2.5) shows that the splitting over X s uniformly continuous and hence that it
extends uniquely to a continuous splitting on the closure,

Now we present a sharpening of the Spectral Radius Theorem [44]. It is due to
Hoimes [25].

(2.8) FROPOSITION. If A 1is an automorphism of a Banach space E and the

spectrum of A is contained in the awwlus

{zet: t,< [z] <ty}

then E has a new norm | |, such that
m,(A) > 2 AL, < t, .
Moreover, if E 4is a Hilbert space them the new norm | |, arises from an inner
product.
Proof. Let the original norm on E be | | and choose b1y <, <t

such that spec{A) C {z € (: T, < [Z|*<T2}. Put

oo

2 % kipk (12 -k, K 112
xi5 = T AT+ T (RN
k=1 k=0

Since the spectrum is compact, it lies off the boundaries of the annulus and the
series converge by the Spectral Radius Theorem. Clearly

ax12 = 3 (KIARIX)Z 5 T (5K akTx])2
k=1 k=0




= T](kZO(T]IA x|)F) + Tg(kg](Tz |A%x])°)

Note that the zero th term of first sum, T]|A x| is the missing zero-th term of
the second sum, TZIA x|. Hence

2 21,12 2 2
IS < SixE (x| > <F)x|2
since Ty, > Ty This proves the Temma.

Femark. A finite sum would also suffice to define | |,. Likewise, any norm
near | |, serves as well.

Question. To what extent is (2.8) true for an automorphism A of a Banach
bundle? For instance, can

HA 1 m(A)

< 1+¢ >1-¢
I nyl/n m(A? m17n =

be forced for all large n by the right choice of Finsler? Ap = A|Ep, E_ = fiber
at p. Assume the base is compact.

Using (2.8), we can draw the following conclusion from Theorem 2.5.

(2.9) coroLLARY. Tf F: E~+E s a Banach bundle isomorphism and the spectru

of Fb 18 contained in the disjoint open annuli A]""’Am

= {z et t, >|z| >t 4}

i+1

then E has a continucus F-invariant esplitting E = E] ... & Em' Vectors in Ei

are characterized by

n -n
n-eo t,I n ti+1
E] -8 Em 18 unique among all F-imvariant, a priori diseontinuous splittings
E = Ei ® ... @ E& with spec(Fb]Zb(E%)) CA;. Moreover, there is a Finsler on E

such that m(F|E; ) > .,y and IFJE.N < t,.

Proof. Uniqueness follows at once from the asserted characterization. If



‘'m="T1 then the same formulas as in {2.8) give the Finsler.

Suppose m = 2. Then tElF: E-+ E is a Banach bundle isomorphism and

(tE1F)b = té]Fb has spectrum off the unit circle. By the Spectral Decomposition
Theorem [44] and (2.8) it is hyperbolic. Then (2.5) guarantees and characterizes

the asserted splitting; (2.8) gives the Finsler.

Suppose (2.9) is known for m-1 > 2. Consolidate the last two annuli into
R={zet: tm-1>|z|>tm}‘ The spectrum of F s contained in A]""’Am-Z’A"
By induction, F Teaves invariant a continuous splitting E = E1 @ ... 8 Em_2 @ E

appropriately characterized. Restricting F to the bundle E over X we are
again in the case of two annuli, Am—l and An. Hence E splits, the summands
are appropriately characterized, and (2.9) is proved.

Under restrictions and quotients, spectra behave as follows.

(2.10) PROPOSITION. If T 4 an automorphism of a Banach space E leaving
tnvariant the elosed non-zero subspace H then

(a) Spec(T) C Spec(T) U Spec(T|H)

(b) The ammular hull of Spec{T|H) meets Spec(T), where T: E/H + E/H is
the quotient of T.

Proof. (a) is well known [44]. (b) is easily verified, for if A= {z €(:
t<|z|<t} s the smallest annulus centered at 0 containing spec{T|H) and
spec(T) "A =9 then E has a T-invariant splitting, E = E] @ EZ’ corresponding
to the parts of spec(T) beyond A and enclosed by A. Any non-zero vectors
e € E], e, € E2 have

n -
ATl T,
Tim = 1im —y = ®

e T N-=o t

while any h € H has these Timits finite. If h could be expressed h = e + e,
then 1im 1 "|T"h| = = unless e, =0 and Tlim t"|T™"h| = 0 unless e, = 0.

n
Hence 21 =e, =0 and H=0, proving (2.10).

Question. Can spec(T[H} be disjoint from spec(T)?

Answer, due to Ethan Akin, "no". Besides, spec(T|H) -spec(T) is either empty
or consists of components of € - spec(T).

Remark. Were (a) an equality, our task of proving the continuity of the



“splitting in (2.5) could have been simplified by passing to the c1o§ed”'Fb;invafiaﬁ1
subspace of continuous sections =®(E).

Now we are ready to prove (2.2), (2.3), the main theorems of §2.

Proof of (2.2). Recall that f was a C‘l diffeomorphism of M leaving the

submanifold V invariant. We had defined fb: Zb(TvM) by

= [=] [+] --I
fbo = Tfogef |

This left Zb(TV) invariant and we formed the quotient ?b: z>Z for
£ = P(rM)/zP ().

By hypothesis and (2.10), the spectrum of f, 1is contained in three disjoint
annuli
RYuaua® .,

By (2.9), TVM has a corresponding splitting: E] ® E2 &lEs. It remains to check

that E2 = TV.

The inclusion E2 2TV holds because in (2.9) E2 is characterized as those
vectors in TVM which have

Tim o [(T,f")v] = 0 Tim t" (T £ Mv| = 0
n n X

where A = {2€ (: t<|z|<T} :>spec(fb|zb(TV)) and does not meet spec(fb).

Let Ez = E2/TV. Thus Ez C TVM/TV. But Eb(Ez) is a closed ?bainvariant
subspace of I and {since the internal and external spectral radius of TflE2
1ie in A)

spec(f, |2°(E,)) < A
while spec(?b) c AY U A%, contradicting {2.10b). Hence Ez =0 and E, =TV,
If f is eventually absolutely normally hyperbolic at V then, from the Spec.
tral Radius Theorem, spec(?b) 1ies in annuli, centered at 0, disjoint from
spec(fb|2b(TV)). Thus, by the first part of (2.2), f is immediately absolutely

normally hyperbolic at V. The converse is clear.

Proof of (2.3). Let | |, | |, be Finslers on TM. They are equivalent



since V is compact: K'1| l« <1 | <K| |[x If conditions (a), (b) in the defini-
tion of eventual relative normal hyperbolicity are fulfilled for the Finsler | |,
then, with respect to | |,, the ratios in guestion are affected by at most a con-
stant multiple, Kz, which we can absorb into the constant C, showing that (a),
(b} hold for | |, also.

Assume f s eventually relatively normally hyperbolic at V. Clearly the
hyperbolic splitting N ® Tv @ N° = TM induces an RNf-invariant splitting
N=~R@N when we divide TM out by TV, and clearly RNf is hyperbolic

respecting W ® N°.

Assume conditions (a), (b) of (2.3). In particular, Finslers on TV, N are
specified. Choose any continuous normal bundle N of V in M, TV@® N = TVM'
Pull the Finsler and splitting back from N to N via

N T, M—TMTV=N= e

v v e
Put a Finsler on TVM making TV c—a—TVM and N C—rTVM isometries. Express Tf
respecting N oTveN as

ﬁ;f 0 0
f= f =
Tp Cp Vp j? p
0 0 pr

The zero entries are consequences of Tf-invariance of TV, N e TV, and TV & N®.

Let Tf act naturally on the bundle LY whose fiber at p s

u au
LT = L{N,T V¥
P ( PP )

by
Ug, + oDYo (N -1 ]
L*f: P Fd+(Cp (fo) P) (pr)

Thus LYf 4is a "linear graph transform"
graph(LYF(P)) = Tf(graph(P)) .

Clearly LYf" = (LY)". By condition (b), we see that



|

vV ——— ¥

is a uniform fiber contraction, and as such has a unique continuous invariant sec-
tion PY: v~ (Y [22 or (3.1) of this paper]. Its graphs

N = graph PY(p) C ﬁ;erpv

u
P
provide a Tf-invariant bundle Nu, N e Ty = ﬁu & TV,

Arguing with f'n, we produce a Tf-invariant bundle NS, VeN =Te N,
Define a new Finsler | |, on TM making the isomorphisms N+, N° - R
isometries, and having | | = | |, on TV. Respecting | |,, it is clear that f
is eventually relatively normally hyperbolic at V.

On the way to proving (2.4) we can use the technique of (2.3) to get some
abstract perturbation results.

(2.11) 7THEOREM., ILet E be a Banach bundle over the compact base X, Let
F: £+ E be an automorphism of E leaving invariant the continuous splitting

E = E1 @ EZ‘ Assume

'“(Fu) > IF, | X € X

where ij = F|ij. If F is a Banach bundle automorphiem near F then E has ar
F-imvariant continuous splitting E = E] & EZ near E.I @ E2. Besides Ej 18 the

only F-invariant subbundle of E near Ej’ i=1, 2.

Proof. Write

A B
= X X .
Fx = [ C D } respecting E1 =) E2 .
X X
Let L be the bundle over X whose fiber at x is L(E1X,E2x). The natural

action of F on L is

1

Lx 3P (Cx+KxP)°(Ax+BxP) € Lﬁx

where h s the base map covered by F. This makes graph(LxF(P)) = F(graph(P)).




-

Since F s near F, we see that

m(Ax) & m(F1x) IBXH =0

I

0 ID W = EF

X 2xl )

HCXH
Let LF be the map induced on sections of the form X > L(1) = {P & L: IPk<1}. As
observed in [22], [F is a well defined contraction and has fixed point near Q.
This produces an F-invariant continuous subbundle El near E, by setting
Eiy = graph(Px) where x +— P s the LF-fixed point. It also proves uniqueness
of E] near ET'

Dealing with F' and we produce EZ' For m(F1x) > IF, 1 implies
m(Fyy) > IFTL 0, x' = h(x).

(2.12) coOrROLLARY. Let E, F, F be as above but let E = E] & ... B Ek be an

F-invariant continuous splitting such that

nﬂ%x)>uF ! 1<J<k-1 xXEX .

J+Ix
Then there is an F-imvariant continuous splitting E = E] ® ... ® Ek near

E-[ e ... 8 Ek' Besides Ej ig the only F-invariant subbundle of E near Ej’
1 <j<k.

Proof. (2.11) is the case k = 2. Let k be > 3 and assume (2.12) known for
k-1. Amalgamate E.7 @and E  to form G. Put the "max" Finsler on
E: |y]-F...:kyk| =_max(|y]1,...,|yk|), yj € Ej' By (2.12: k-])_there is a splittin
E,®---®EF ,®6 for F, and E.,...,E _, are the unique F-invariant subbun-
dles of E near EI""’Ek-2' Amalgamating E] and E2 as H-= E.| G?EZ produces
unique F-invariant subbundles H, E3,...,Ek near H, Es,...,E . Thus, except wher
k = 3, induction proves (2.12).

When k = 3, we have unique F-invariant subbundles E}, E3, G, H. We claim
that G NH = Ez is an F-invariant subbundle near E,. Clearly GNH s F-
invariant. Since Gx and Hx are subspaces of E  near G and H  they inter-
sect in a subspace near Gx N Hx = sz. It depends continuously on x. This is a
sort of linear transversality lemma which is proved as (2.13) below. Otherwise, the
proof of (2.12) is complete.

(2.13) LEMMA. If E = E.l @ E2 @ E3 12 a split Banach space with the "max"
norm and 1f P € L(E}@EZ, E3), Pl <1, Q€ L(EZGES, E]), iQl < 1 then there <
a unique RE€E L(EZ, E1€BE3) sueh that



graph(R) = graph{P) N graph(Q) .
Furthermore (P,Q) — R <is smooth.

Proof. The R we seek can be written as R = R]+R3 where RI: E2 > E],
R3: E2 > E3. The equation to be solved is
R - (Qe(I,#Ry), Po(R+1,)) = 0

where 12: E2 - E2 is the identity. By the Implicit Function Theorem there is a
unique solution to this equation for small @#PI, IQl and it depends nicely on P,
Q. In fact it is easy to check that the best bounds for solvability are

IPY, kQI < 1.

The techniques of (2.11) imply at once the following fact which we have used
elsewhere.

(2.14) PROPOSITION. The hyperbolic automorphisms of a Banach bundle E form
an open subset of the topological space of all bundle automorphisms of E. The bun-
dlesplitting varies continuously.

Remark. 1f F: E -+ E 1is hyperbolic and F': E~ E 1is near F then the natu-
rally induced maps on the space of bounded sections of E, Fb’ FB- z (E) S5, are not
nearby in the space of operators on I (E Thus, it is not immediate that spec(FB:
should be near spec Fb). A proof of (2.14) by general spectral theory might be

interesting to have.
As a consequence of (2.12) we get

(2.15) THEOREM. If f is normally hyperbolic at V, f isg ¢! near f, an
(V) =V then T <4s normally hyperbolic at V and the unique splitting
MeTtve W for T is near that of f.

Proof. Applying (2.12) to F=Tf, F=TF E=TM=NOTVON givesa
Tf-invariant splitting M= E'I & EZ & E3 near NY ® TV @ N°. By uniqueness in
(2.12), TV = EZ’ since Tf leaves TV invariant. Since E1 = Y, E3 = N%, and
Tt = Tf, it is clear that f s normally hyperbolic at V and E; ® TVeE; dis-

plays it. By {2.12) the splitting depends continuously on ¥.

Proof of (8.4). Let {ft} be a flow lTeaving V invariant. Suppose s
eventually normally hyperbolic at V and NY@® TV @ N° exhibits it. Then fb is



immediately normally hyperbolic at vV for some b ;-é._mwé-know'tﬁafww%t(v) = v _én
that %+ ¢! as t-b. Thus, by (2.15), ' is normally hyperbolic at V,
t =b. Let

M= e Tve W

tu. LU tS.NS.

exhibit it, "N = N°, "N = We claim equality.

Consider NY = TFY(NY) for t = b. Then
TR = TRRTFEN)) = TebreP(Y)) = TP = RY
likewise be(ﬂs) =N for RS = Tft(NS), If t=b then RY = NY RS =N

Thus, RY @ TV @ R also exhibits the normal hyperbolicity of £0 at V. By (1.1)

RY = N4, K° = N°; that is,

TN = W TN =N tap
By (1.1) applied to f° this shows NY =AY, NS =N for t£b. For t far
from b, but of the same sign, the equalities persist by continuity and reapplica-
tion of the local equality. Thus,
TEENY) = N TEENS) = N teRr.
To prove that all ft are eventually normally hyperbolic at V 7Js easy. Write

(ft)n = ¢t o gkb-r _ -rckb

where |r| <b and kb > tn. Thus

n
n(e"y m(N;fkb) sk o T
*pnt >cC kB2 CA >2c A
Hfo | Hfo [

where ¢ = Iin m(Tft). Similarly, for N°. This proves that £t s eventually
t|<b
normally hyperbolic at V and completes the proof of (2.4).

Combining (2.2) with Remark 2 on page 14 we get many results on extending hyper-
bolicity to closures. For instance

(2.16) PROPOSITION. Let f: M+ M be a diffeomorphism leaving A CM inpari-

ant and let Tf leave a splitting TAM =@ 5 iwoariant. Suppose



ITFESH < A" T EYE < A"

for all n > 0 and some constants C, A with A < 1. Then the A is a hyperbolic
set for f. In particular Eu, E5  have locally constant dimension and are contin-

uwous on A.

The next result shows that normal hyperbolicity of f at V depends only on
the behavior of Tf over a certain compact subset, the centrum of f|V, If h is a
homeomorphism of a compact metric space X, recall that Q(h) is the set of non-
wandering points of h: x 1is nonwandering iff each neighborhood of x, U, returns
to reintersect U under a nonzero h iterate -- h'U N U ## for some n# 0. The
set 9(h) s closed and h-invariant.* If we restrict h to 2(h) and replace X
by Q(h) we get ﬂz(h) C o(h) C X. Continuing in this way, we generate the Birkoff
central series

XDQDQZDQBD...

of h. It ends at a countable ordinal o = o(f). That is, oot - ¢°. The final
set ©° is called the centrum of h, z(h}, It is the closure of the recurrent
(= Poisson stable) points [7]. To pass a limit ordinal 8 we define P = na.

Note that each QB is compact and f-invariant, v<B

(2.17) THEOREM. Suppose f: M > M is a diffeomorphism leaving the compact C-|
manifold V invariant and TVM has a continuoue splitting N e Tve R suh that
ﬁu TV, TVe ﬁs are Tf-imvariant. If Tzf 18 eventually normally hyperbolic
respecting ﬁg ® TZV & ﬁ; where z = z(f[V) then T <{s eventually normally hyper-
bolic at V.

Proof. Let TM denote T M, T,f denote TFI|T gM etc., where B s any
£ 2
ordinal 0< B8 <a and z = Q*f|V). By transfinite induction we claim that

ﬁu’ ﬁi extend to continuous Tf invariant subbundles

z
u S U~ gu s S
C C
NB’ NB of TBM such that NB N" & TBV, NB TBV & NB’
and T,f 1is eventually normally hyperbolic respecting
u s
NB @ TBV & NB'

*The opposite condition is called "wandering," but the choice of words is unfortunate
since there is no etymological reason that a point which wanders might not also wan-
der back where it began. A better choice of words, suggested to us by K. Sigmund,
is that a point is called nostalgic iff its neighborhoods U keep returning as in
the definition of Q(h). The point itself may or may not return near by, but its
thoughts (nearby points) always do.



Where B = o this is vacuous, so suppose it has been proved for some ordinal B8 < a.
There are two cases depending on whether 8 1is a limit ordinal. 1In either one, we
return to the construction of NY, 8% din (2.3).

Consider Lp where L is the bundle over V whose fiber at p is L(ﬁ:,TpV)

and L, is L]|aP. The natural Tf-action on this bundle was
Sucy-1 u
£: P [C_+(V_f)oP]o (RUf €
LyF: P [C,+ (V F)oPT o (RlF) Pe L)
where
~l Nf O Al
TFIN. ®TV = P resp N_.®TYV .,
PP C vV f p p
P P
Let LBf denote the induced action on the space of sections Z (L Since

NB CZNg & TBV exists by the induction assumpt1on there is a un1que LBf -fixed
point: the section x+— P where graph(P ) = X € 98 Besides, for n
large, LBf contracts a11 sections toward th1s one since NB @ TBV & NB exhibits
the eventual normal hyperbolicity of f at QB. Thus, there is a neighborhood U
of 98 in V such that L _f": Lp - Lp is a contraction for all p €U and all

p
large n.

If B is a limit ordinal then o' CU for some y < 8. Otherwise £° # (@Y.
v<B
Thus, Lyf" contracts z (L ) for all large n. As in the proof of (2.4), unique-

ness of the L _f -fixed p01nt implies that it is alsec an Lyfwfixed point. Thus,
Tyf(N ) = NY where Nx = graph(PX) and x +— P is the Lyf fixed point. For a
perhaps larger y', vy <y' < B, QY is very near QB and so, by continuity of N

B propagates from 2 to QY .

it is clear that eventual hyperbolicity of f at @
This shows that NY, 1is as claimed in the induction hypothesis. Symmetric arguments

with £ produce Ni as claimed.

If 8 s not a Timit ordinal, but 8 > 1, then there exists an integer N
such that no point x € B! has more than N f-iterates in V-U. (Otherwise a
point of QB could be found in V-U.) It is now clear that LB ] ' has a unique
fixed point As before this gives a continuous Tf-invariant extension of N to
Ul '} ;
Ng-1 © Ngoy @ Tg Vs
completes the proof of (2.17).

and we verify the inductive hypothesis at stage 8-1. This



- Finally, here is a lemma needed below.

(2.18) LEMMA. ILet

be a commutative ladder of short exact sequences of Finslered veetor bundles, all
over the same compact base A, where Tk is a bundle map over the base homeomor-
phism, f: A+ A, k=1,2,3. If T3 s itnvertible and

m(T3|Eg) > AT [E | X € A
then iE] has a unique Tz-invariant complement in E2.

Proof. Choose any complement to iE1 = Ei in E2, say EO' (It is only to
find E0 that we use finite dimensionality.) Respecting EOGaEi = E2 we have

T, = .
2x
cx Kx

Renorm E2 to make j: E0 + E3 and i: E] -+ E1 isometries. Then m(TSx) = m(A
> HKXH = |T
X E A is

X

1x“‘ In the natural way, T2 acts on the bundle [ whose fiber at

Lx N L(EOx’Eix) ’

Namely,
: op”]
l LT2. P (Cx+KxP) Ax .

This action contracts the fibers of [ uniformly by the constant

-1
sup (IT, Im(T, )"} < 1.
xe A 1x 3x

)



‘Applying (3.1), i.e. [22], we get a unique LT,-invariant continuous section

g A+ L. There EieE‘3 = E‘,2 is a Ta-invar‘iant splitting where

El

35 = graph ag(x) .

‘Uniqueness of Eé follows from uniqueness of o.



§3. The € Section Theorem and Lipschitz Jets. The following theorem is the
model for the others in this paragraph. See also [22].

(3.1) 7THEOREM. Let E be a Finslered Banach bundle over the compact space X
Let the homeomorphism h: X + X be covered by a continuous map f

and assume |f(y) - f(y')]| f,kIY"Y'!x for all pairs Yy, y' € w'l(x), x€ X, and
a untform constant k < 1. Then E hae a unique bounded section o: X + E such
that f{oX) = oX, and o0 is continuous. The same conclusions hold when compact-
ness of X <is replaced by the assumption: {|f(0x)|: X€X} s bounded, Ox being
the origin of ﬂ—](x).

In other words,

(3.1') THEOREM. 4 fiber contraction has a unique bounded invariant section
6, and O 18 continuous.

b

Proof. Let I be the space of all bounded sections o: X ~ E with the metr:

d(o,0') = sup |cr(x)--0'(x)]x .
xEX

Then Eb is a complete metric space and f acts naturally on Zb as f#: Zb - Zb

defined by

£y 6 r—fogoh ! .
This means 1mage(f#o) = f(image o). fy is called the graph transform. Clearly
d(f#c,f#o') < kd(o,0') and so f# is a contraction of Eb. Thus f# has a unique
fixed point, say o.. But f#(of) = 0. means of(x) is f-invariant and vice
versa. The subspace ¢ of continuous sections is closed in Eb and invariant by
f#. Hence O¢ lies in Z°. Q.E.D.

Remark. 1f o is not required to be bounded, the theorem is false. For
example let X = [0,1], E = [0,11xR, and f(x,y) = ((a+1)x-—ax2, by) where
0 <a, b<1. There are infinitely many unbounded, discontinuous f-invariant
sections.



" Under certain circumstances the unique f-invariant section will be differen-
tiable. A sufficient condition is given in the following theorem.

(3.2) THEOREM. Let E, X, f, h be as above and also of elass Cr, r>1
(Thus X is a CV eompact manifold and h a ¢’ diffeomorphism.}) Let TX be

given a Finsler structure and call

o = sup HTxh']H .
XEX

If k<1 and ka' <1 then Oc is of class c’.

The essence of (3.2) is present when r = 1. The assumption ka < 1 means:
f contracts fibers more sharply than h contracts the base.

Natural proofs of theorems like (3.2) are not simple generalizations of the

proof of {3.1). For instance, if E is trivial and the space £V of all ¢! sec.

tions X - E 1is given the natural 01 sup-norm, then f#: Z] + Z] is not in

general a contraction. It seems unlikely to us that any single metrization of 21
will make f# a contraction of 21 for all 01 fiber contractions, f.

Instead we concentrate on the fixed section Oes which we hope to prove is C1
If it were C], the tangent bundle T(ofx) would be invariant by Tf. Finding a
Tf-invariant bundle over ofx is easy, but proving that it is indeed tangent to
cfX is not. The ideas of Lipschitz jets explained below seem natural for this, anc
they may have some interest of their own.

Definition of Lipschitz jet. If X, Y are metric spaces, then two local maps
g, g' from X to Y defined in a neighborhood of x € X are tangent at x iff

. : d(qu,g'u)
gx = g'x and Tlim sup ——5%4517—— =0 .
X d(u,x

The (Lipschitz} jet of g at x, ng, is the equivalence class of all local maps
at x, tangent to g at x. The jets of all local maps from X to Y carrying
XEX to yeY form the set

J(X,x3Y,y) .

The local map g 1is said to represent its jet J,g. For Js 3" € IXxiY,y) we
define



e e bt - —— ._‘.. m; —_ . :_.... . d ( u ,,‘ d e
d(j,j') = lim sup -5%—ﬂlj§l
WX d(u,x

for g, 9' representing Jj, j'. This d{j,j') 1is independent of the particular
representatives chosen, although it might equal «. When g' is the constant map
u+—y and j' = J. 9" then

d(gu,y)

d(j,j') = ¥im sup =L (g)
U dlu,x X

where Lx(g) is the "Lipschitz constant of g at x."

This definition of Lipschitz jet is the same as the usual definition of 1-jet
except that nondifferentiable functions g are permitted. We may distinguish
several classes of Lipschitz jets:

Jb = {j € I(X,x;Y,y): d{3, constant jet) < e}
I =qe ol J has a continuous representative}
- {je Jb: j has a differentiable representative}
J2 = {j € Jb: J has an affine representative}
For Jd and J® to make sense X, Y must be differentiable manifolds and linear

spaces respectively.

(3.3) THEOREM ON LIPSCHITZ JETS. If X,Y are Banach spaces and x = 0,

y =0, then the set of bounded jets Jb 18 a Banach space with norm |j| = d(j,0).
The gets Jc, Jd, 7% are closed cubgpaces of Jb and
P25 250
Proof. |+| = d(+,0) is clearly a norm on P - we must prove 3® s com-

plete. Let (jn) be a Cauchy sequence in P and let g, represent j_,

th

Define a sequence ro ¥ 0 inductively by requiring at the n”" stage

< <
0 rn r‘n_] 3

u, 2 {x € x: | x| <rlos



. . ]
max sup —r — < Hp-dpltn
mn<n |X|il"n X n m n

Since 1im sup |g x-g x|/|x| = [j -3 |, this can be done. Then define
' x+0

olx) = {jgn(x) it orpe < |x| <rps n=1,2,...

0 if x=0.

Observe that Jog Jb and jm + Jog in Jb since

i) = 11 lgx - ox| y lg,x - g,x|
Jodpd) = L1m sup ———T—Tww—-< m sup sup -~—r—r———
1
< sup (15 -3 1+2)
> In! T

which tends to zero as m + =, Hence Jb is complete.

For J© we must construct g with greater care: the g above would probably
not be continuous.

Let (jn). (gn), (rn) be as above with j € J° and 9, continuous. Define
a sequence of continuous functions ¢n: X+ [0,11 such that

{1 if x|
o X =
n 0 if [x|

| A

"+

r

| v

n "’

Then put g = ¢ g + (1 -¢n)gn_] on the annulus r ., < | x| <r,e At [x} = Poal?
g 1is continuous because its limit is 9 from above and below. Again jm - JO(g)
because

a5 0q) = 1i g% - ox| 1 lgx - g x|
J sd.g) = Tim sup im sup Sup
m*-0 x>0 ] roa<Ixlsr X

¢ (x)[g x-g x1+ (1-¢ x)[g _.x-g x]
Tim sup sup n n_’m ] n" = n-1" m
n-oo rn+1<|x|5_rn

. o . L1,
Vimsup [J -3 | + 13, -3, | +5+57

n—ro

1A

which tends to zero as m - «. Hence g% s closed in Jb.



. Now let j belong to Jd. That Jj has a differentiable representative, say |
. g, means that (Dg)0 is tangent to g at 0 -- i.e, (Dg)0 is another represen-

tative of j. Thus, M-, Likewise, if (jn) is a sequence in Jd convergent
in Jb and 9, is a differentiable representative of jn then ((Dgn)o) is a
Cauchy sequence in L{X,Y). Since L(X,Y) is complete, this proves J4 is closed
s b

in J°.

To see that I° 7 J°, define g:R~+R as g(x) = |x|Xm(x) where XQ is the

characteristic function of the rationals. Then JOg is bounded -- d(JOg,O) =1
-- but it is easy to see that no continuous ¢' can represent Jog. To see that
I° ? 74 consider x — |x]. Q.E.D.

It is interesting to note that Jb is nonseparable. We find it useful to
think of Jb as an enlarged class of tangents -- larger than the class of linear
maps and perhaps more natural a priori.

To get a grip on the space of sections of a Banach bundle we need to understand
-a section's slope. When E is trivial this is easy. Any section o: X > XxY is
of the form
o(x) = (x,s(x)) s: X > Y

where Y is the fiber of E. This lets us put

|s(u) ~s(x)],

slope_{c) = L_(s) = lim sup
X X X dx(u,x)
where | Ix is the norm on the fiber of E over x. When E is not trivial, we

can trivialize it.

(3.4) rLEmma., Any ¢’ finite dimensional, Finslered vector bundle E can be
tsometrically ¢"  embedded in a trivial finite dimensional, Finslered " vector
bundle E.

Proof. That a complementary E' exists, E® E' being trivial, is standard
[6]. Any Finsler on E' and the direct sum Finsler on E finish the proof. See
also (6.4).

Remark 1. Another way to deal with slope is to introduce a connection -- a
notion of horizontal subspace in TE. Trivialization accomplishes the same thing,
Neither is uniquely determined by E.



Eemark 2. If E has a Riemann structure then it is also possible to isome-
~trically embed E in a bundle E which is trivial and has the constant Riemann
structure. (For Finslers this is not always possible.) One might then redefine

slope by the usual global inequality |sx-—sy|.§ cdx(x,y). Since the Tatter gets
into qufstions of the global nature of X and dx, we avoid it, preferring to
leave E just vectorically trivial. See also Lemtma 6.8,

In 884, 5, 6 we need hypotheses more general than those in (3.1,2). For
instance, many natural "fiber contractions" do not cover homeomorphisms of the base
onto itself, but rather onto some larger set.

Definition. Let X0 C X be a subspace. If h: X0 + X 1is a homeomorphism to
its image and h(XO) 3 Xg then h 1is said to overfiow Xg-

Definition. A fiber eontraction is a fiber preserving map of Finslered Banach
bundles

such that E, = E|X,, f is continuous, sup L{f|E.) <1, and h overfiows X..
0 0 X 0

xEXO
Note that a fiber contraction f acts on sections of E. in the same natural

0
way as before:

f,0(x) = foh™1(x) (x € X,)

for any section o: X. > E.. Thus f#: E(EO) - Z(EO). When X. 1is compact, ZC(E0

0 0 0
is metrizable and is contracted into itself by f#. Thus, as in (3.1}, fy has
unique fixed point o € ZC(EO). This T¢ is the unique continuous (or bounded)

section o: X0 + E0 such that
f{image(c)) N E0 = image{o) .
It is an easy abuse of language to call Og the f-invariant section.

Definition. A fiber contraction f is of sharprness r, r >0, if XO’ X,
£, 0" are C" and if

r
sup k.o, <1
NEXO XX



“where k, = L(fIEx), a = IThxh"l. (This assumes TX to have been Finslered,)
"Such an f is an r-fiber contraction.

(3.5) ¢ sEcrIow THEOREM. Let f be an v-fiber contraction, v > 0; let
-XO be compact, and let E be finite dimensional. Then the unique F-invariant
section Ot X0+ EO ig Cr, depends c’ eontinuously on f, and uniformly c’
‘attracts all other C' sections of EO under repeated application of f# That
18, 1f f': E +E Zs an v-fiber contraction and f' + f, Cr, then Ogy * O,
Cr,' and 'F (0) + 0
E

£ Cr, for all o 1in any C"  bounded set of c" sections of
o

Proof. lLet r=0. Since f contracts all fibers uniformly, o, exists and
is continuous as noted above. Likewise, it is clear that If;c«-cflo g_kn|c-oflo
where Kk = sup L(fIE ) < 1. Thus, o, is a uniformly CC-attractive fixed point.
Since Ug is continuous and X0 is compact, a large disc bundle D0 - E0 is
carried into Int(D) by f; Dy = D|X0. Also it is clear that

n def, n
Xao= N fD, = {z&€D,: 32" with z2',...,fz' =z€D.} .
07 o 0 0 0

Of
Let U be any neighborhood of o eX 0" There exists an n so large that f"(Do) C
Int(U). If f' 1is a fiber contraction sufficiently C close to f it is clear
that (D)) CU also. Thus oo, (X)) CU and so o, +op, C°

% as £ +f,
This completes the proof of (3.5) where r = 0.

f’

Now let r be > 1. Before we can show O is C], we must prove it is
Lipschitz. To do so, we need to use the fact that f is Cl. {Otherwise, the esti-
mates sup k <1 and sup k ar <1 do not 1mp1y ¢ is smooth: for instance,
let E = [0, ]]xR and let f(x,y) = (x,g{x +7(g(\<) x)) where g: [0,1] >R is an

continuous, non-Lipschitz function; then kx %, a, = 1, and O¢ = g.)

By (3.4), E can be trivialized
E=EeE'.
Then f extends to f on E by setting

flvev')=f(v)o®o0,

-~

Clearly f obeys the same hypotheses as did f and the f-invariant section of E
lies in E @ 0. Thus it is no loss of generality to assume E is trivial in the



first place.

Since P is continuous and XO is compact, there is some disc subbundle
_D0 C E0 of large radius such that E0 FlfDO - DO' Since E 1is finite dimensional,
D0 is compact.

Using the triviality of E, we can, at each point z € DO’ express Tzf as

T.f =

Az B2 Az: TXX - Thxx BZ: Ex -+ ThxX
Z L}
z

CZ K CZ: TXX + E KZ: TXX + T xX

hx h
where x = mz. Since f preserves fibers, Bz = 0. By assumption nKzn 5_kx <1
and Az = Txh has HA;]H <a. From our estimates on k, a it follows that Tf

carries a family of nonvertical cones into itself. Namely, choose

c = sup §C. I
Dy
£ > 1£§L— o = sup o
-1 DO X
T = sup kxux

and consider in each T,E the cone of all vectors of slope < 2:
Conez(z) = {u+v: uETX, vEE, [v] < 2]uf} .
Such a vector u+v is transformed by Tzf into another, u'+v', such that

1 -]
u'l > o7 ul

Iv'| < Kk v] + 1C 1 ]u

and thus,
|W|fﬂ&EWI+CW|f_Wﬁ&2+u&)NW
< (12 +ca)lu'|
which by choice of & is < f[u'|. Consequently
(1) Tzf(Conez(E)) C ConefZ(E) .

Now let us Took at the set Z(2) of all continuous sections o: XO -+ D0 such

that at each point x € X0




slopex(o)_fgl";""””w“'W

From (1) it is immediate that f# carries I(L) into itself. We claim that Z(2)
£ lies in I(%). When E
has a constant (= trivial) Finsler, this is merely a restatement of the fact that
the set of maps from X to Y with Lipschitz instant < £ ds closed in CO(X,Y).
When E has a general Finsler and {cn} is a sequence in Z{L) which converges to

jis closed in I and hence that the invariant section o

.o in I then we must show o € I{2). Fix Xg € X, and any e > 0. Since | |x
is continuous in x € X (this is a feature of a Finsler), there is a neighborhood
;U0 of Xq in X such that

N

T-g < =72 < 1+4¢ X €U 0#VveEE, .
- |v - 0 X
X 0
Thus, relative to the constant Finsler | IXO on EIUO, the sections cn]U0 have
siope < L+¢e£, and so their uniform Timit, UIU also has slope < 2+ef relative
-to the ‘constant Finsler | Ix Thus, sTopexo(o) < L+e2. As e was arbitrary,

‘we have s1ope () <2 and hence have proved z(2) is complete. Therefore Ofs
the invariant sect1on is Lipschitz and has slope < &.

We are going to cook up a Banach bundle J and apply (3.1). Its fixed section
will furnish T(cf). For each x € hX0 let

= {Jx(c): o€ and a(x)=crf(x) and IJX(G)I <w}

(When x € h(XO)- X0 we put o(x) = f(cf(h'1x)).) Thus Jx - J(X,x;E,cf(x)).
Using the constant jet Jx(u b of(x)) as the origin, Jx has a natural Banach
space structure via (3.3) but, as was pointed out to us by Ethan Akin, J = UJx is
not naturally a Banach bundle. The natural topology one would give to J wusing
some trivializing E-chart depends on the chart -- even when E is trivial, O =
and X = [0,1]. To get around this problem we put the discrete topology on X,
denoting the result by xdiscrete_ Then J 1is a Banach bundle over XdiscrEte
(although in a rather foolish way) and f naturally induces a map

|
o

R
Jf(Jxo) = hx(f#c)
= Jp, (foh N
x%1scr‘ete hxgiscrete

We claim that Jf contracts the fiber Jx by the factor T, < kxax. If



A —— e e e T —

3, §' € J, are represented by o, o' then

1fdh'](u)-fc'h"1(u)[hx

IJf(j)'Jf(jl)l |Jhx(f0h-1)-dhx(folh-1)I = Tim sup

u-~+ hx dx(u,hx)
: |fcr(u')—fo'(u')|hx dx(h'}u,x)
< Tim sup ; * 1im sup ENATIE
u'+x dx(“ »X) urhx  dxtushx

<k linat] ey < T 0t

Therefore, applying (3.1), J has a unique Jf-invariant section, say oyc: X5 > J.
Clearly Jf carries Jd into itself, Jd being {jeJ: j is representabie by a
differentiable section}. For

foh™!

is differentiable whenever o is. Since Jd is closed in J by (3.3) the If
invariant section Oy¢ takes on its values entirely in Jd.

There is another Jf-invariant section of J, namely
X = Jx(of) .
It is invariant because Og is f#—invariant. Hence
Jx(cf) = ij(x) .

This proves that: at each x € XO’ the jet of P is representable by a differen-
tiable section. Hence oF is everywhere differentiable (a function tangent to a
differentiable function at x 1is differentiable at x). Besides, its derivative is
uniformly bounded. It remains to prove that Oe is C1. Consider still another

bundle over X. Its fiber at x is
L = L(T X,E.) L=UL .
X X X X

Tf acts on L according to

-1

oA x &€ X
ofhx

Lf: Pw (C_ _+K_ P)
TeX  OLX

(If graph (P) denotes the plane {u+Pu: uEETxX} C T, 4E then Tf graph (P) =
graph (Lf(P)) and in this sense [f {is the natural action of Tf on prospective



%téh@éﬁf‘ﬁ1ade$”fd"image'”E%T}“”Thé"?1BéF7"I¥””has a natural FinsTer and is finite 5
dimensional. The induced map Lf contracts the fiber Lx by the constant

T, T kxax. Since O¢ is continuous and f is C1, Lf 1is a continuous fiber
contraction. By (3.1), its unique bounded invariant section, say ST is contin-
‘Uous. The section of L furnishing the tangent planes to image (cf) is cer-
‘tainly Lf-invariant since 1image (of) is invariant under the C1 map f. Since
.the derivative of ¢ is uniformly bounded, o 1is bounded. Hence, o = O fs

L el
i.e., oc 1is C.

Remark. From conversations with R. Kirby, it seems to be the case that any
o with Jx(c) a continuous function of X 1is necessarily of class C’. This is a
strange feature of the topology of J.

To prove that O¢ is of class ¢" s a fairly easy induction. The case r = ]
is hard but finished, so assume r > 2. Consider again the induced map

LT

Ly ———1L

|

Xg ———hX

Cr—l Cr-1.

It contracts the fiber Lx by
the constant 1, = k o and so it satisfies the ¢ hypotheses of {3.5). Hence
r-1

by induction. Since ¢ amounts to the tangent bundle of

By induction, Op is and so Lf is
¢ is C
image (cf) parameterized by X, we see that or Ts ch.

Next, we must discuss how O¢ varies as a function of f. Let f' cover h',
h'Xg 2 X, where f' and h' tend to f and h in the C" sense, r> 1.
Clearly O exists and is unique. We must prove that Ce tends to of in the
¢’ sense. By induction, assume that o converges to Ter in the Cr-1 sense,
r>1 and that f' 1is tending to f 1in the " sense. The tangent bundle of
image (of.) was found as the Lf' invariant section of a certain bundle L' which
is the same bundle wherein image (of)'s tangent bundle was found. And clearly Lf'
tends to Lf in the C'' sense. Thus by induction applied to Lf' and Lf,

tends to o in the Cr'] sense, i.e. Op tends to o in the €' sense.

g Lf

Finally, we must see that Og is uniformly ¢” attractive under f;, r> 1.
By induction we know that (Lf);o e o ¢ in the Cr'1 sense as n - «, Thus,
Cr-?

T(image (f;o)) 3 T{og)

and so f;o T Tgs ", as n-+=. This completes the proof of (3.5).




" Remark. Instead of being defined on the whole bundle ”EO’ “ it would have
sufficed throughout §3 for f to map D
‘E and DO its restriction to XO'

0 into D where D was a disc subbundle o

To verify the overflowing condition is not always easy. Here is a sufficient
condition:

(3.6) PHOPOSITION. Suppose X 1is a C~I compact manifold, V is a compact
C] submanifold of X without boundary, and X1 18 a compact neighborhood of
in X. If h: X1 + X is normally expanding at V, then V has a compact neighbor

hood X5 € Xy such that hX0 DX

0 1 0

In §54,5,6 we will need a stronger version of {3.6): it must give a uniform XO
for a whole class of h's. For this we need the following form of the Inverse
Function Theorem.

(3.7) LEmmA. If A: E -+ E' 4is an isomorphism of Banach spaces and r: U - E'
is a Lipschitz map having L{r) < m{A) and if U 4s convex in E them h =A+r
is injective. If E = lE.I @ E2_, E' = E.i ) Eé, A= A'I @ AZ’ Uo E] (8) @ EZ(G)
then

h(U) D Ej(81) ® Ej(sy)

65 = (m(A,) - 2L(r))s i=1,2.

Moreover, h ie Lipschita with pointwise Lipschitsz constant f_[m(A)-L(r)]-].

Proof. Since we do not assume E has the product norm, the factor of 2 occurs
The proof is standard, see [12] or [31]. See also the figure below.

E, Es




We conclude this section by showing that the unique invariant section of (3.1) |

often satisfies a Holder condition. This makes sense only if the total space E ha:

a metric. For simplicity we assume that E has a metric induced by a complemented |
inclusion of E into a trivial bundle

EGESE" ~ XxY

where Y 1is a Banach space, XxY has the product metric, and the natural pro-
Jection proj: E®E' » E is Lipschitz. Such a metric on E is called trivializa-
ble. Note that such a trivializable metric coincides on fibers with a Finsler on E.

The following theorem was stated incorrectly in 6.1(b)} of [22]. (The hypothesis
that F is Lipschitz should be added.)

(3.8) HOLDER SECTION THEOREM. Let m: E > X be a Finslered Banach bundle
.over the compaet metric space X. Assume that the Finsler is induced by a triviali-
‘zable metric on E. Let f: E -+ E be a fiber map covering the homeomorphism
h: X+ X. Let 0 < k<1 be such that

[Fly) - £(y" ) e, < kly-y'l,

whenever X € X and y, ¥' € Ex. Suppose further that f and h-] are Lipschitz

and the Lipschitz constant o of h".I satisfies
b
ka® < 1 0<b<l.

Then the unique f-invariant section o, is b-Aolder.

Proof. Extend f to XxY by commutativity of

XxY + X x Y

4] i

fep P, frcroE

This f satisfies the same hypotheses as f, so we may assume E = XxY with the

metric
d((x.y),(x",y")) = max(d,(x,x"),ly-y'[) .

A section of XxY corresponds to a map X > Y. Holder sections correspond to



‘Holder maps. An f-invariant section corresponds to a map g: X - Y such that
' -1
g = fgh .

Let H({H,b) = {geCO(x,Y): 1im sup (x) - t() )_<_H} where H>0 and 0 <b <1
|x=-y|+0  [x-y| -

.are constants. For clarity we write the metric on X as |x-y].

Compactness of X implies that any map in H(H,b) satisfies a b-Holder
condition.

It is easy to see that H(H,b) 1is closed in the Banach space CO(X,Y). We
shall show that for some H and b, H{(H,b) 1is invariant under the graph transform
fy: g fgh'!. Hence the Fixed points of f,, o, Tlies in H(H,b),

Let L be a Lipschitz constant of f. Let x, x' € X and call p = h°](x),
p' = h"(x'). Let g € H(H,b). Then

{f(p,gp) - f{p',0p')|

{f(p,gp) - f(p',gp)| + |f(p'.gp) - f(p’,gp')]
Lip-p'| + k|gp=-gp']

Lalx-x'] + kilp-p' [

La|x-x"'| + kHa®|x - x* |
|x-wauah-x'ﬂ'b+mwb).

|F4(a)x - Fulg)x'|

A A A A

Now ka® <1 and 1-b > 0. Therefore if |x-x*'| 9s sufficiently small, the
factor in parenthesis in the last equation will be < H. This shows that
fug€ H(H,b), 1i.e. that f#: H(H,b)*D, and completes the proof of (3.8).

Remark 1. The proof of (3.8) is easily adapted to maps defined only on a ball
subbundle of E or over a noncompact base space. Also, the absolute assumption
b

ka” < 1 could be replaced by a relative one sup kxaxb < 1.
X

Remark 2. The Cr Section Theorem and the Hélder Section Theorem can be com-
bined to show that if in (3.2) it is assumed that ka2 <1, 0 <b <1, then the
f-invariant section, of, is ¢” and its r-th derivative is b-H&ider.




" §4. " The Local Theory of Normally Hyperbolic, Invariant, Compact Manifolds.
In this section the basic theorem of our paper is proved.

(4.1) THEOREM. Let f: M+M be a C diffeomorphism, v > 1, of the com-
pact c” manifold M leaving the compact C.| submanifold VY CM <invariant,
Assume T 18 rv-normally hyperbolic at V wrespecting TVM =N o TVeN. Then

(a) Exigtence: There exist locally f-imvariant submanifolds WY (f) and W (f)

tangent at V to N @ TV, TV & N°.

(b) Uniqueness: Any locally invariant set near V Ilies in WY U W,

(¢) Characterization: W° consists of all points whose forward f orbits

never stray far from V and WY of all points whose reverse f-orbits
never stray far from V.

(d) Smoothness: Nu, W and V arve of elass c’.

(e) Lamination: W' and W are invariantly fibered by ¢’ submanifolds
N;u, N;s, peEV, tangent at V to N:, N; respectively. Pointg of WS
are characterized by sharp forward asymptoticity and points of N;u by
sharp backward asymptoticity.

(f) Permanence: If f' is another C' diffeomorphism of M and ' s c’
near f, then T' is r-normally hyperbolic at some unique V', " near
V. The manifolds Wu(f'), Ns(f'), and the laminae Nu?(f'), WS} are
" near those of f. ' P P

(g) Linearization: Near V¥V, T 4is topologically conjugate to
NF = TF](N'®N°).

(h) Flows and Eventuality: Similarly for eventually v-normally hyperbolic

diffeomorphiems and flows.

Remarks. The local invariance of WY, W* means W' D W, WS cws. (b)
follows from (g). ({g) was proved in [41]. A C" Jlamination is a foliation F
whose leaves F, are ¢" and U Tin is a continuous bundle, 1 <k < r
(where Tk denotes the k'th order taﬁgent). For instance the unstable manifolds
of a €' Anosov diffeomorphism form a c¢” lamination, In the case of flows,
invariance means invariance under all time-t maps.

Proof. First we shall construct Nu, the tocal unstable manifold through V,
This is the hardest part of (4.1). Essentially our idea is to consider the germ of
f at V as the perturbation of a fiber map satisfying (3.5). The smoothing tech-
niques are special to the compact case.

By the Whitney Extension Theorem [1] there is a C] diffeomorphism g: M+ M

such that gv, Tg(N'), Tg(N®) are C™. The map gfg']
S

is normally hyperbolic at
gV. So it is no loss of generality to assume V, Nu, N> are € -- at least for
purposes of finding Wl of class C] and proving that Nu(f') depends C1



_Eontinuous]y on £ C' near f. For Q'1(Wu(gfg- }) will serve as mﬁu(f). The
¢" results, r > 2, will need more proof.

By definition, there exists a ¢* Riemann structure RO on TM exhibiting the
normal hyperbolicity of f at V. Since N", TV, N are c”, we may define a new
:Riemann structure on TVM by declaring N, TV, N° to be orthogonal but otherwise
equal to RO. Then we smoothly extend to TM. The new Riemann structure R will
still exhibit the normal hyperbolicity of f at V. Let exp be the exponential
of R and set X = exp Nu(eo) where €q is small enough to make X a compact
manifold (with boundary). Clearly TX = N e Ty,

let £ bea C° extension of N° to X near V. Exponentiating E gives
a tubular neighborhood of X 1in M, t: E(v) + M. The map t'lft, defined near V
in E, 1is normally hyperbolic at V, and it may replace f 1in our search for W
-- i.e. we may and do assume M = E. As in (3.5) we can assume E is trivial by
setting f(y®y') = fly) for y®y' € E®E', E' beinga C  bundle over X such
that E@®E' 1is trivial. This makes Tpf]Ep non=invertible but keeps |
-lTpf]EpI = ITple;H. We call Y the fiber of E and w the projection

m: XxY + X. Respecting £ = XxY we write Tf = ['é E] which at p € V becomes

A UseV £ 0
T f = p BP = NP VP .
P C K 0 NSf

P P P
Let
X{e) = exp Nu(e)
and let
20(1,6) = {sections X(e) + E(e): o{p)=p ¥peV, slope o<1} .
Put the C0 sup norm on 20(1,5), which makes it complete as in §3. (Since E 1is

trivial, the slope is well defined.) We claim f naturally induces a contraction
f# of 20(1,5) -- at least for small e -- defined by

f#o = fogog

where g is a right inverse of wfo defined on X(e). The hard part is to show f,
is well defined.



T The Riemann structure R on TM, restricted to TX and TV, gives exponen-
‘tial maps X-exp: TX + X, V-exp: TV >V, Then, consider xp: Tpx + X defined by

xp(yi-v) = X-exp(y-khp(v)*-v) YE Ng v E TpV

‘where h_: TpV+N; has X—exp(hp(v)+v) =V-expp(v). Thus, h 4s C and
f(th) = 0. (We have merely modified the natural exponential charts so that V

appears to be flat.) Triviality of E lets us define bundle charts ep

e
TprY —PixxyY=E

Four uniformities are to be noted about E and these charts:

1) vly 1 dy (x,x") :
1 - 3
Ty b (%) = x|

for x, x' €X, peEV, yeY, y#0, and dx(p,x)-bd(x,x') 3 0. By I we mean
uniform convergence. Second, if f dis expressed in ep-charts as

S I .
fp = efp foep = Tpf + rp. TpXXY > TprXY

then
(i4) D(rplTpM(v)) >0 as v~+>0 pe V.
(i1) says the Taylor approximation of fp by T f 1is uniformly good. The uni-

formities (i), (ii) follow at once from compactness of V, M, and smoothness of
h, exp. Finally, given constants w < w' < 1 there exists & > 0 such that

(3i4) X(e) 2 X (u'e.8) def Xp(Na{w'e) x TV(8))
(iv) x;](xp.(we,ws)) c N:(m's) <TV(8)

whenever p, p' €V, X;](P') S TpV(6/2), and e 1is small. See the figure below,
drawn in the xp—chart.



Here is how {ii1) is proved. Let p' be a point of V near p€ V. Then

Xp:Nai(e) s part of X(e) and x;]xch;. is a disc]in TX through the point

X;](P') €T V. As p' > p, the tangent bundle of X;
plane NY, "uniformly in p €V. On the other hand if a point & € N:(we)><TpV
could be found so that xp(a) € xp,Nu and x' = X;]Xpi has |x'|p. > ¢ and, all
the while, p' 1is quite near p and e + 0, then the point x;’(p') can be
joined to & by o U~y where o 1is the segment in TpX from £ to v € TpV

paraliel to Ng, and vy is the segment from v to x;T(p’) in TpV. See the

X .N”, converges to the

figure below, drawn in TpX.
v

v
-1 u Y
g % (N, (2)) /




By assumption 'Rplo) < we wnere pr means length in Tpx. >ince exp 1s ihe Rie-
mannian exponential map, i

dx(p’,x') = length expp.[p'x'] = |x']p. > e, ‘

The length of XpO in M s (Ii—o(1))|o|p < (1+0(1))we as e~ 0, because
{expp}pEM is uniformly tangent to the identity isometry. Hence

R,p('y) > (1+0(1))(1-w)e

as €+ 0 and p is near p, 1in order to keep d (p .x') > . But this contra-
dicts T(x. Xp N ) being very near N, For somewhere the slope of Xp1x .Np.
(relative to the product Np><TpV) would be > Ep(Y)/e = (1+0(1))(1-w) 0. This
argument is uniform and works at all p simultaneously by compactness of V. The

proof of (iv) is similar.

tet A = inf m(N“f), u = inf m(V_f) where NYf = TF|NY, V
2 = dnf m(Nyf), u = inf m(Vf) p N> Y
V is compact, u > 0; since f is normally hyperbolic A > 1. Choose u, A, w,

f = TfITpV. Since

and ' so that

0<u<1_,1 '|<}\<)_\

0<w<w <1 Aw > 1
Express o: X{(e) » E(e), o€ ZO(I,e), in the e_-chart as Op = e;10ep. By
(1) we can choose &, so small that L] < & implies

€

L(o)) <2 EETX

for all o € 20(1,5), all peV, and all small e. By (ii) e 0(ﬂf)°e Ap-+pp

where the remainder P has L(ppITpM(v)) 0 as v~ 0, Thus

Krpe (1F0)ex, = Ay + oy

with L(ppoplN;(e) XTpV(v)) 20 as e, v~ 0. By (3.7) applied to h = X;;°NGG°XP

we see that
X;;owfcoxplng(w'e) <TV(8) s injective

-1

L u
(=] [=]
Xfp (nfo) xp(Np(we) XTpV(wa)) D pr(?\ms) XTfpV(uwe)

where & was determined by (iii) and, besides, €, § are small enough so that by {(ii1




Na{w'e) x T V(8) C domain o, = x"(x(e))

L(ppoplng(m e) xTV(8)) < min(A-X,u-u)

‘Note that X;;°(Wf0)°xp carries 0 to 0, a reguirement of (3.7}, Thus

mfs s jnjective on Xp(m'e,d) C X(&)

(v)

mfo{ U X (we,we)} D X(g) .
pev P

We could prove that no point of X(e} has a =fo inverse jmage except in

U Xp(me,ms), so that (nfc)'1|X(s) would be perfectly well defined., But it suf-
:pev

fices for us to show that there is a right inverse for =fo defined on X(e), tak-
ing values in U Xp(we,we). Suppose, on the contrary, that for arbitrarily small

€ > 0 there existed o€ I,(1,e} such that wfo(x) = wfo(x') € X(e) and

X € Xp(we,we), x' € Xp (we,we). Since f|V s injective and V 1is compact, the
_po1nts p, p' must become arbitrarily close to each other along V. Thus the point
x (x), X (x ) would lie in Nu(m ) xT V(G) by (iv). This contradicts (v).
Hence for small € > 0, the r1ght 1nverse for wfc which takes X{(g) into
me(we,we) exists and is given locally as in (3.7). Call g this right inverse,
Then for small €, while nfo(x) € X(e) and x € Xp(we,me);

L (9) < (m(A)) - Lo o, I T X(we)) -o(1))"!

nfo(x)
as € ~ 0. (We use also (i) here to relate the norms, introducing the o(1) term).
Hence

y(9) < m(A ) +o(1)

wfo(x

as € ~+ 0. Continuing in a similar way, we estimate the slope of f#c = fogeg in

the e ep charts as

fp?

Lnfo(x)(fzcg) E-ch(fZ)Lx(o)wao(x)(g)

| A

(IN>F1+0(1)) (sTope o +o(1)) (m(Ap)'] +o(1))

as ¢~ 0. Since TV l_Nu, m{A_) = m(V f). By f, we mean the component of f
in the fiber Y, thus f = (f],fz). By normal hyperbolicity sup ﬂstHm(fo)']

< ]
p
and so f# jndeed carries ZO(],E) into itself. P



f""_""*fﬁg?iﬁaféwfixed point ofﬁm?# we  only need to observe that zo(ljé) is
compact, convex, and apply Schauder's Theorem. For the uniqueness and permanence
parts of Theorem 4.1, we want to know f# is a contraction. For o, o' € Zo(i,e)
let g, g' be the right inverses of =fo, nfo'., For x € X(¢),

g(x) € Xp(we,we) g'(x) € Xp.(we,me) .
As €+ 0, it is clear that dv(p,p') 3 0 and by (iv)
xl ’ cX ' s .
D (we ,we) p(m £,8)

‘Therefore, to estimate If#o(x)-f#o'(x)] we can work in the charts €y gpr As
in [22] we see that

|ge{nfa')eg' (x) - go(nfo)eg' (x)|
< L{g)|(nfo')eg' (x) - (nfo)eg' (x)|
< (m(a)™ +o(M)L(p, T X(e))|o=0" | (1 +0(1))

lg(x) - g'(x)|

in those charts as & + 0. Thus

| fog(x) - fa'g' (x)]

|fo09(x) - f,0'g" (x)]

| A

lfzog(x)- fzo'g(x)] + Ifzc'g(x)-fzo'g'(x)l
< klo-o'| + L(f,0')[g(x) - g'(x)]
< [k+ (1 +o(1))2k(m(Ap)“ +0(1))o(1)|o-0" |

as e+ 0. Thus f# contracts 20(1,3) when ¢ s small. Let O¢ be the unique

fixed point of the contraction f# and consider w; = of(X(e)).
f[df(x(e))] D og(X(e)) .
These same estimates show that

N £ E(e)
n>0

(vi) Ng

{z€E(e): ¥n>0 3z' €E(e) with 'z = 2}

For by backward invariance, o (X ) C Nf nE(e), while if z € E (e), z' € E_, (¢)
' X X
n_, _ n>0
and fz' = z, then —

|of(x)- z|x 5_[kn-+o(1)]|of(x') -z']



as €~ 0. This shows ”"’cﬂx) -z is arbitrarily small if z&€ N¥E(E), and
' n>0 |
‘hence (vi). Thus, any backward invariant set near V is contained in Hg. This

proves the WY part of Theorem 4.1(b), (c) -- uniqueness and characterization. The
iws
remark at once that

part is done by considering f'1 instead of f. This characterjzation lets us

U = u \ 1
W NEﬂE(E) for 0<eg' <eg.
It also follows from the local estimates that for any €', 0 <¢e' <e&g,

(vii) uFRY, = WY,
n>0 £ €

We are going to apply techniques of Lipschitz jets to conclude Ng is of
class C]. Let J be the bundle over X] = nfwg whose fiber at x s

Jx = {Jo GEJ(X,x;E,Uf(x)): o is a Tocal section of E}

‘and 1et D be the unit disc bundle in J, As in 83, f idinduces a natural bundle

map
D[X(e) I , D
X(s)dl'is‘.crete 1Tfdf Xdiscrete

1

defined by Jf(Jxo) = Jx1(fog) where wfof(x) = x; and g is the Tocal right
inverse of wfo supplied by (3.7). Clearly Jf preserves 79 - jets of differen-
tiable sections because fog 1is differentiable whenever ¢ is. Likewise, Jf con-
tracts the fibers of D. To prove that Jf really does carry jets of slope < 1

into jets of slope < 1, we merely estimate in the uniform charts, again,

H

slope (fag)

] Lx](fzcg) < Lx(fzo)Lx](g)

(k, +o(1)) (m(Ap)"] +o(1))
(k; +0(1)) (m(vpf)“ +o(1))

A

as e~ 0, since NY LTV, By normal hyperbolicity this is indeed < 1 for small

€. Likewise, for two such sections g, o

Lx](f#o- fyo') = ldxl(f#o) - Jx1(f#o')ljx1




‘and so in the chart

|3fo - Ifo JJX - Lx](fzog-fzo‘g’)

1
f_Lxl(fzog-fZG’g) + Lx](fzc'g-fzo'g’)
E.Lx(fza-fza')Lx](g) + Lx(fzc')Lx1(g‘g')
< (ky+o()L (o-6" ) (m(A)) ™ +0(1))

+ o(1)(m(A) ™" +0(1))o(1)L (6-0"}(1 +0(1))

which by normal hyperbolicity proves Jf contracts fibers as claimed.

Then apply (3.1). The unique Jf-invariant section Oys takes values only in

Jd. But clearly x H—Jx(of) is also a Jf-invariant section of 0. Thus,

Iglog) = oze(x)

and so o 1is differentiable and has slope everywhere < 1. Let B be the disc
bundle over X whose fiber at x s

Bx = {PEL(TXX,Ex): iPI <1} .
Up to translation along the E-fibers

graph Lf(P)

Tf graph(P) ‘ PeB

LF(P) (CZ+KZP)0(AZ+BZP)”‘1 z = o(x)

defines a fiber contraction

BlX(e) —t1— &

| o |

ﬂfo

X(eg) ——— X

An Lf-invariant section of B is provided by the (a priori discontinuous) tangent
bundle of wg, but by (3.1), there is only one such section and it is continuous.

Hence wg is C1.

Restricting B to V, the same reasoning shows that vau =N @ TV. In sum,
then, given an r-normally hyperbolic f at a compact C] manifold V we have
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TN = N e Ty
£
To prove that wg is Cr, we must abandon the smoothed versions of Nu, Ns,
‘¥ since they were only C] reiated to the original ones. Let us also remark that
in general Nu, NS will be Just HBlder continuous no matter how r-normally hyper-
bolic is f, so this smoothing trick @ Ta Whitney's Extension Theorem directly pro-

1

‘duces only C° results.

Assume by induction that w is Cr'T, r > 2. Instead of smoothing the bun-

dle NY, Tv, N® 1let us c? approx1mate Tw“ N> by €° bundles T, N° defined
in a neighborhood of w Then consider the Cr'1 bundle L over wg whose fiber
at x is

Express Tf respecting the splitting T @ N° as

At pev, T-TW and N° N imply IIB R uc I 3o, m(ﬂp) m(TfIN +T V) =
ﬂK I3 HTfIN I = p' let D be the unit d1sc bund]e of L. Forany P e D
cons1der the formula

If(Px) = (C +K P Jo(A_ +B.P.)

For x near V and very good approximations T, W°, Ef(Px) is well defined and of
norm < 1. This Lf dis the natural action of Tf on L[ according to

graph Lf(P ) = Tf graph P_
where graph Px = {£+Px£: geTx}. Thus

p‘._‘-_f._,,ﬁ



Tikewise it is clear that (near V and for good approximations T, N°) Lf con-
tracts the fibers of DE. by a constan% approximately equal to kpap. On the base,
the pointwise Lipschitz constant of f ' is approximately «_. Thus we may apply
(3.5) with the {r-1)-conditions. The unique [f-invariant sgction is Cr'1, i.e,
™, e LI Y W., € c". By (vii), it follows that W. is C" also.

As mentioned above, these results when applied to f'T produce HZ, also of
class C". Thus V = Ng ﬁiwé is of C" too. In all, we have proved parts (a), (b)
{c), (d) of Theorem 4.1. Part (e), lamination, will be deduced in §5. Let us con-

sider part (f), permanence.

When r = 1, we can go back to the construction of wg for f. If we enlarge
the class of sections Zo(l,e) to

E‘;(I,E) = {sections o: X(e)+E(e): |o{p)| <t, peV, slope o<1}

and if ¢z > 0 even faster than e, then for f' extremely near f 1in the C1
sense, f#c = f'gg' will be a well defined contraction of E;(l,eg. where g¢g' ds a
right inverse of =«f'c. In fact, f# will tend to f# in the €~ senseas f' > f
in the C] sense since all the sections o have siope < 1. (See also §5.) Thus,
the fixed point g will tend to Og in the CO sense. That is, we can construct
for f' a manifold wg(f‘) = of.(X(e)) such that f'wg(f') - w:(f') very near
Hg(f). To prove that wg(f') is C't js merely a perturbation of the proof that

W(f) was ¢!, We find o in D
D! Jf' o
l mf'o,, l

D, = {ijed(x,x;E,of.(x)): o is a local section of E slope o < 1}

- Uy ., . 1
and ch.(x) = Jx(of.). Thus we(f Y is C'.

Uge . 1 u .
To prove that wg(f ) is C  near wE(f) we must find o ., 0.0 as

invariant sections in the same bundle. Let DL be the unit disc bundle in L[ where
Lx = L(TxX’Ex) .

The maps f, f' dinduce Lf, Lf'



oL —Lf Lo pr — L' o1 |
l ﬂfﬁf l l ﬂf‘of. l
X(e} — X X(g) —————— X

given by

graph Lf (Px) = Tgfl(x)f'(graph Px) P € DL,

where the plane, graph Px = {§+-ng} C TXE, can naturaTl{ be considered to 1ie in
any TzE’ né = X, by triviality of E. As f' > f, C, it is clear that

Lf' = Lf, C°. Both are fiber contractions by the usual estimates and so the
invariant section of Lf' converges to that of Lf in the CO sense by (3.5).
Since TWM(f') is Tf'-invariant, this shows that TWZ(f') > TWi(f) in the cC

sense, that is, Ng(f') + wg(f), CT, as f'+f, cl.

Applying this result to ' gives WS(f') - uS(f), ¢!, as f o f, C,
and thus by transversality there exists V' = N:(f‘) i Nz(f‘) -V, C], as f' > f,
cl. By backward and forward invariance of w:(f‘), NZ(f’), V' is f' invariant.

Let us prove that f' 1is r-normally hyperbolic at V', Choose and fix any
¢ tubular neighborhood of V, say t: U- YV, Restricted to V', t gives a C]
diffeomorphism hf.: V' > V. Let 8 bea C connector on TM -- a choice of
isometries ep,q: TPM -+ TqM definedmfor all (p.q) near the diagonal in MxM such
that ep’p = identity and o 1is C in p, q. Such 8 are easy to construct by
patching together local ones. Then consider

M —TM

v v
R gh: T. M~>TM
(6h) ah ( F)’ P
) heip') = p
Tf f
Ty M TyM

Bh Tf'(eh)'1 is a bundle map which is ® near TF. Thus, by Theorem 2.11,

9h TF'(6h)™! 1is also r-hyperbolic and & of the splitting E,@E,®E, = T,M is
Tf' dinvariant. Since 6h is near 1, when f' is C] near f uniqueness in
(2.11) implies TV' = BhE,. Thus Tf' 1is r-hyperbolic at V', For r =1, this

proves part (f) of Theorem 4.1 -- except for the lamination business which is in §5.

Note that we do not need f' to be C'" near f in order to get that f' s

r-hyperbolic at V' -- just that f' be C1 near f and of class C'. Likewise



‘this proves V "';"‘"ﬁ‘; (f') T’ﬁ; () are of class € without further effort, by

‘applying what we already know about any r-normally hyperbolic diffeomorphism to f°
at Vv'.

Now we want to show w (') » N (f), C, as fr-f,c, r > 2, Assume
iw (f') » w (), ¢ ], by 1nduct1on Choose a C" tubular neughborhood of w3 s

‘say t: U+ N3£. Since Nu (f ) > w (f) C as f' =+ f, C we do know that

‘Nge(f') appears to be a partial section of t. That is, t provides a Cr']

embedding h,: Ngs(f') - wgs(f) which converges to 1, Cr'1. as f' +f, C". We

use hg, and the connector & to convert Tf'lwg(f') into a map over Ng(f).

T M—T M

U u
W_(f) W'f

(eh)'% [eh

T M——T M

Wy (F') Wi(F")

This induces a bundle map

Lf!

De + D

| |

W (F) ~——— W(f)

where D is the unit disc bundle in L, L = L(wag,ﬂi) just as did Tf. (The

bundle N° dsa C” approximation to N® defined near V.) In fact Lf' is

cr"] r-1

- near Lf by induction. Thus, by (3.5), the invariant sections converge C
The Lf'-invariant section represents TWY(f'} (over W (f)) by uniqueness, as
usual. Thus TWI(f') > TW.(f), ™1, ie. W S(f) > W (f'), as ' > f, c",
Likewise W°. Except for 1am1nat10ns (see §5) this comp]etes the proof of 4.1(f),
permanence.

Now let us consider an eventually r-normally hyperbolic diffeomorphism f.
Let TVM =N o TVe N bea Tf-invariant splitting which displays it. Then f
is immediately r-normally hyperbolic for large n, and so we have w“(f"), ws(fn).
As usual

n



T !

implies, by uniqueness of WY(f"), that fWY(F") = Ww(£"). Similarly WS, WYY, WS,

1f £ 2 f,c', then £" 2+ ¢! (n large but fixed), and so the V' for £
‘serves for V. In this way all questions about f are solved by looking at .

. Similarly for flows. If a flow {ft} is eventually r-normally hyperbolic
then 2 s immediately r-normally hyperbolic for some a, By unigueness, Nu(fa),
etc. are locally ft invariant for all ft.

Except for lamination (see §5) and linearization (see [41]) the rest of the
results for flows follow from those for diffeomorphisms,

Remark 1. If X isa C" vector field, r > 1, whose flow is r-normally
‘hyperbolic at V, then Theorem 4.1 applies to perturbations of X, See [47,29].
If X' isa €' vector field, C] near X, then X' has a unique invariant V'
near V. At V' the X'-flow is r-normally hyperbolic. V' 1is 6f class C'. As i
X' + X in the C" sense, V', w“', NS1 +V, w“, W in the C" sense. For the
X'-flow converges to the X-flow in the C" sense, r > 1, whenever X' + X, c'.

Remark 2. The same permanence proof works for a Lipschitz small perturbation
of a C] normally hyperbolic f. It would not seem hard to state and prove a purely
Lipschitz theorem along these lines (f and V would be just Lipschitz) using
tangent cones instead of tangent planes.

Remark 3. These techniques can be used to answer the following question of
R. Thom. If V 1is a compact C] manifold contained in the open set U CM,
dim M > dim ¥V, and if f: U=V isa C retraction 1<r <= then V is of
class C". (Up ti11 now our results were for diffeomorphisms, so no f could be
co-pnormally hyperbolic at V. Thom's f 1is just the sort which can be «-normally
hyperbolic.} The case r =1 1is vacuous so assume the result for r-1, i.e.
Ve Cr'], r > 2. Consider the kernel of Tf which is a ¢! bundie over v,
and T M=TVeK. Clearly K fis invariant. Let T bea bundle over V
closely approximating TV. Consider the bundle L whose fiber at pe V is

Cr-]

Let Tf act on L in the natural way, say Lf: L -~ L. This L[f is a ¢™1 map

and has fiber contraction constant = 0. So by the Cr'1 section theorem, Lf has
a unique invariant section, and it is of class Cr'1. Thus TV is Cr'] and V

. r

is C.



" 'Amore interesting feature of such an f 1is the existence of strong stable
manifolds -- even though we cannot just blindly take f'1 and look at its strong
unstable manifolds. See §5.

§5, Pseudo Hyperbolicity and Plaque Families. In this section we generalize

the notion of hyperbolic set appearing in [22] to permit singular and center beha-
vior. QOur proofs will be based on the ¢" section theorem and the methods of §4
instead of on the Fiber Contraction theorem [22]. Then we go on to prove the lami-
nation parts of (4.1). Finally, we show how the strong unstable manifold theory
gives a different way to construct W. In §5A, we prove some classical center
manifold theorems, not used in the rest of the paper,

Definition. A linear endomorphism of a Banach space T: E +E is p-pseudo
hyperbolic if its spectrum lies off the circle of radius op.

Corresponding to this spectral decomposition is a T-invariant splitting of E,
E] ® E,. The spectrum of T|E1 lies outside the radius p, while that of T|E,
Ties inside. The map T2 = T[E2 might not be an automorphism, but it carries E2
into Ez and carries nothing else into EZ' The map TIE.I ig an automorphism of
E;. Renorming E we can assume m(T]) >ps AT, < p, Hx,y)| = max(|x|,|y|) for

X € E], y € E2. See (2.8),

Definition. If f 1is a smooth endomorphism of a manifold M and f|A is a
homeomorphism A +~ A then A 1is p-pseudo hyperbolic for f if and only if the
map Tf: T M~ T,M induces a p-pseudo hyperbolic endomorphism on the space of

i\ A
bounded sections of T,M by f_: o TfOGO(fIA)-1,

A b*

By estimates similar to (2.2), this is equivalent to the existence of a Tf-
invariant splitting TAM = E.l ® E2 such that Tf 1is an automorphism of E1,
“"expanding” it by more than the factor p, and Tf is an endomorphism of E2
having norm < p.

The following theorem is the analogue of [22] for pseudo hyperbolic maps.
(5.1) rTHEOREM. If T: E-+E s a p-pseudec hyperbolic endomorphism of a

Banach space, E = E] @ E2 18 the canonical splitting, f: E-+E s a c’ map,
r>1, f(0) =0, and L(f-T) <& <is small, then the sets Wys Wo, defined by



W = N f"s] S; = {{x.y) € EyxEy: |x] > |yl}
n>0

Wy = N f‘"sz S, = {(x,y) € E;xE,: |y| > |x]}
n>0

are graphs of C1 maps E1 + E2, E2 - E'I' They are characterized by

zZE N] « there exist inverse images £z
such that |f "z|/e™" >0 as n+w
ZENZ « |fnz|/pn+0 a8 N > o,

"+ 0" can be replaced by "stays bounded." If IIT Il‘jllT <1, 1T<3j<r then N]‘
is € and if BT ||-1 HT IIJ <1, 1<j<r then WZ is C'. The manifolds N],

Nz depend contmuously on f in the C" sense.

Remark, There are some cases in which we need not assume f globally defined
and f(0) = 0. These cases in which N], W, are locally defined will be discussed |
in (5.4), (5.9).

Proof of (5.1). Let Df = [‘é ;
small, ok <1 and b, ¢ < e where o = sup HA;

respecting E1><E2. Since L(f-T) <e is
]H, k = sup HKZH, b = sup HBZH,
C = sup HCZH.

We consider sections o: E] + E such that o(0) = 0 and L{c) < 1. The
graph transform f, is defined by f,o = fooog where g = (ch)']. Since
f1c: E] - EI and L(T]-f]o) < bL{o) +L{f-T) < 2¢, f1c: E1 -+ E] is a Lipeomorphism
and f# is well defined. When k > 1, f# is not a contraction of our space of

sections respecting the usual sup metric. We must consider the new metric,

fo-o'll, = sup lgﬁﬁgril- X € E] .
x#0

On one hand, the metric | I, takes into account the Lipschitz constant of o-¢' at
0, while on the other, it cares less how o behaves at o,

(5.2) SUBLEMMA. Under the metrie | |, the space Zo = {UGZ(E] ><E2):
lol, <=} <& a Banach space and 20(1) = {0€L: L{o) <1} <s a closed subset.

Proof. 1If (cn) is a Cauchy sequence then clearly o, converges uniformly
on any bounded subset, % T 0. For each x € E]-O and each n, choose
m = m(x,n} > n such that [o x-ox|/[x| < 1/n. Then



; ]crnx-oxl lo

S < SuU + < + -
X;B—T—[——x —x#g [x] X[ <% n

for m = m{x,n) and €_=sup lo -c B,. Thus fo _-ol, + 0 and I, 1is complete.
: N sp MON n 0
If o, 30 onaset S and"L(dn) <1 then L(c) <1 on S. Being true on all

bounded S, 20(1) is closed in g This proves (5.2).

For any o € Eo(]) we defined f#c fog, g = (fig)-1‘ The same estimates as
in §4 give

uk+coa ok + eq
L(f#c) S3-wb ST e S

L(g) < ab .

Hence, for small e, f# carries 20(1) into itself. It is a contraction respect-
ing I B, since for o, ¢' € 20(1) we have '

|f2°09(x) - fzoc'g'(x)|

~-fo'ly =
ﬂf#c 49" i i;g %]
| f0009(x) - f,00°g" (x) ] | fye009' (x) - fye0'eg" (x}]
< sup + sup
= x#0 IX] x7#0 Ix]
< L(f,0) sup Ig(x)l ? RE TN 1,0 - foo'll, sup lﬂ%&?lL
x#0 x#0
< (k+e)L(g)If 0’ - fioll, su lg GOl ko g oo
e/Li8 * SUP T Y T *

x#0

ke o g0,
1-ab

< (k+e)(yogplbllo - o'l (y=gp) +

< Lelkre) (3 _“a€)2+] ‘_“’;e]uo- o'l

and this factor is < 1 for e small. This gives a Lipschitz invariant section,

Og- To check its differentiability, we consider Lipschitz jets.
Let J be the bundie over E?iscrete whose fiber at x is
J. = {Jxo: o is a section E;~E, o(x)==of(x), s1opexo~<W}. Let P be the unit disc

bundle in J.
In §3 we showed that Jf: Dx > th is well defined by

Jf(j) = Jhx(fzooog) Jxo = j



.fbr h = f1°of, and, u§{h§ the same tecﬁthhes, since Jf contracts fibers by fﬁeh
constant ko <1, o s ¢\, If k< 1, 1<j<r, then the fiber contraction
of f, ko, dominates the first r-1 powers of a and hence Jx(of) = Oy is

;Cr'1. Thus o € c’. Note that J was trivial, so it is justifiable to use (3.5).

Triviality of J 1is implied by the fact that E] is a vector space.

_ As in (3.5) it is easy to see that O¢ depends continuously on f, because
:f# does in the CO sense, and because Oygs Ogpr can be found in the same bundle.

If T 1is invertible, the pseudo stable manifold theory can be deduced from
the pseudo unstable manifold theory as usual. But T may well have a kernel. We
must proceed directly.

-1

Even though f may not exist as a point valued map, it does exist as a set
1 -1

valued map. Moreover, the fact that z # z' 1implies f znf 'z' =P is nearly
as useful as injectivity of a point valued map.

Let I, be the Banach space of sections o: E, » E with o(0) = 0, and with

Yol = sup jo(y)-y|/|y| < = Let 20(1) ﬁJEZ: L(c} <1}. We claim that £

y#0 _
defines a contraction f#1: 0(]) - 20(1) by the relation

f'](image o) = image f;]o .

For ofy) = (y,s{y)) and any y¢€ Eys this is equivalent to finding an x,
Ix| < |yl, with f](x,y) = s(fz(x,y)) which in turn is equivalent to finding a
fixed point of the transformation

x o T3 (s(F,063)) - (F1-T)) (%))

in {x€E: |x| < fy|}. But this transformation contracts {x€E: [x|<]|y|} into
itself s1nce

1771 (s (xay)) = (F1=T) ) | < alklyl +clx] +elx| +elyl]
< {ok+ 3ae)|y|

and
IT;][S(fZ(X',Y'))- (f]-T])(x',Y)] -T{](s(fz(x,y)) -(fi-T])(x,y))I
< alelx'-x| +efx'-x|] < 2ae|x'-x| .

Hence f;]o is well defined. As a map E2 + E it has Lipschitz constant < 1 since



fl6y) = s{f,(x,y)) and f{x",y") = s{f,(x",y")} imply

|X‘XII = |T.-;.i [S(fz(x.y)) = (f'l"T])(xs.Y)] ‘T:I-.I [S(fz(x' sy')) - (f'I'T'I)(X' ’y.))]

< ofc|x-x'] +k|y-y'| +e|x-x"'| +e|y-y'|]

and hence (1-3ae}|x-x'| < (ak+e)|y-y'|. So for e small |x-x'| < |y-y'] and
-1
L(fy o) 2 1.

Finally, we claim that f#1 contracts z (1) respect1ng the metric ¥ §,. If
g, o' €5, y€E,-0, and (x,y) = (f, o)(y), (x',y) = (fy T6')(y) then

|T;](s(f2(x,y))- (f]-T1)(x,y)) -T;](s'(fz(x‘,y) ~(f1—T])(x',y)]]

[x-x'] _
1yl ly]
|s{f(x,y)) - 8" (fox',y)) ] +elx-x"]
Lo Iy
f(x,y) s'(f,(x,y)) -s'(f, (x',y)) :
< g L2 2 2 + Elx=x |
< allo-o"l—rgr—+ T IyT
_orn (klyl *+elx]y L elx-x'] , efx-x']
< olbo-o' L (F5 g + 55 v
< alk+e)lo-o'l, + (20e)}|x-x"|/|y]| .

and hence (1-20e)|x-x"'|/|y| < a{k+e)lo-o'l,. Taking the suprema over all y # 0,
we get

i NS I k+
Iy o-f, o'l < ](_ 25 lo-6'l,, »

showing that f;1

contracts 20(1) when € 1is small. Let cf_1 be the fixed
section. The f'] - invariance of image(c _1) means that f'}(image(o _])) =
f f

image{c _1), even though f(image(o _1)) may be a proper subset of image(oc _1).
f f f

We want to investigate the smoothness of o ,. Our estimates showed that the

relation f
1. o -1
f "(image o) = 1mage(f# o)
defines f'o if L{o) <1 and image 0 CS, = {{x,y): x| <|y|} even when o was

only locally defined. Moreover, the estimates show that L(f#1 ) <1, The same
estimation that proves f;l to be a contraction of ZD(I) under the metric 1 I,,
shows that



alk+e :
L(f#ofc)<——2—a)€-Ly](co) |

iF oy = fe(f;]o(y)), f;]c(y) = f;]c'(y), and o, o' are such local sections at’
¥y

Now consider the bundle of jets over Egiscrete’ J, whose fiber at y is

y {Jyo o is a section E,~E, oly) = o, 1820 B ¢ y==f2(f;1c(y)) and j € Jy

can be represented by o with L(o) g_] then 1

3€71(3) = 3,(F'0)

is well defined. Letting P be the unit disc subbundle of J, our remarks in the

preceding paragraph show that Jf'1 contracts the fibers of D by appfoximateiy
the factor ka. Moreover, Jf'] preserves the complete subset 0 N Jd1ff since

the ! Implicit Function Theorem determines f;1o when o is C'.

The assumption in (3.5) that the base homeomorphism h was point valued can
be relaxed to: h 1is set valued, hy N hy =@ if y#y', h']' Y > Y 1is Lipschit
and obeys the usual restrictions k L (h ) <1 <1 for any n& hy. In our case
:h'1: E2 > E2 by yw fz(f#] y)g which has Lipschitz constant k. Hence there
is a unique Jf '-invariant sgﬁt1on of D, and its values lie in Jd1ff. Reasoning

with Lf7 as in §§3, 4 we see that o _, s ¢'. 1f Ka<1 for 1 <jsr

f
then the fiber contraction of Jf“‘, approximately ko, dominates the first r-1

powers of k and hence J (o ;) =o _; s ¢!, so o o s c".

£ If f

It is easy to see that o _, depends continuously on f the same way we did

. f
with Uf.

Let G] = image Ogs G2 = image of_1. We want to show w1 = G], w2 = G2‘ By
their invariance it is clear that G, C W;, G, CW,. We write of(x) = (x,sf(x)),

o 1) = (s _y{¥)y).
f f
For z, z' € E, we have the obvious inequalities
(1) fiz-F2'] > (@' -e)|x=x'| - elz-2'|
(2) |f22-f22'| b (kte)ly-y'| + e|z-2"|

y (1) we have, for any z = (x,y)€ E and z' = (x',y) = of_]y



|£.2 sf_1(f22)l > [fiz-fz'] - [f2 sf_1(f21)1
(3) > (a7 -e) x=x'] - elz-z'] - Llo_y)[f,2" - Fp2l
f

3_(a-1-3e)lx-x'| = (a-1-35)|x-s BRI
f

This means that fz can be no closer to 6, in the E,-direction than (a'1-35)
times its original distance to 62 in the El-direction. Iteration yields: the
distance of f'z to G, 1in the E,-direction is at least (a']-3€)n]x-s vl
‘ f

Now suppose 2z E?wz-Gz. Then 'z € S2 for all n >0, and so

9zl 2 1Rz-s (52)] - s (552)]

|v

(0 1-3¢)"x - sf_1y| - |fgz| .

‘But lfgzl = [fz(f?']z,f2'1z)] 5_(k+e)lfn']z| since "1z e S,. By iteration,
|foz| < (k+e)"|z| for z €W,. Hence
2°1 — 2

-1 n
1] (o "-32) " |x - sf_]x|

> - -1.
(k+g} | z|

But (u"]-SE)"/(k+s)" > as n - w, which contradicts the assumption f'z € S,
for all n > 0. Hence W, = 62.

Similar to (3) we have
(4) |ym-s#gd z(HefNy-sﬁl

if fn(z_n) =2z, z_ = (x_n,y_n). This means that f " drives z off G, bya

factor (k+s)-n when distance is measured in the E,-direction,

2
Next suppose z € w1-e1. Then high inverse iterates of z can be found in
S]: for all n > 0 there exists £z = z.y = (X poyop) € S]. Since z_., € ST'
= 1€ - n-1 n-1 -1 n-1 . -1
x| = [fi(z_ ) = [F(f;7 2oz )] 2 (a -e)[f? (z_ ) > > (o

2 -e)"{x_
so that

0!
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which tends to « as n - o, contradicting the assumption that z_ €S

1

1° Hence

1"

Any z € N] clearly satisfies the characterization: 1“'"2/;3'rI + 0 for some
sequence of inverse iterates, namely those in W

Similarly z € W, implies
n n 2
|f'z]/o =0 as n > o,

-I'

If z€E-W, then f'2€5S. for some n > 0. For all m > n, 'z stays
. 2 .21 _meng.n 1. N
in S] and |sz| > (o '-g) |f]z[. Hence |fm2|/p +® as m-> o,

If z€E-H, then there exists n >0 such that £z CSp. The set 'z
is closed and does not contain 0, so s = inf{|y'|: (x',y')Ef "z} > 0. For any
ez, 2 C S, and 172 1767 > (k+e)Ms/o™ so that |F"z|/p™" +

uniformly as m + «, This compietes the characterizations of N], W Q.E.D.

9"
(5.3) COROLLARY. If (Df)0 =T then W, dis tangent to Ey, W, to E,.

Proof. Jf, Jf°' Tleave the jet j = 0 invariant at O. Q.E.D.

(5.4) (Strong Manifolds) COROLLARY. Suppose o < 1, f is defined in E(s),
s >0, f is Cr, T<r<o, f(0)=0, and L(f-T) < e <e small (as in (5.1)};

then W, = N fnS] is the graph of a C' map E](s) > Ez(s) and ig loeally unique
n>0
(see below).—_w] t8 characterized as in (5.1). Similarly for Nz, if k<1,

Proof. If o < 1 then the graph transform f#‘ is defined as before and sends
Iy = {oEE(E}(s),EZ(s)): o(0)=0 and L(c) <1} into itself contractively respecting
the metric | l,. The fixed section is C" since ko’ <1, 1< j <r. This com-
pletes the proof of (5.4). Q.E.D.

Remark. If there were a way to extend f to all of E as a ¢"  function
near T, then we could deduce {5.4) from (5.1) instead of from its proof. For

NE's. NE(s) = N (S, NE(s)) where a <1 and f is such an extension of ¥,
n>0 ! n>0 !
Local uniqueness means that any other f-invariant manifold through 0 1is contained



For o < 1, characterization of W, in (5.1} demonstrates its local

in W,.
. 1
uniqueness, Similar remarks hold when k < 1,

To describe the strong stable manifolids we introduce some ideas more fully
exploited in §§6, 6B, and [24]. M 1is a smooth Riemann manifold and A CM 1is
compact.

Definition. A ¢’ pre-lamination indexed by A 1is a continuous choice of a
¢ embedded disc D, through each p € A.

Continuity means that A is covered by open sets U in which p#» Dp is
given by

D, = o(p)(04)

where o: UNA > Embr(Dk,M) is a continuous section. The bundle Embr(Dk,M) is a
¢” fiber bundle over M, the projection being g v B(0). Thus o(p)(0) = p,
peEA.

Definition, 1f in addition to continuity of p#w Dp, these sections o have
¢® evaluations, (p,x) » o(p}(x), then the pre-lamination is of eclass (*,
1<s<r, and can legitimately be called a C® pre-foliation.

Definition. A pre-lamination is self coherent if and only if the interiors of

each pair of its discs 0,, D, meet in a relatively open subset of each.

q

Definition. Two points p, q €M are forward p-asymptotic under a homeomor-
phism f of M if and only if d(fnp,fnq) g.Cpn for all n > 0 and some constant
C. Similarly, for backward p-asymptotic.

(5.5) 7THEOREM. If f 4isa C" endomorphism of M with p-pseudo hyperbolic
set A, TAM = E] G?Ez, then there are locally f-invariant C1 pre-laminations
{Ni(p)}pEﬂ tangint to Eip at p, 1=1,2 If p>1 then {N1(p)}peA is a
self coherent (  pre-lamination and N](p) 18 characterized as those points
locally backward p-asymptotic with p. If p < 1 then {Nz(p)}pGEA ig a self
coherent C" pre-lamination and Wz(p) 18 charqcterized as those points locally

forward p-asymptotic with p.

Proof. Tf: TM~>TM is a bundle endomorphism covering the homeomorphism
A A

h=flA and E] @ E2 is the spiitting of TAM. Lift f by the exponential map, to

-

amap f sending a8 neighborhood of 0 1in TAM into TAM:



-10 0— = Fltm i
expey, f exp,, fITpM peEA .

'Since it also covers h, the map f can be extended to all of TAM by using a
smooth bump function on TAM and averaging f with Tf. We still call this map

“h?

-~

M-——£i1£~—+ T.M

T

=

= e——
=
- e—=

Observe that sup L((?-Tf)ITpM) can be forced as small as desired by restricting

b 14

to a smaller neighborhood of 0 before averaging with Tf. If A 1is one point we
have exactly the hypotheses of (5.1,3) so the theorem is proved then.

For the general A there are two ways to proceed. The first is to reexamine
the proof of (5.1) with the parameter p € A added. The space of sections to
consider is

20(1) = {UEE(E.I,E): c(0) =0, L(0|E1P)g1}

where E = TAM is considered as a bundle over E, by projecting each fiber E(p)

1

onto E](p) along Ez(p). The metric on I s lo-o'l, = sup sup |ox-o'x]/]|x|,
x#0

where x € E}(p). Exactly the same estimates as in (5.1) show that f induces a

contraction ¥, of Z,(1) under the metric | l,. The fixed section is oz. The
closed subspace of sections o which depend continuously on p € A 1is carried into
itself by ?# so og depends continuously on p € A. Similarly, 0% is C1 on
each E](p), its derivative depends continuously on p, and equals 0O at p by
(5.3,4). This gives an f-invariant family of plaques {Wiplpey in T M. Their

per’
are continuous. Compactness of A and continuity of oF imply that {w1(p)}p6A

exponential images, {wlp} are locally f-invariant, C!, and their derivatives

is C1 precompact. Similarly for {sz} . Local unigueness, characterization,
and higher differentiability of the "plaques" {w1(p)}pEA or {Nz(p)}pEA, are giver

by the corresponding properties for f and hence by (5.4) when »p >1 or<1.

By the characterization of wT(p) as those points locally backward p-asymp-
totic with p, (p > 1), it follows easily that {w](p)} is self coherent,

If we adopt the more general definition of p-pseudo hyperbolic set that

m(Tf[E]x) > o, > ﬂTf|E2xH



KWHfEﬁ“ﬁﬁahfmﬁé"EQTiéd"“fhméﬁ?étemFETéf¥VéumﬁibééUdbmHybéfbbiié?fy“)”fdi some
continuous function p, On A, then this proof of (5.5) goes through with change.
The one explained next does not.

The second way to proceed is to consider the map ?# induced on the space of
bounded sections s: A>T M, (s) 1’°s='h'1 The map ¥# is seen to be a
p-pseudo hyperbolic endomorph1sm of I (T M}. Its pseudo unstable and stable mani-
folds Wy, Wy, give rise to {w]p} {sz} as o

W.p = w.) = {sp: i i=1,2.
5P evp( J) {sp sewJ} Jj 1 2
The {wlp}, {wzp} give rise to the {w1p}pEA’ {Hzp}p6A by exponentiation, as

above. This proof is similar to that in [22], Q.E.D.

(5.6) COROLLARY. If f 18 a diffeomorphism of M, r—normaily hyperbolic at
V, TM=N@®TVeN, and W is the stable manifold of V, then W' has an
f-invariant fibration {Nssp: PEV} over V whose fibers are tangent to N at ¥
and form a self eoherent c” plaque faomily. Points of Nssp are characterized by

Tim [d(fny,fnp)/m(fon)] =0, If f' 4is C" near f then the plague family
N0
WS(F') is near WS(F). Similarly for {WYp: pEV} fibering WY

Proof. fINS satisfies the hypotheses Theorem 5.5. The resulting locaily
f-invariant self coherent C" plaque family tangent to N° at V, {Nssp: peV]},
is locally unique since k < 1. Two fibers wssp, wssq, cannot cross because of
their characterizations and the fact the point q € V can be asymptotic with p no
faster than m(fon). By invariance of domain, the {W°p: peV} fill out a neigh-
borhood of V 1in W°. Continuous dependence is easy to verify. Q.E.D.

When V was normally hyperbolic, the plaque families {wuu p)}pEV’ {wzs(p)}pev
existed by (5.4} without previously constructing N Nz. Thus we could construct

wg by setting it equal to U w“”(p) Smoothness of w and permanence under per-
e
turbations then become a problem. However, we can show directly

(5.7) PROPOSITION. ﬁg = U Nuu(p) i8 a Lipschitz submanifold.
pEV

Proof. Let X bhe a C'| manifold through V nearly tangent at V to
N'® TV. Let E bea C] subbundle of T M whose exponential image gives a tubu-
lar neighborhood of X in M and whose f1bers at V are nearly equal to N, We
can assume E s trivial without loss of generality. We claim W is the image of
a Lipschitz section of E. Since the fibers W'Y are tangent to N at v it is
easy to see that w: E » X projects W onto a neighborhood of V 1in X, Suppose



That there exist points

uu uu ;
z€u_"(p) z' € W "(p') f

whose vertical distance apart in E (we are using triviality of E to speak of
‘this, since z, z' are in different fibers) is > their horizontal distance apart --:
H.e. oz = (X.y)s 2" = (xay')s

ly-y'] > dy (x,x")

and that this happens for 2z, z' very close together and € very small, Apply

£ to these points and observe that the horizontal distance apart cannot expand as
fast as the vertical distance must expand (by normal hyperbolicity). Likewise f'nz.
f 2 must lie very near V and f "p, f "p' must not be very far apart. See the
figure below.

f_np v
Wp wuup. Vo— Ve Wuls D'
s e

This is incompatible with the {w““(p)} being uniformly tangent to N oat v,
€

Since such 2z, z' cannot occur, M is the image of a Lipschitz section of
E near V. Q.E.D.

Once W' 1ds known to be Lipschitz the ¢” section theorem easily proves it
to be C". Note. The defect of this construction is that it doesn't maturally pro-
vide a W for a perturbation of f.

§5A, Center Manifolds. Here we show how some theorems on center manifolds
follow from our methods. Note that our theory of smoothness is easier than the
classical one [20,28].

Suppose that the spectrum of T: E -~ E 1is contained in A1 U A2 where

A, = {zel: [z| >} A2={je¢:lz|ga} a<l,



iét E] 2] E2 be the correspondiHammf:¥ﬁﬁariant splitting, This is the 1imiting case
of p-pseudo hyperbolicity as p + 1 from below. As in §5, let
$ = {x,y) € (B xEy): x| 2 ]yl}.

(5A.1) THEOREM. If f: E~+E is C, 1<r<wm, f(0) =0, and L{f-T) <e
18 small then H1 = nggfn51 is8 the graph of a c’ funetion E.I +iE2.

Proof. For any p, a<p<1, T is p-pseudo hyperbolic with the same
splitting. We can choose norms on E], Ez so that ETZRHT{THj <1, 0<jx<r
because r 1is fixed. (The higher r 1is, the more this requirement may distort the
norms.) We can require ¢ so small that kaj <1, 0<J<r where
k = sup ualeayﬂ, o = sup R(af]/ax)'lu as usual. Then the same remarks as in the
proof of {5.6) apply. Q.E.D,

The manifold W, is called the center unstable manifold, WY. Although
globally unique and characterized by (5.1) it is not locally unique without further
assumptions [28].

Definition. A map f: X + X is Lyapunov unstable at a fixed point 0 € X if
and only if for every neighborhood U of 0 there exists another neighborhood
VCU of 0 such that f"(X-U) nV =, forall n> 0.

This means that points off U cannot penetrate into V under forward iterates
of f, or to put it the other way, points of V cannot escape U under inverse
iterates of f. If 0 1is a uniformly repellant fixed point then it is Lyapunov
unstable.

Definition. A map f: X = X is Lyapunov stable at the fixed point 0 if and
only if for every neighborhood U of O there exists another neighborhood V CU
of 0 such that f'VCU for all n > 0.

This means points of V cannot escape U under forward iterates of f.

(5A.2) LEMMA. [Lyapunov stability or instability at 0 is equivalent to the

existence of arbitrarily small neighborhoods of 0 <Invariant under f or f-1

respectively: f0 C0, f_10 co.

Proof. If such 0 exists f 1is obviously Lyapunov stable or unstable at O.

If f 1is Lyapunov unstable at 0 then 0= U £ ¢ U, where U and V are as
n>0
in the definition, obviously suffice. Similarly for Lyapunov stability. Q.E.D.



(5A.3) THEOREM., If E = R', T e an ieomorphism of R, and fIW " is
iLyapunov unstable at 0, then WY s locally unique in the sense that if W is an
1 invariant set containing 0 and lying in Sy near 0, then W C WY sear 0;
that is, for some s > 0, E(s) NWC wey,

Remark 1. A paraphrase of (5A.3) is: locally f-invariant sets in §; are f
in WY |
Remark 2. It is not necessary to assume that T is an isomorphism, When T
has a kernel the proof involves a generalization of (5.6) to the case of normal
pseudo hyperbolicity wherein Nf can have a kernel. To avoid trivial counter-
examples the uniqueness assertion must be changed to: W C WY for any f'1
jnvariant set W such that W N E](s)xE2 C S].
Remark 3. A counterexample to certain generalizations is given by a map f
locally of the form f(x,y) = (x-ey,ky) where 0 < k<1 and e is small.
;flwc" = £{x,0) = (x,0) so Lyapunov instability occurs. There are smooth f~

invariant arcs <y which contain 0 and lie in S1 near 0. They are only locally
cu
W,

1

5contained in The degree of locality involved is dependent on vy, See the

figure below.

ch

Remark 4. The manifold WY s maximal among f']-invariant manifolds lying
in 51’ but this is a global property already evident in (5.1). The assumption of
Lyapunov instability in (5A.3) forces this global phenomenon to occur locally.

Proof of (54.3). 1t is easily seen that f is uniformly normally hyperbolic
at wcu’ and so by (5.6) there is an f-invariant fibration of a neighborhood U of

WV in R™, WSp) let W bean f '-invariant set with 0 €W NE(s) CS,.

cu’
Choose s smaller if necessary to get E(s) CU. Let O be a neighborhood of 0
in W such that f "0 C o0 for all n> 0. Choose 0O so small that if z § E(s)
then fz & wsshWS] for any p € 0. Such an ¢ exists by (5A.2). The set

{W*°p: p€0} is a neighborhood of 0 in R" and we claim that its intersection

with W Tlies in WY, This will prove the theorem,



M

For any z€ W p, pE0, and z €W the inverse iterates f "z are forced
away from WY by a factor (k+e)™" and the fibration WS} is " invariant.
The base point of the fiber in which f "z 1lies, £ ", cannot escape 0. So some

M2 first fails to lie in S,, but it does lie in W*(f"p) N E(s)
by our small choice of 0. Hence W NE(s) ¢ 51, contradicting our

assumption on K. Q.E.D,

For the center stable manifold there is a corresponding theorem if T is an
isomorphism, by consideration of f'T. The center manifold M® s the transverse
intersection of the center unstable and center stable manifolds. Thus, it exists
and is of class C'. Although W¢ s not unique, Takens showed that lec is con—j
jugate to f|wCI for any two center manifolds W°, Nc' [49].

Even if T has a kernel, we can proceed as follows. The center stable mani-
fold N f'“52 is the graph of a C" map E, ~ E; by the same reasoning as
‘(5A.1)?“Nhen E
separated from 0 by a circle, say of radius p. This means that there is a

H

R"  the spectrum of T 1is finite and so its nonzero part can be

T-invariant splitting EOGBE such that kernel(T) = E, T|E is an automorphism
of E. Corresponding to this splitting is a ¢! manifold W= NS where

S = {(xo,g'r): xg €E, yeE, |x0|5|§l} by (5.1). Let W = WS nﬁ?zo Then flW is a
diffeomorphism of W onto itself and f s normally pseudo hyperbolic to W. (The
normal derivative to W at 0 idis zero in the EO direction and a sharp expansion |
in the E]
(5A.3), W has pseudo stable and pseudo unstable f-1-invariant manifolds W
WY. Each has an f'1—1'nvar1'ant fibration, {woop: pEW, {Huup: PEW} respec-
tively. By techniques similar to those of [41] we can extend the fibration {w““}
to cover an entire neighborhood of W 1in an f'1-invariant fashion. Then the same
proof as (5A.3) shows that W
stable.

direction.) By the generalization of (5.6) spoken of in Remark 2

0 and

is locally unique in case f|wCs is Lyapunov

§6. Noncompactness and Uniformity. In this section we permit V, the

f-invariant manifold to be noncompact. We have in mind V = a leaf of an f-invariant
foliation. Our intention is to construct w”v, WV ina way which works not only
for f but also for f' near f, as in 84, This will yield an f'-invariant V'
near V. General, simple assumptions about { do not seem to prevent HUV, NSV,
and V' from having self intersections, even though V does not. Therefore it
seems reasonable to let V be an "immersed leaf" in the first place.



. Definition. A C immersion of one manifold into another, r >1, h:iN=+M,
is uniformly r-self tangent if and only if Trh(TrN) extends to a continuous sub-
bundle of T'M over R(N).

In particular, this means that self-intersections, h{x) = h{x'), are r-th
order tangent, T;h(T:N) = T;.(T;.N).

Definition. A ¢’ leaf immersion is a uniformly r-self-tangent immersion,
h: N+ M, such that h(N) 1is compact, h{N) is disjoint from M, and N is
complete respecting the pull-back of a Finsler on M. A leaf immersion is boundary-
less if ON = .

A Finsler on M 1is a norm on each tangent space T M depending continuously
on p €M Its pull-back to N is |-[x= |Th(-)|p for x €N, p = h(x). Since
h{N) is compact, completeness of N is independent of which Finsler we put on M.
Likewise, it is no loss of generality to assume M is compact.

Standing Hypothesis on M and V. M s a %, boundaryless, Riemann mani-
=fo1d, V isa C  manifold, and i: V+ M is a boundaryless leaf immersion. We
shall refer to the extended tangent bundle Ti{TV) as T. Thus, T is a continuous
v-plane subbundle of T?TVTM'

Let us remark right away that our interest in V = a leaf of a foliation
prohibits us from considering a Whitney topology to handle the noncompactness of V.
We must rely on topologies compatible with those of M.

Example 1. V 1is compact and i 1is an embedding. This is what we considered
in §81-4.

Example 2. Y =R, M= T2 = R2/12 and i: V> M is the isometric immersion
onto the line of slope %{/5- 1) through 0. Thus (V) is dense in M and is
invariant by the linear Ancsov diffeomorphism [? } . See [5]. Since Ti{(TV) is
constant, it extends continuously to i(V) = T".

Example 2'. V = uncountably many copies of R and i: V+ M= T2 is the iso-
metric immersion onto all the lines of slope %{/?- 1}. 1In the same vein V could
be the nonseparabie T-manifold of all orbits of an Anosov flow.

Example 3. V=R, M= 52 and f 1is the time one map of the flow pictured
in the figure below,



Then i is to be an isometric immersion of R onto the orbit through x. Although
the tangent bundle Ti{(TV) 1is continuous it is not uniformly continuous, and so
i: R~ S% is not a leaf immersion.

Example 4. If F is a ¢’ foliation of M, then the inclusion of any of
its leaves is a ¢ Teaf immersion.

Example 5. Even if i s a ¢* leaf jmmersion, T = Ti(TV) need not be a

1 2

1 subbundle. For instance take i: S - R

C where 1(51) is a figure 8 with
-infinite order tangency at the self intersection. T cannot be (:.I because this

would deny unique foliations to C1 fields.

Definition. A € diffeomorphism f: M > M is r-normally hyperbolic to a
leaf immersion i: V> M if and only if

(1) F(iv) = v

(2) f pulls back to a diffeomorphism i*f of V so that the diagram

V—— M
li*f lf
V e M

cl

commutes.
(3) There are a Finsler on TM and a Tf-invariant splitting
T = N'@T®N® where T = Ti(TV) such that

u = K s = ok
f) > 1T _fl fl f
m(Np Y > b ] "Np < m(Tp )
for all pe€iV, 0 <k <r, We call such a Finsler adapted to f at 1.

If i is a 1-1 immersion then (2) is automatic, otherwise not -- as is shown by the

1 2

leaf immersion i: S + R~ in the figure below.



If f: R2 +4R2 is not homotopic to the identity on i(Sl) then f does not pull

‘back to a diffeomorphism of 81.

Question. If 1 is a leaf immersion and f ds a diffeomorphism of M with
f(iv) = iV can 1 be replaced by 1i' such that f pulls back via i' to V?

let i: V+M bea ¢ boundaryless leaf immersion at which f 1is normaily
hyperbolic. Let us call i{V) = A, a compact f-invariant set. Eventually, in §6B,
'we shall show that A has a "branched lamination" -- i(V) being one of the
branched laminae.

Let n be a ¢” subbundle of TAM such that Tén = TAM. This defines a C"
bundle over V, 1i*n, the formal normal bundie of 1i:

- i*
i*n ——— 7
lproj. lproj.
Vo —1— iV
On each fiber 1, 1is an isomorphism. As we shall see, there is an ¢ > 0 such
that 1i*f extends uniquely to i*n(e).

The dashed map 1*f is the representation of f in the tubular neighborhood of 1.
(By i*n{e) we mean the 1i* pull-back of the e-disc bundle n(e).)

Since Tf is r-hyperbolic over T at A we have

a Tf-invariant splitting with the usual properties. Since we want n to be smooth,



jpwé"_é_a—ﬁ]'t force n to equal N = N“GNS, but it can be as close as we choose, In
any case T(i*f) 1leaves i*N! @ i*T @ i*N° invariant at V and is, under the
pull-back metric, r-hyperbolic over i*T = TV = the tangent bundle to the zero .
section of i*n. (Note that, as for any vector bundle, Tp(i*n) = Tpv G)(i*n)p for
any p 1in the base V.)

Now we are ready to state our generalization of (4.1).

(6.1) THEOREM. ILet f bea C', r > 1, diffeomorphism of M which is
r-normally hyperbolic at the ¢’ boundaryless leaf immersion 1. Let n bea C.
subbundle of TAM complementary to 1 where A =1(V), T =Ti(1V). If € >0 4is
small enough then 1i*fli*n(e) exists and has properties (a)-(h) of Theorem 4.1:

(a) Existence: Through V in i*n(e) there exists manifolds WY, W with

G cwl, ixF(WS) W, oW and WS Ci*an(e), and
T, = i e Ty, T,(0%) = TV e i,
(b) Uniqueness: Any locally invariant set near V lies in WU W,

(¢) Characterization: W° consists of all points whose forward 1i*f-orbite

never gtray far from V and WY of those whose reverse i*f-orbits never
stray far from V.

(d) smoothnese: W', W are C7 and expoi, |WY, exp°i*lws are C' leaf
immersions.

(¢) Lamination: W' and W are tnvariantly fibered by " dises Ngu, WZS;
qeV, tangent at V to i*N:, i*N: respectively. Points of Wgs are
characterized by sharp forward asymptoticity, those of N:u by sharp

Wi fibers are

reverse asymptoticity. The expei, images of the
coherent in M, and alsc those of the WS fibers. Coherence means that
the interiors of fibers intersect in relatively open subsets.

(f) Permanence: If f' isa c” diffeomorphiem of M which s ¢" near
then f' <s r-normally hyperbolic at an essentially unique leaf immer-
ston i': ¥V + M and assertions (a)-(e) continue to hold for (f',i').

See (6.8) for a more detailed statement of this. _

(g) Linearization: Near VN, 1i*f is topologically conjugate to
N*f = i*(TF|NY@N°).

(h) Flows: Similarly for a flow r-normally hyperbolic at a leaf immersion.

Remark. If 1 s only of class C} but f is r-normally hyperbolic at i,

r >2, then i can be replaced by a ¢” leaf immersion 1i: V> M of the form

Bowv

i = ich where h 1is a diffeomorphism V - V near the identity. The immersed
s SS

manifolds Nu, W, Nuu’ W for i and i1 are the same. See §6A.
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Outline of the rest of §6: In (6.2) we prove that plaques exist. In (6.3,4)

r-1 theory (in the same category) via

we explain how Cr theory reduces to C
‘Grassmannians. In {6.5) we prove a C1 Section Theorem, over leaf immersions. In
:(6.6) we force higher differentiability of a leaf immersion (in the normally con-

‘tracting case). In (6.7} we prove an abstract c" Section Theorem. Then we prove

(6.1). In {6.8) we spell out (6.1f).

To prove (6.1) we found it necessary to work with immersions more general than -
leaf immersions. Their local structure is given by plagues and we call them

plaquated immersions.

Definition. A c’ plaque in a manifold W oisa C" embedding of the closed
unit w-ball into W, p: BY > WY, If w:W-+M isa C" immersion then we say a
family of plaques {p} = P plaquates w if

(1) W=y o(Int B")

(2) {w0p}plEP is precompact in Emb"(BY,M)
By abuse of language, we refer equally to p, wep, o(B¥), and wep(BY) as
plaques. The center of p 1is p(0).

(6.2) C' PLAQUATION THEOREM. Each boundaryless C' leaf immersion 1i: V > M

has a C" plaquation. Each point of V is the center of at least one plaque.

Proof. Let T be the extended T-tangent bundie of 1. At each x € V there
jsa v =v(x) >0 so small that the branch of iV through ix = p contains the
disc

exp,(graph g, )

where g : T (v) » T;— is some C" function with gx(O) = 0, (Dgx)0 = 0, and
sup B(Dgx)vﬂ < 1. (We are merely saying that each branch of iV is locally flat.
vi<y

By Tp(v) we mean the vectors in Tp of length < v and by T+ the orthogonal

complement to Tp in TpM.) Let us call such a v acceptable for x. Note that

9y is uniquely determined by 1, x, V.

The main thing to show is that a uniform acceptable v > 0 can be found for
all xe€V. Let v, >0 be small enough so that exp|TpM(vD) is injective for all
peiv. Let

0

v(x) = sup{v<vy: v is acceptable for x} .



Suppose v(x) > 0 for some sequence {k;} in V. call

n Pn = 9n “(xn) -

'Since iV s compact, we may assume Py > peiV. We know that Tp -+ Tp.
n
Consider the xn-branch of iV through Pp» Say Bn' It uniquely determines |

, . T L iy [
g, Tpn(vn) - Tpn, Vy < Vs such that

exppn(graph gn) C B, H(Dgn)vﬁ <1 for [v] < v,

9, extends to a unique Cr function ﬁn on Tp (v 4-s ) such that
-exp (graph g 9, ) C B,- For =@ and V is comp1ete respect1ng the pull-back

F1ns?er Thus, vn + 0 means

H(Dgn)v I =1 for some v, € Tp (Gn) .
n n

But this signifies that Tp and Tq are far apart for q = exp, (vn4-gn(vn)),

.contradicting continuity of T. n n

Having found a uniform acceptable v > 0 for all the x € V, we pick the
natural plaques given by the functions 9y - For each x € V, choose a conformal
isomorphism Sx: R” - Tix sending BY to Tix(v)' Define Py by commutativity
of

S graph 9y

=
4(
=

We claim {iopx} is precompact in Emb' (B ,M).

Let {x } be any sequence in W. It suffices to find a C'-convergent subse-
quence of oy - Let 9, represent the plaque py a3 before. We may assume
Py = 1xn > p by compactness of 1iV. *n
T' js uniformly continuous on iV since IV 1is compact. exp(graph gn) C iv.
Thus, the r-tangent direction to graph 9, is a uniformly equicontinuous function

of v € Tp (v), i.e.



g S R O o -

V (D 9 ) is uniformly equicontinuous 0O<k<r, }

—

Unfortunately the g, are defined on domains which depend on n, namely Tp (v),
so we can't apply Arze]a s Theorem 1mmed1ate1y However, we can choose a n
"connector" (see [22]) to translate Tp to Tp and T;— to T;—. Call it o .

‘Then n n
1
°9°0, 1T,
is a sequence of maps from Tp(v) to Tﬁ which is uniformly C" equicontinuous.
By Arzela's Theorem, it has Cr-convergent subsequence., The corresponding subse-
quence of plaques ¢’ converges in Emb' (BY M), Q.E.D.

r . . . .
To pursue C questions geometrically, r > 2, we discuss Grassmannians. We
view Grassmannianism as compactification of the tangent functor.

The Grassmann space GV of subspaces of a vector space V 1is a compact smooth
manifold. It has one component 6KV for each dimension k, 0<k<dimV., Linear
maps on vector spaces induce smooth maps on their Grassmannians functorially --
injections induce embeddings, isomorphisms induce diffeomorphisms:

Ga

When ¢ s a smooth vector bundle over M, Gz is the bundle over M whose
fiber at p is G(;p). Note that Gz has compact fibers and is as smooth as .
When r = TM we abuse the notation and write GM = G(TM). Thus, G;M = k-planes
in T M.

P

A diffeomorphism f: M > M induces a bundle isomorphism Tf: TM -~ TM which
induces a Grassmann diffeomorphism Gf: GM - GM; both Tf and Gf cover f.

r-th order properties of f are reflected in (r-1)-st order properties of Tf,
obviously. We lose 1ittle where passing from Tf to Gf and we gain compactness.
This is the usefuiness of @G.

The following two propositions give natural reformulations of r-normal hyper-
bolicity in terms of Grassmannians, r > 2. We are grateful to Ethan Akin for point-

ing out some errors in previous versions.

(6.3) PROPOSITION. Let w: WM pea ¢’ plagquated immersion having pla-

quation P = {p}. If NO is a W-submanifold of W contained in U p(0), w s
pEP



-

% C leaf immersion, and if & isa C ' leaf immersion then w|W, is a C

leaf immersion, v > 2.

Remark. In particular, if i: V> M is a c’ plaguated boundaryless (:'I Teaf

r-1

. . .. r . . .. . .
immersion then i is a € leaf immersion provided Gi isa C leaf immersion.

Proof. Let ™1 be the extended (r-1)-tangent bundle of Gw and let T be
the extended 1-tangent bundle of wy- Let B be the closure of {wep: p€P} in
Emb" (8",M).

For any p € wwo and any plagque B € B centered at p, set
zr _ .r
T Tp(B) :

On any branch of wwo, T" is well defined and is its r-tangent bundle. It
remains to prove T; is well defined on Eﬁa and is continuous.

Continuity is easy, modulo well definedness. Let P, > P in EWE and suppose

T; (Bn) -~ T;(B) where Bn and 8 are plagues in B centered at Py and p. We
n

may suppose Bn = B 1in Emb" by compactness of B, i.e., T; Bn - TEE # T;B con-

tradicting the definition of T;. n

To explain intrinsically how r-1 specifies T' one needs connections on
T(GM), an exponential on T(GM), etc. It is easier to work in a chart.

Fix any p€ ﬁﬁa. Choose the M-exponential chart at p and write points in
it relative to the product TpM = Tp(u)><T5{v). Let B be a plaque of B centered
at p and let Pn € P have wop, > B in Emb'. Near P, wep, and 8 are given
as graphs of maps

g, Tp(v) — T;(v) g: Tp(v) — Tﬁ{v)

respectively. Suppose we have a second plaque RB' € B centered at p and a
sequence pa € F with WOQH + B'.

Consider G(wpn) and G(wph). They are plaques in G{uW) C GM, Since
wp, >~ B, we have G(wpn) + G in Embr'](Bw,GM). Similarly G(Wpﬁ) + Gg'. Conse-
quently, GB and GR' are (r-1)-order tangent at their common center Pp. (We
denote Tp by Pp when we think of it as a point in GM, by Tp ‘when we think of
it as a subvectorspace of TpM.)



""“'Thé“EtaﬁdafHMTfL"Eﬁé?f_?O?"”G;M "at"Pp.'dusing"tﬁéﬂﬁhirmﬁTéj_T%\"“?§_§TVéﬁjﬁﬂ

. 0
grp. L(Tp,fp) — GpM
h — graph(h)

The product chart expp><grp gives us a bundlechart of GM over a neighborhood of -
p in M. |

Let @, T+ be planes in this chart which are

z- i 1.
I TpxoxPp I OXTDXPP.

Now GB, as a submanifold of GM which passes through (U,O,Pp) in the chart,
is the graph of a map

b: I — I+xneighborhood of 0 in L(Tp,T;J .

‘See the figure below.

L(T ,T;)

———qraph(b)




S1m11ar1y GS' is the graph of b'. For vE I « Tp

b(v) = {g(v), the tangent plane to B at (v,gv) expressed in the grp-chart} ;

But this is just (Dg) Since ™70 is tangent to both GB and GB' at P

p’
|b{v)-b (V) ]/]v]" " + 0 as v - 0. Hence

B(Dg),-(Dg") I

v|™"

— 0 as v-+0

which implies (Dkg)0 = (Dkg')o, 0 <k <r. Hence " is well defined. Q.E.D.

(6.4) PROPOSITION. If i:V-+M iesa C leaf immersion perhaps with boun-
dary at which f {s r-normally hyperbolie, v > 2, then Gi 4ig a Illr‘-.I leaf

immersion at which Gf is (r-1)-normmally hyperbolie.

Remark. Note the abuse of notation in that G&Gi: V +~ GM 1is the map
X = Tx = Ti(TXV) while Gf: GM -~ GM is the Tf-induced map on GM.

Proof. Clearly Gi is a cr-l immersion, Gi is uniformly (r-1)-self tan-
gent, and V is complete respecting a Finsler on GM. To show that &f is (r-1)-
normally hyperbolic at Gi we must produce the appropriate T(Gf)-invariant split-

ting of TG—_i(v)-(GM) .

For each p €A, GpM contains two smooth manifolds, Gg, G;, consisting of
all v-planes lying in N & T s T’p @ N; They meet transversally at the point
Pp T €G_M and they are Gf—1nvar1ant {Note that dim G: + dim G: = yu+vs
= y{u+s+v-v) = dim(Grassmannian of v-planes in R").) Again we use Pp to empha-

size when we think of Tp as a point in GM.

Since GM is a fiber bundle over M, dts tangent bundle contains a canonical
subbundle of "vertical" vectors tangent to the GM-fibers. There is a natural
T{Gf)-invariant splitting

Vert= = Vert! @ VertS

T

where Vertp TpDG; and Vertp TppG . We sha11 extend this splitting "into the
horizontal direction", but first we give vert! VertS Finslers. At Pp there is

the standard smooth chart for Gp



gr: L{T_,NY) — g _
p PP p grp(o) =T

g ~— graph(g) P

and on L(TP,N:) there is the norm coming from the adapted Finsler on TM. Put the

norm on Vertg which makes
p

. u u
an isometry. In the chart grp, Gf acts as
g +— Nifoga(T f)"!
and consequently
m(T(Gf)IVert:) z_m(N:f) m((Tpf)“]]
Ugvps =1
= fIRT_f .
m(Np ) . I
Similarly we give Vert® a Finsler such that

S 3 T
HT(Gf)[Vertpﬂ g_ﬁprﬂm(Tpf)

S

Now for the horizontal direction. Choose any subbundies HY, H® of TT(GM)

projecting isomorphically onto Nu, NS by Tmw
GM T(GM) The HS
l‘n lT'n lT"rr lTw
M ™ NU NS
Via Tm, pull the Finslers of N4, N° up to HY, H°. On H'@H ®Vert put the

sum Finsler. Since Gf 1is a fiber map, the bundle Hu69Vert is T(Gf)-invariant.
Thus we have the diagram

0 ~—— Vert® — HY@®Vert — HY@®Vert/Vert® — 0

lVerts(s) lT(Gf) lFu(f)

0 — Vert® — HY@Vert — HY@®Vert/Vert® — 0

where Verts(f) and Fu(f) are T(Gf)-induced.



The factor bundle Hu@Vert/Verts is naturally isomorphic to H'@vert! and
the factor map F'(f) takes the form
s A
p
u
C Vertpf

C being the shear term. We are free to choose a convenient Finsler | |, on
H@vertY. Put

|h+V|* = |h| + EIV[

where € >0 s small, heHY, vevVert!, and the norms | | are the ones
already considered: |h| = |[Tn(h)] 1in TpM, lv] = the grp-induced norm on Vertg.
In this Finsler C: HY » vert! appears to be very small since

»

|C(h}|, = €|Ch| < eBCl|h] = elCl}h|,
shows that ICl, < iCi. Thus, we assure

m[F:(f)] é_min[m(N;f),m(Vert;f))

. u Usves g1
f), f
z_rmn(m(Np )om(N )HTpr )
s
> 1> )
1 Vertpf
Hence by (2.18} Vert® has a unique T(Gf)-invariant complement in H'@Vert. Call

it EY. Under T(Gf), EY is expanded and Vert® s contracted. Invariance of
Eu, Verts, and Vert! implies Y o vert!. Similarly we find ES.

r-1

Finally, since Gi isa C leaf immersion and r-1 > 1, Gi has an

extended tangent bundle T3 T projects onto T wunder Tm. On T put the pull
back Finsler. Thus

— u jut 1
TGT(V)_(GM) = E®TDPE

is a T(Gf)-invariant splitting and

. NYF 0
T(Gf)|E" = "
C Vert f



respecting some choice of Hu, this time in Eu, projecting onto T Again, we
.can rechoose the norm to make C small. Thus

_ Uy & s u TP |
m(TTp(Gf)|E ) 3_m1n(m(pr),m(pr)ﬂTpfﬂ )
ITTp(Gf)I?I = ﬂTpr

m(Ngf) > HTprk 0 <k <r-l (in fact < r)

1 k

m(N;f)qufn“ >HTAY 0 <k g

This says T(Gf) expands EY  {r-1)-more sharply than it does <; similarly for

E5, and so Gf is (r-1)-normally hyperbolic at Gi. Q.E.D.

Now we turn to the question of generalizing the ¢" Ssection Theorem, (3.5}, to
the noncompact case. We present two theorems in this direction, (6.5) and (6.7),
but we were unable to prove a theorem uniting them (without using 6.1 itself) -- in
particular we were unable to prove (6.5) directly for r > 2.

Definition of an r-fiber contraction. Let w: E+ W be a ¢” Banach bundle
and let E, TW have Finslers. Let D be a disc subbundle of E of finite radius
and let f bea C fiber map

. M . > f
E < D Dy —— D
I N LA
W= W e LU

where h overflows wo; and EO’ D0 are E, D restricted to wo. Then f is
an r-fiber contraction if and only if

sup k{p) <1 and  sup k(pla{p)™" <1
Wg "o

where k(p) = Lip(f]Dp), alp) = m(Tph).

(6.5) C.I SECTION THEOREM. et f be a C‘| fiber map E + E where E s a
C] Finslered vector bundle over M. Let w: W-+M be a C] leaf immersion and

assume T pulls back to a 1-fiber contraction of Ww*E.



u#DG-*~—~+ w*D
] J D = a dise subbundle of E .

Then there exists a unique T-invariant section ot Ag > E(v), Ay = thOS, and
O¢ pulls back to the unique ]w*f—anvarzant section O ' NO > w*Do. This O, ¥ f
te C  and Weo0 w18 a € leaf immersion.

WD —x_,

A

Wy W —
L w )

Remarks. The last sentence is the only surprising part of (6.5)., We use the
puil-back Finslers on w*E and TW.

Proof of (6.5). f and w*f are continuous, uniform fiber contractions of
bounded Banach disc bundles which cover overflowing base homeomorphisms. By (3.1)

they have unique invariant sections, Oet By > DO’ O wo - w*DO, where
D, = DIA0 and Aj = wlwoj. The forward image of o4 9ives a set-valued
f-invariant section of D0

p = w0 e(x): wlx) =p} PEA, -

By invariance and fiber contractivity, the diameter of these sets is zero. By
uniqueness,

WyoO, g = Ogo ON wo .
As in (3.5), we can assume E is trivial without loss of generality. Using
the triviality, we can express

Tf = [A O} respecting TE = Hor @ Vert
C K

where HorZ is Tsz‘ Since D0 is compact, HCZH is uniformly bounded over

Z e DO' Also, triviality of E (and hence of w*E) let us define the slope of a

section at a point as in §3. The sections of w*D having a slope < & at each point

form & closed subset ZI{2) of the Banach space of all continuous sections of w*E;



‘this is a pointwise property and can be verified in a chart at each point of W as
in (3.5) -- we do not rely on plagues here., For large 2, we claim that (w*f)#
carries EO(E) into itself. Again, the verification is pointwise as in (3.5),
‘using the uniform boundedness of the shear ICZI. Thus, the sect:on

O’ wo - w*D0 is uniformly Lipschitz. The proof that it is € is identical to
the Lipschitz-jet proof in (3.5).

The map W4°mef= NO — DS E s now known to be C1. wo is complete under
the pull-back of the trivial Finsler on TE: distances are even greater than those
in the w-pull-back Finsler. To find the extended tangent of WyoO, e WE consider
the continuous bundle L over A whose fiber at p is

L= L(T_,E A .
p = LY peA

There is a natural Tf-induced map Lpf: Lp + L such that

fp

graph (Lpf(P)) = Tafpf (graph P)

where triviality of E has been used to identify TpE and TU pE. In fact
.F

_ + -1
Lpf(P) = (Cp+KpP)o(Ap|Tp) .

By assumption, Lf 1is a O-fiber contraction and by (3.1} there is a unique con-

Lf AO + L. The same construction applied to w*f
produces a continuous, bounded, L(w*f)-invariant section of w*L, say O (wf)"

tinuous Lf invariant section o

As above, its forward image by w, gives a set valued Lf-invariant section of L,
and the diameters are forced to be zero. The unique L{w*f)-invariant section of
w*l  is X — Px where graph(Px) = Tz(ow*f(wo)), z = cw*f(x). Thus, the extended
tangent of Wy o0 is found as the graph of oy - This completes the proof of

f
6.5.

* * * * *

Definition. If w: W+ M dis an immersion and f: M+ M then we say f
overflows w if and only if f pulls back to a diffeomorphism w*f: wo + W where

NO = w_](f(ww)). This requires w*f(wo) = Y.

Definition. Let f overflow w, Assume w is a C] leaf immersion with
extended tangent T = Tw(TW). Then f is normally r-contractive at w if and
only if there is a splitting T@®N = TAM, A = w(W), overflowing invariant by Tf,
such that



sup IN_Fim(T )" <1 '
Ag X X Ay = W(W,)

sSup INxfﬂ <1
Ag

(6.6) COROLLARY. Let w: W -+M bea ¢’ plaquated tmmersion with plaquation
P, r>1, anda C1 leaf immersion at which the C' map f: M+M is normally
r-contractive. Suppose WO = w*f-]h' 18 contained in the set of points at which

P-plaques are centered, lf)Jp(O). Then w|w0 is a € leaf immersion.

Proof. When r =1 this is trivial -- w is a C1 leaf immersion by hypo-
thesis. Let r = 2. By (6.3) it suffices to show that Gw: W+ GM 1is a C'I leaf
immersion. let T and N be smooth subbundles of TM such that T, N are CC
approximations to T, N on A = w(W). Let L be the smooth vector bundle over M
whose fiber at z s

Let f, N inherit Finslers from a fixed Finsler on TM. When T, N are near T, N,
Tf acts naturally on 7_(1) = {Pel: IPI <1} and

N (1f), .
L"om ——= L,(1)
J —f JL
0 A = wlH)
(Tf)4 Ay = wlW T

according to the graph transform: (Tf){(graph(P)) = graph(Tf)#P. Expressing Tf

respecting T®N as
A B
Tf =
C X

we have A= Tf, B=0, €20, K=Nf over Aj. Thus (Tf)#P = (C+KP)o(A+BP)"
contracts the fiber over x & AO by approximately the factor

1



e e
EK JBA 0 = INxfﬂm(Txf) <1.

[ Y —

We are going to apply the C‘I Section Theorem to (Tf)#: (1) = I over w. The
pull back of I by w is a ¢” bundle over W and

N w*(Tf) .
wxl (1) » w*l (1)

w*f

has w*(Tf)# = (T(w*f))#. At x € hgs the fiber contraction of (Tf)# is approxi-
mately HNxfﬁ-m(TXf)‘1 = kx and along Tx in the base the contraction is

m(Txf) = ay. By assumption, f is normally 2-contractive at w; thus, kxax <1
and the C! Section Theorem applies to (Tf)#' over w. We conciude: the unique
w*(Tf)#-invariant section HO " gives rise to a C] leaf immersion wo > L.

Wi — T
Wo >4y

But of course this uniﬂue section is just x +— Px where P € L(?x,ﬁx) has graph
P = Tx' The bundle L gives a smooth chart for GM around T C GM. Thus we have
sgown that Gw: Wy > GM, x— Tw(x)’ isa C leaf immersion. By (6.3), w is a
€~ leaf immersion.

Now suppose r > 3 and assume {6.6) proved for r-1. We show Gw 1is a C'"'I
leaf immersion. We know it is a C'r"1 plaquated immersion, its plaquation being
{Gp: peP}. By induction, w and Gw are Cr"2 leaf immersions. By (6.4), which
we can apply because r-2 > 1, Gf is normally (r-1}-contractive at Gw. By induc-
tion again, Gw 1is a Cr-] leaf immersion. By (6.3) w is a ¢" leaf immersion

of NO. Q.E.D.

The second generalization of (3.5) seeks ¢" invariant section of a bundle,
but does not treat self intersections the section might have when immersed into M.
The bundle is not assumed to be the pull-back of a smooth bundle over M, espe-
cially for induction reasons. ‘



' Definition. 1f manifolds M and N have preferred atlases A and B and
if f: M+ N then f is C'-uniform respecting A, B if the maps w_]f¢ are
uniformly c’ equicontinuous as ¢, ¥ vary over A, B.

Definition. Let w: W+ M be an immersion with ck plaguation P = {p},
k>1, and let Y be a Banach space. A o uniform Y-bundle over (W,P) is a
Banach bundle with fiber Y, =: E > W, which has an atlas A of bundie charts
over the p €P

L

whose chart transfers, restricted to all sets of the form subset of Bw><Y(1), are
uniformly Cr-equicontinuous. That is, given £ > 0 there must exist & > 0 such
that

HDk(?'1¢)(X,y)-Dl(w‘]¢)( | <e

xl,yl)
whenever ¢, ¥ € A, domain (W']é) contains (x,y) and {x',y'); ly| <1;
ly'| <13 0<g2<r; and |x-x'| <§. Such an atlas A 1is called a C"-uni form

atlasa.

Definition. A Finsleron £ is A-uniform it x> | | is CC-uniform
respecting A in the sense that the norms of @X, ¢;1 are uniformly bounded where

xxY
//’ s \\2 seA xeB”
y —* L F
pX

and 16,0071 31 as |x-x'| > 0. Similarly a Finsler on TH {s said to be
P-uniform if the norms of Txo, ('i'xp)'1 are uniformly bounded and
"TX.QO(TXQ)-]“ T1 as |x-x'| -~ 0. (We identified TX'Rw with TX.GRW) to form
the composition.)

> 0, with
A Cr*unifbrm

Definition. Let w: E~+ W be a ¢'-uniform Banach bundle, r
¢” uniform atlas A, and suppose E, TW have uniform Finslers.
r-fiber contraction of E{v) 1is a ¢’ map



E(v) = {veE: jv|<v}
l Eq(v) = E(V) W,
h

W

JRUSE. L. A— W

0

such that h is a C'-diffeomorphism onto W, sup Lip (flEx)m(TXh)L <1,
0<g<r, and f, h™' are C-uniform maps respecting A, P.
(6.7) THEOREM. Let f be a C -uniform r-fiber contraction of E(v), r >0,

with wo C u_p{0). Then E(v) has a unique fF-invariant section O¢. This o
peP

is C -uniform and depends econtinuously on perturbations of f <in the natural sense.
See below.

Remark. For simplicity, even when r = 0, we assumed P 1is a C1 plaquation
of the C] manifold W. Although (6.7) remains true in the purely C0 framework
we need it only when the base space is C1.

Proof. Let dw be the metric on the connected components of W induced by

the Finsler on TW

]
dw(p,q) = inf{J |¥{t)|dt: v is a ¢! curve from ptoqinW} .
0 .

(Note that y may pass through many plaques on its way from p to g even when
dw(p,q) js smail.) There exist constants w, 2 depending only on P such that
(1) if pe W, and d(p,q) < w then gq 1lies in a plague p € P centered

at p;

{2) if p.g€p and PEWN L

o then o f_dw(p,q)/lp']p-o'1q| < Q.

Since the Finsler on TW is uniform respecting P, the length of any curve
vy lying in a single plaque p is uniformly comparable to the length of p-1oY in
B¥. From this, (1) and the second inequality of (2) are clear. Suppose p, g € p
and p € wo. Choose a plaque p' € P centered at p. If dw(p,q) > w there is
nothing to prove, for lp-]p-p-]q[ < 2 = diameter BY., If dw(p’Q) < w then (1)
says q € p' and so any curve y from p to q is either uniformly comparable in
length to lp"1
subcurve of v from p to its first point of 3p' has length uniformly comparable
to 1, the radius of B". This completes the proof of (2).

p- p'—1q| or else y exits p' between p and q. However, the



Y

" Now let r=0. call I° the set of all A-uniformly continuous sections of

E(v). Observe that :® 4s complete respecting the sup norm | IO‘ For if
lo -0l > 0 then in each A-chart

|sx]-sx2| g_lsx]—snx]l + ]snx -s le + |snx2—sx2|

| A

2K|on-o|0 + |sn =5 %o |

where ¥ > 0 1is constant depending on A only. Let &£ >0 be given. Fix n so
large that Ian-o|0 < €/3K. Then ]xl-le <8=238 imlies Isnx1-5n32| < g/3;
thus lsx]-sle < £ whenever IXI'XZI < 8.

On $° define the natural f-induced map

£4(0)(x) = Foooh™ () xEW .

Observe that f# contracts I° into itself. (Certainly fy4 contracts distance
but it is not apparent in general that the composition of cO-uniform maps is
Co-uniform.) Let o€ 1 and € >0 be given. There exists 61 > 0 such that

|f®¢l (Z'l) - fq‘.@l (zz)l < g

whenever &, ¢' € A, |z]-22| <E, 2;° (xi,yi), |yil <1, i=1,2. (By fop:

we denote the (&,%')-representation of f, ¢"1ofo¢.) Since o is C -uniform,

there exists 52 > 0 such that
|0,0(x1) =05 (xp) | < 6

whenever |x]-x2| <6, and ¢ is the A-chart over p. Since h"! 4s  cP-uniform,

there is a 63 > 0 such that

-1 ' -1 '
[(h77) e (x4 = (070) L ()] < 6,

whenever p, p' € P and |x.| é| . Now, given p' e P and xi € B¥ choose
pE P centered at p, = h=1(p xi) € N Suppose ]xé-xil < § = min(m,63). By (1),
Py = h'](p'xé) also lies in op. Hence

[(F40) 10 () = (£49) 140 (x3)]

= o o -1 ) o © -1 !



»
.

since [T (xq) = (7N )] < 8y = o y(x) =0 ()| < 6

- = -1 ! s = i =
]f¢¢.(z]) f¢¢.(zz)| < e when x, (h )p.p(xi), z3 °p¢(xi)’ i=1, 2.
Thus, f#o is also CC-uniform and so f# contracts I¢ into itself, By complete-
ness of Ec, O¢ S Ec. '

Let us consider perturbations f' of f. We assume f' s also a Co-uniform'
fiber contraction overflowing WO, that the fiber contraction constant of f',
sup Lip (f'|Ex), is uniformly bounded away from 1, and that the A-representa-
tions of f' approximate those of f 1in the following sense.

h']h'(p) €p for each plaque p € P centered at p € NO

]fé.Q(Z)-f¢.¢(z)| < e wherever both are defined

Such a definition assures that (f',o) f#c is a continuous function of f' and
0. (Note that f' +— f# is not continuous!) By (3.1), the unique invariant
section f' +— e of

Fch—+szc

(f',0) — (£',f}0)
is continuous. This completes the proof of (6.7: r = 0).

The proof that Oc is Lipschitz {and ", r > 1) is a modification of the
proof of (3.5). Since we have purposely not assumed E s trivial and since E
may be a Banach bundle, we deal with a section's slope via a Cr-1—unifbrm linear
eonnection on E, 1i.e. a choice of a Cr_]-unifbrm horizontal subbundle, Hor CTE,
such that Tm bijects Horz to Tﬂzw and z +— HorZ is a linear function of
r = Ex. Since vectors in different fibers of TE can not in general be added, it
is not immediate what z!— HorZ being linear means. If Ups Uy € TE have
Tn(u]) = Tw(uz) then wu,, u, are addable. For there exist curves Yi» Yo in E
such that yi(O) = U, Yé(O) = Uy, ﬂY](t) = “Yz(t)' Since Yl(t)’ Yz(t) belong
to the same fiber of E, we can form linear combinations vy{t) = a1y1(t)-+a2Y2(t)
and make sense of aquy ta,u, dsf' ¥'(0). This sum is independent of which such
Y1 Yo We chose. That the subspace HorZ depends linearly on z € Ex means all
linear combinations of horizontal vectors are horizontal.

Remark. The definition of connection just given differs from that in [34,
p. 43] where it is also required that smooth arcs in the base be 1iftable to smooth
horizontal arcs in the total space which fit together to define translation of one
fiber to another. Under our definition, Nomizu's requirement is satisfied if r > 2,



fﬁof”1et ‘= 'be a smooth arc in W joining the points p, p'. There is a smooth
flow on W, say ¢, of which a is part of one trajectory. Since each Horq(E)
is carr?ed isomorphically onto T“qw by ;Tn, there is a unique Tift of thg tangent
field ¢ to a horizontal tangent field ¢ on E. Since r>2, ¢ is C and
generates a local flow ¢. By uniqueness, ¢ covers ¢. Thus, the arc o 1lifts
locally to horizontal arcs through all points of E_. Gronwall's inequality and
‘Tinearity of Hor 1imply that the y-trajectories through Ep reach Ep. and we get
a translation diffeomorphism Ep > Ep. which, in fact, is linear. If r =1, then
Hor does not seem to define fiber translations,

Existence of local linear connections is trivial: ¢ € A trivializes E over
p so take

Hor® = Tz(q>(1way)) z = o(x,y) .

To globalize, take a finite ¢ partition of unity on M, 1~ g VY., with
max{diam(supp wj)} <& so small that -
(3) if pEP and dMQUp(O),supp wj] < § then p'a[supp(wjow)] is
interior to BY;
(4) if Pys Pp € P have pyNp, #9 and p](O), p2(0) esworﬂwd(supp(wjow))
then p, ﬂsupp(wjouJ) = pzﬂsupp(wjow).
Precompactness of wop 1in Emb implies that sets of small diameter in M Tocated
near the center wp(0) of a plaque p € P do not contain points near jts boundary.

This proves (3), see the figure.

wp
3 (wp)

wp(0)

In (4), wa( ) refers to the &-neighborhood in W respecting dW' When & is
small (1) implies pZ(O) € 0 and p](O) € py- By (2}, the set p1fﬁsupp(¢jw)
which is very near p1(0) in p; must be very near p1(0) in p,. This gives
(4), see the figure.



wo, wpy

(4) implies that p1Np, # P defines an equivalence relation on
{peP: p(0) € worﬁwd(supp(wjow))}. Let Pj C P be a family having just one p in
each equivalence class. Then, $H p is a disjoint covering of supp(wjow) by

J
plaques, and 7§ wjow = 1 1is subordinate to g Pj on W,. Put

Hor, = § v. (w(mz) Hor®
- o),

def ) wj(wwz)ug: u?,...,ug are addable in T E}

Hor is a Cr'] uniform linear connection over NO. For we constructed it from a
Cr'1—uniform family of bundle charts (on TE) and a ¢ -uniform partition of unity
having at most J terms nonzero at any point.

In any chart T¢, o €A, HorZ appears to be a nonvertical plane through z.
That is, it appears to be the graph of a linear map RY - Y translated to z. The
norm of this linear map is uniformly bounded since Hor is Co-uniform.

It is no Toss of generality to prove that oflwo is C'-uniform. For
Of = f°0f|N0°h-]. See the proof of (6.7: r = 0).

Relative to a linear connection we can define the slope of o: NO > E0 at x
as follows. Let 6: W~ E be a smooth section such that at «x

(T,8)(T M) = Hor_ (E)

(6 depends on o(x)). Then

la(x')-0(x")|

X.
dw(X'.X) ’

s1opex(c) = 1im sup
x'+x




This definition is independent of which © we pick. Linearity of the connection
implies s"lopex defines a semi-norm on sections NO > E0 having a given value at
X. Let

£(2) = {o € s]opex(c) < & for all x € wo} .

We claim that for £ large, f# carries I(L) into itself and £(2) is
closed in . Write

A O
Tf = resp. Hor @ Vert = TE0

C X

where Vert 1is the canonical subbundle of TE tangent to the fibers., Since f
preserves fibers B = 0. Since f is ¢” uniform and Hor is uniformly
nonvertical,

iCH 1is uniformly bounded .
As in 83, we calculate that
-1
stopeg (fyo) < (NCH+NKIL)IATN < &
by 1-contractiveness, provided £ >> [C|. Hence f#(E(ﬂ)) C z(8).

Verification of closedness of 2(&) in % is made easy by use of "flattening
charts". For each Xg € NO there]is a chart ¥ for E sqch that in Tv¥, Hor'Z
appears to be flat for all z &€ 1 (xo). (To get such a ¥, take any ¢ € A at
Xg- In T9, HorZ appears to be z+graph Pz where + means translation and
z P*'Pz € L(Rw,Y). Linearity of the connection means PZ depends linearly on y
where @'T(z) = (0,y) €0xY. The bundle chart ¥(x,y) = ®(x,y-P0,y(x)) flattens the
connection at xo.) Let 07,055... € Z(2) converge to o in ZI€. At each point
Xg € wo choose a flattening E-bundle chart VY. If we compute all slopes with the
flat connection from this chart, we will change nothing over Xo and, since the
connection and Finsler are continuous, will change things very little near Xqg-
Thus, given € > 0 the sections O1sTpsc-ns restricted to a small neighborhood of
Xqs Will appear (in the chart) to have slope < &+¢. By the usual theorem [12],
their 1imit o will have slope, in the chart < L+¢&. At Xq the apparent slope
and the true slope are equal. Hence s10pex0(o) < %+¢, and since e was arbi-

trary, z{&) 1is closed. Therefore ar is uniformly Lipschitz.



1

To see that Oc is C we use Lipschitz jets. Since E 1is not trivial, the

proof of {3.5) needs siight modifications. Let
J, = {Jx(o): o€Z, o(x) =of(x) and s'lopex(o)<m} .
Thus, J C J(N,x;E,of(x)). Using the connection on E we can define an origin

for Jx as Jx(e) where 6 is a local section of E with (Txe)(wa) = Hor
Then Jx has a natural Banach space structure since the connection is linear.

oex’
The "slope" gives it a Finsler: f naturally induces the diagram

Jf

J > J

= _ -1
l l (I 0) = 3, (F,0) =, (fon™") .
wgiscrete h Ndiscrete

Jf contracts the fibers uniformly; this can be seen using bundle charts as above.
Thus, as in (3.5), the unique invariant section is continuous and lies in
.Jd = jets of differentiable sections, so oF is C1. (We give W the discrete

topology in the diagram since otherwise Jf may fail to be continuous.)

To prove O¢ is C1-uniform, we "locate" T(Ufwo) as in 83, This also lets
us pass to the €' case, r > 2. Let L be the bundle over W whose fiber at x
is
Lx = L(wa’Ex) .
Then L s a Cr"1 Banach bundle over W and L has a natural Finsler. Moreover
there are natural charts Lo: BYxL(RY,Y) + L given by

Le(x,P) = ¢°P (p-]) € Lx dbE A over peEP.

oTpx
These natural charts form a Cr']-uniform atlas LA for L because they are
basically just the tangent charts to the ¢ -uniform atlas A. The Finsler on L
is LA~uniform.

Tf acts on L as follows. Using the connection, we can canonically identify
L(TXW,EX) and L(Horz(E),VertzE), for z = o.x. Since Tf carries TE to
szE we get an induced map Lf: L+ L covering h., We want to prove that Lf is
an (r-1)-fiber contraction over h respecting the atlas LA. For then, (6.7: r-1)
applied to Lf implies that O¢ is C'-yniform since the unique invariant section
of Lf dis x—Q, graph (Qx) = Tz(cfw), Z = OeX.
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Respecting Hor & Vert we write

A, 0 ] )
€ E.(
{; K z 0\)

Tf

We already observed that 1CI is uniformly bounded and we know that
{Kan(AZ)_k <1, wuniformly, 0<k<r. Also,

_ -1
Lf(P) (CZ + KzP)cul\Z

where we have made the identication by the connection. Thus, it is immediate that
Lf is an r-fiber contraction. It remains to verify that Lf is Cr']—uniform

respecting LA.

In two charts Lo, L&', the map Lf 1is represented as

x,p Lo (fp.p(x),(C+KP)A'1)

since

AL O
Tf, =|?
zerp C. K

respecting T¢'1(Hor®Vert) and T@"l(HorGBVert). To see that these functions
are indeed uniformly Cr']—equicontinuous js an application of the Chain Rule. fp.
is known already to be uniformly c’ eguicontinuous. As functions of z € Eo(v), °
AZ, Cz’ KZ are uniformly Cr'1 equicontinuous since f s ¢ -uniform; z = O eX
is ¢"1-uniform by induction. It follows as in the proof of (6.7: r=0) that Az’
CZ, |<Z are uniformly Cr']-equicontinuous functions of x. Operator inversion is
a (™ operation whose derivatives involve universal constants and the norm of the
isomorphism being inverted. Hence Lf fis Cr']-equicontinuous when represented in

these charts, i.e. Lf is Cr'l-uniform respecting LA.

This completes the proof of (6.7: r>1) except for perturbations, which we now
consider. If f' C -uniformly approximates f then, from the way T(cf.wo) is
Jocated in L and by induction, the proof of (6.7: r=0) carries over to show Ogr

Cr-uniformly approximates Og- 0.E.D.



Proof of (6.1). Let i, ¥, M, A, f, T, NY, N° be as in the hypothesis of
(6.1}):

v 1, M
vy = 4
li*f lf )
i T=Ti(TV) C TAM
V— M

T.M = NeTen — . NoTons

N

A -+ A

Tf - NfoTronNST

By hypothesis there is a Finsler on TM, adapted to f at i, and we may
assume |x+v+y| = max(|x|,|v].ly]) for x €N, veT, yenN’. Also M has a
smooth exponential, exp, arising from its fixed, smooth Riemann structure. We use
this exp extensively but all norms below refer to the Finsler structure.

let n bea C subbundie of T,M such that T,M=n@T. The pull back i*n
isa cf bundle over V. We must first prove that for small € > 0, there is a

unique continuous extension of i*f from V to i*n{e) such that

commutes. That is, we must show i has an n-tubular neighborhood in which f can
be uniquely represented. Note that i*f s not likely to preserve i*n-fibers.

By (6.2), i has a C" plaquation P = {p}. Each plaque p givesa C'-

embedded disc ip in M and since n|ip = n, is a smooth complement to T(ip)

tp
in TM, there is, for each p, some e = e{p) > 0 such that

exp[nip(s) is an embedding .

Since ioFP is precompact in Embr, a single gy can be chosen which works for
all p€ P. Given v €Y, we consider the smalil s-disc in M through p = iv



exp (g () ERI

Its f 1image is a small s-disc through fp. Choose a plague p' € P centered at
v' = i*f(v). (By (6.2), p' exists.) Since ieP 1is precompact in Emb",

f(expp(niv(s))) C exp(ny . (g4))

provided € << €o° In this way we can uniquely extend i*f 1locally from V to

i*n{e) by demanding

(3%n), (e) — T (%), ()

expoi, expei,

M + M

commutes. Local uniqueness implies global existence and uniqueness.

If we begin with a different smooth bundle n complementary to T, then the
two different tubular neighborhoods are canonically c’ diffeomorphic near V and
the two representations of f are canonically ¢’ conjugate. Thus, it is no loss
of generality to make a convenient choice of n: let ﬁu, N° be C° subbundles of
TAM which approximate NY, N° and choose n = N = N @ nS.

It is useful to view the tubular neighborhood of V, i*ﬁ, as a bundle E,
not over V, but over some higher dimensional manifold, namely X = i*NY. This is
easy to do, for the fiber of i*N at v E V is just Np (pulled back from p = iv
to v) and in it we affinely translate N; from the origin to all points x € N:.

See the figure. N
*N>

M\




We are going to work with this E 1in the same way we worked with the E in
§4. The unstable manifold for i*f, WY, turns out to be an invariant section of
E. When constructing W' it is no loss of generality to assume N° §s trivial.
If N° is not already trivial, we can finda C bundle z over M whose sum
with N° over A is trivial, extend f to g by letting it ki1l the ¢ fibers
and be the old f on the base = M. The extended f will be normally hyperbolic
at i: V+MS ¢ and its unstable manifold will 1ie in M by invariance. Of
course we can no longer use invertibility of f 1in the construction of Wi,

Triviality of N° as a C0 bundle implies that N> is €° trivial for each
smooth N> near N°. For we can project the trivializing sections of N° into N°
along N/ ® T and then approximate them in N® by ¢” sections. CO triviality
of N° implies C'-uniform triviality of E: let Zyse.-sfg be €7 sections
trivializing N°, Tet i*Z;,...,1"Z, be their pull backs to i*N°, and extend
them from V to X wusing the canonical isomorphisms Ex Ad (i*ﬂs)q for
X € i*(ﬁ:). Thus,

i*N = £ = XxxR® X = WY .
Although E is trivial as a vectorbundle, its natural Finsler is not constant. For
we demand 1_y]x be defined to make the canonical isomorphisms

~g _ .
Ex +—->-EV +— Np p = iv
isometries, y €& RS.

To define the sTope of a section of E (part of the construction of Nu) we
need not only a Finsler on E but one on TX. Since we only care about W near
V., we give a Finsler to T(x(eo)) where

X(gq) = 1*&“(50) .

As we saw above, the map x defined by commutativity of

LR i*
iN ——>TM

] ’[p

x(ao) . SN

is an immersion. Pull the Finsler of TM back to one on T(X(eo)) by x:
Wl = Ty,



—~—

We restr1ct E to X(eo) st111"65ﬁ11ng it E If o: X(so) +E is a sec-
t1on then the slope of o at x is

[sx! -sxl

Tim sup d—(ﬁ)—

x'+x

where o{x) = (x,sx) in E = X(€0)><Y and where d, is Finsler-metric on X(eo)
1 . 1
d,(x',x) = inf{| |yt|_,dt: vy is a C' curve in X(g,) from x' to x} .
X 0 Yt 0

NOTE THE ABUSE OF NOTATION IN THAT WE OUGHT TO WRITE dX(Eo) We shall see that

i*f naturally contracts the space I(1,&) of sections of E|X(€) having slope <1
everywhere, provided € << €g- From this we get Nu, prove it is ¢" via Lipschitaz
jets and (6.5,7), then show expoi |W! is a C" 1leaf immersion via (6.6).

Everything hinges on a uniform local picture of i*f in E, just as it did
in the compact case. That is, we need a plaquation for y. We have already the
plaguation P = {p} of V and we extend it into X(EO) as follows. It is fair
to assume exp[na(so) an embedding for all "limit plaques" p € JeP, since ToP
is compact and exp[nip(eo) js an embedding for all p € P. Cover A by open sets
U],...,U£ over which NY is trivial. By uniformly reducing scale, it is fair to
assume each p 1lies in a single Uj, p € 7oP. Also we can assume N §s trivial
over Uj and U, 1is compact. As above Co-triviaiity of NY over ﬂj implies
¢ triviality of ﬁu|ﬂj. Let n?j""’nuj be smooth trivializing sections over
Uj with l”kj' < eg/2u. Define

u

B(x,vix) = exn(kz1(xk+>’<k)nk5(ip(V)))

xeBY, and x = (x],...,xu), X = (il,...,iu). We think of

when (x,v) € BU+V

X as a parameter describing where B 1is centered. When x =0, § gives the
tubular neighborhood of ip in X(X(ao)) The set of such B( ;x) forms a pre-
compact subset of Emb (BU'+V M) because ioP is precompact, BY s compact, there
are just finitely many U.'s, N> is C”-trivial over each compact U and exp
is C°. Calh Xp(eo) = j ﬁu(so)lp. As we saw before, yx embeds X (eo) into M
and B C X(Xp(eo)) since [”kjl-f gy/2u  and |x] < 1. Define B by commutativity
of



BU+V -——-g-———-—-r X(Eo)
B( 3%) 1"
M

By construction x°B 1is precompact in Emb" BU+V,M) where B = {B}. The center of
B is g(0) and B(0,0;x) = x(8(0)) = exp(kZTiknkj(iv)] where v = p(0). Thus for
small €, every point of X(¢) 1is the center of some B-plaque. Taking e still
‘smaller, the same is true of (i*f)(X(e)), i.e.

X(e) and its i*f-image lie in g g{0) .

Thus: B plaquates ¥ and ite plaque centers fill out a conveniently large neigh-
borhood of V.

It would be natural to define E-bundlecharts over the plaques B, as we did
in §4, and prove uniformities like (i-iv). But since we had to work always with
Finslers, not Riemann structures {due to induction requirements), this is not quite
possible. Instead we define E-bundlecharts over "exponential piaques”.

Let BV denote the plaques centered at V. Each B € BV Tocally defines an
exponential map £ as follows

TR
T X —_— TOURU+V) ~ RYMY
8 j v=g(0)EY
4
X < é gu*tY

Under the identification, Ty (T X) = T X, Toé is the identity -- as it ought to be
for E to be called an exponential map. The crucial difference between TVX and
RU+V is that TVX has a norm adapted to Tf. Uniformly rescaling all norms, it

is fair to assume é is defined on the unit disc bundle of TVX respecting the
TX-Finsler: domain(f) 2 T X(1) for all g€ By, v = B(0). Since E is globally
trivial we get an E-bundlechart over part of B8 (namely over é(TVX(l)) C B)

B xid

) 5
eB. TVX(]) xR E

g

The eB give a uniform atlas for E, and the Finsler of E is uniform respecting
it.



h - U —

In eB we can'méashfé"&%sténcémgétord1hg"to the i%ne&f FinsTefSuof_'TVX ;hd
Ev at v = B{(0) or relative to the intrinsic distance dx and | lx' It is use-
ful to know that infinitessimally these notions agree and that this is true uniform-

ly over B € B,. As dx(x,x') + 0 and dx(x,v) + 0 we claim

ly| |X-x" |
. X > v
(i) m;+1 dX XX 31

where x, x' € 8, BEB,, B(0)=veV, Bx = x, Bx'=x', ye€ E,~0. Since

¥oB is precompact in Emb1(BU+V,M) and B is constructed canonically from B, it
suffices to give a uniform proof of (i) for just one B € BV' Since the Finsler on
E 1is uniform, the first Timit is clear. Similarly, since the Finsler on TX 1is
uniform, | Ix/l |v 3 1. The denominator d,(x,x') equals inf{[1|%(t)|Ytdt: y is
a ¢! curve in X from x to x'}. As in (2) of (6.7) we get from | |x/[ |v 1,

|x-x"]. - o{1) < dy(x,x") < |x-x'| +o(1)

ly
which completes the proof of (i).

A global version of (i) compares the Finsler-metrics dX’ dV when

1
dy(v,v') inf{J |vyt]_.dt: v is a ¢! curve in V from v to v'}
o T

il

1
d,(v,v') = inf{| |yt]_,dt: v is a ¢! curve in X(e.) from v to v'}
X 0 vt 0

~

v, v' being in V. Clearly d, > d,. Since NY s a smooth bundle there is a
uniform C, such that

~U iU
IT, ™l < ¢, x € N°(1)

where #Y: N4 > M and T#Y: T(NY) + TM. Then, since exp is smooth and M is
compact, the projection

Lx U ™
[1*ﬁu has HTX(1 Tl <C x € i™N (eo)

for some uniform C. (We use the TX-Finsler so C may need to be > CO.) If y is



»
P -

‘any C.I curve from v to v' in X(eo) then o = {i* " )oy is a C] curve in V
] » N i
from v to v' and |atlat §_C|yt|Yt. Hence

dv(v,v')
(i") a;rvsﬁj— is uniformly bounded .
Next express i*f in charts egs €. Where g'{0) = v' = i*f(v), v = B(0).
- - .* -
fB'B = es,o1 fceB TOfB'B + rB'B
Since fB'B is the pull back of a ¢’ map on a compact manifold, xeB is precom-
pact, and E 1is uniformly trivial,
(i) ID(rgi gl BT X(eN)D 3 0

as £ -+ 0.

The third and fourth uniformities concern how X{c) compares with certain
"hboxes" in the g's. If B E BV, B{0) =veEYV, and v, u>0 are small we set

B(v,u)
B{v,u) = B(B(v,u))

i*ﬁ;(v) xT V(u)

where p = iv. (Since v €Y and X ds a bundle over V, the tangent space to X
at v splits canonically according to fiber xbase.) Note that we use the Tf-
adapted Finsler, see the figure.

LT ¢ X /
1K ' T B(i*RY)

P p

TV—

B(v,u) K B(v,u)

Given 0 < w< w <1 weclaim there exists a & > 0 such that

(iii,iv) X(e) D Blw'e,8) D B' (we,uwe)




v

‘whenever B, B' € B, |§']B'(0)[ < 8/2, and e is small. These inclusions follow
from (i) as in the compact case., See the figure in §4. From now on we agsume

e < 6.

Let us return to the construction of WY for i*f. We call £(1,€) the set
of all sections of E{g) over X(e) having slope <1 everywhere. Since E is
trivial, this makes sense. We claim that i*f induces a contraction of z(1,¢)

(i*F) 40 = fooeh™ ' |X(e)
where
h = mo(i*f)oo o€ z(l,e) .
At least we claim this when N, N° are near NY, N° and ¢ is subordinately
small. By "subordinately small" we mean that the smallness of = can {(and must)
depend on how close Nu, N° are to Nu, N°. We shall write N> N as shorthand
for N, #° > NY, N°. The hard thing to prove is that f, is well defined. For

instance 3X(e)} 1is probably highly non-smooth.
First fix 0 <w<w' <" <1 so that

inf wn(NYF) > 1 .
pEA P

Since NYf expands and A 1is compact such an w exists. Note that w, w', w"

are independent of ﬁu, Ns, €.

It will be convenient to have a bundle map F: TAM > TAM preserving the split-
ting NY @ T @ N°, even though T,f does not. Let

A A2 B
~ - a . ~ - ~g
TAf = A‘21 90 B2 respecting NNeTe N
C] C2 K
and set
- S Su v
AH 0 0 AH' N N
F = 0 A22 0 A22: T—T
0 0 K: N> — N°

Then F » TAf as N+ N. We can equally well consider F pulled back to V




- el

where we split TVE canonically as 1*ﬁ: @ TVV @ i*ﬁ;, for p = iv.

[}

be plaques with B(0) = v, g'(0) = v', i*f(v) = v'. Express

charts as

Let B, B' €8
i*f 9n the e

v
g* g’

“Voi*foe. = F,, + R

faig = &g 8~ g

B'B
where R 1is the remainder. As N+ N and &~ 0 subordinately, we get from (ii)
(ii') Lip(RB.B[é(a,s)) 2 0.

In eB, e express h as

Bl

_ - ) -1
h = eB.('rrfc)eB F|TVX + eB,(ﬁRc)eB

B'8

By {iii), domain{h) = X(e) D 8{w"e,8) when & 1is small and = << §. Measuring
Lipschitz constants of maps in the exponential plaque and using {i) we get

(v) Lip(e;(ch)eBm(w"g,a)] 30

as N> N and &> 0 subordinately. For this Lipschitz constant is <

-1
B

Lip(eé?wes.)Lip[eB]ReBIé'1[o(B(w”e,a))] Lip(e ceB]é(m"e,a))
et

B'R
eB.TreBl is just the projection TVX:KRS - TVX in the e_-chart so the first factor
is < 1. Since o takes values in E(e), (ii') implies the second factor tends

uniformly to zero. By (i}, the chart expression for o, eé]ce has at v almost

B’
the same slope as o has intrinsically at v. Thus, the last factor is < 1+0(1)

and (v) is proved.

By (3.7) we conclude from {v) that h is injective on B(w"e,8) for small &,

€ << §, andall B €& BV. We c¢laim that



(vi) h 1is globally injective on X{w'e)

for each h = nfo, o €X(l,e), provided e 1is small. (Pathology of 3X{e) con-

ceivably makes (vi) false for w'e = €.) Suppose (vi) is false, i.e. h(x1) = h(xz)

kU 7 kil oo I = 3 -
for some Xy € 1 Npl(m £), Xo € 1 sz(w £)s Py = ivy, Py = i, Choose BV
plaques Bys By At vy, v, How far apart can Vi and \Z be? Recall from (i')

that dV/dx is uniformly bounded on V, say by the constant C. We get
1
0 = dx[h(x]),h(xz)] 3_dx(v],v2)-dx(v],x1)- dx(vz,xz) z_E-dv(v1,v2)- 2e .
Hence, dv(v],vz) < 2eC. This is < §/2 for small e. By (vi),
81(w"€,5) D Bz(w‘e,O); i.e., Xys Xy both lie in B](w“e,é), contradicting injec-

tivity of h on B](w"e,a). This proves (vi},

To complete the proof that i*f#c is well defined, we show h(X{w'e)) 2 X{e).
By (iv) applied to 0 <w < w' <1, we know that

X(w'e) D Bluwe,ue) B e BV .
(We now forget &.) As above, let B, B' be plaques at v, v' € V where
i*f(v) = v'. By (3.7), the image of &(we,wc) under F or under hBlB is nearly
the same:
hB.B(B(ws,we)] D é'(me(k-ZE),we(u-ZQ)]

where u = 1nf{m(Tpf): pEA}, XA was defined above as inf{m(N:f): pEA}, and

1 = lhB'B(O)I + Lip(eé](wRo)ealé(we,we)] .

As N> N and =~ 0 subordinately, 220 by (v). Since whr>1 and u > 0,
we can find small enough ¢ > 0 so that

h{B(we,we)) D 8'(e,0)

for all h. Since éf 8'(£,0) = X(e) this proves hX{(w'e) 2 X{(e). Hence,
v
-1, X(e) > X(e) s a well defined map and

h
i*f#c(x) = fch-1(x) x € X(g) -

makes sense.



~ Verification that "'(‘%*'%i; ‘contracts (1,e) into itself is easy, using the
eB-representations of (i*f)# and (i)}. By (3.7), (v), and (i) the pointwise
Lipschitz constant of nls <

[m(NY(F) @TF) - £-0(1)]}

where, & dis as above, £ 3 0. Since we put the sum Finsler on T

A
and m(NYf) > 17FI, m(NY(F)®TF) = m(TF). Thus

Lip(h™1) < m(F)"! + o(1)

as ﬁ - N and 6 - 0 subordinately. By normal hyperbolicity, the slope of
« K -
i"foh

1

represented in the e_-charts is <

B

[ﬂNSfH+-o(1)][14-o(1)][m(Tf)']4—0(1)] <1

M=Nea&TeonN



and so (i*f), carries t(1,"s)"'ﬁiﬁi:'é"“i'i:*seff';'""'Tiié'E%oé?iiiéf'"('i'*%);"'Ts""&“EBﬁiEa'é;
‘tion is identical to that in §4. The fixed point of ‘(i*f)# is called Oixge Then
fHu = image(ci*f).

Now that Oi*e is known to exist, we must prove that
w! = exXpoi o0 ne: X(e) = M

isa € leaf immersion. We are going to use (6.6), so we need to prove wd is a
c’ plaquated immersion, a C1 Teaf immersion, and f is r-contractive at w',
‘By construction, Ojxe is uniformly Lipschitz. To show that Oy € C1 we use

i
Lipschitz jets. As in (3.5}, (6.7) let

I, = {Jxo: o € I{1,e) and o(x) = ci*f(x)} .

Then f induces IJf: Jx - Jhx’ h = W°f°0i*f, in the natural way:

Jf(ch) = Jhx(f#o). As in (4.1) we use the uniform charts to see that Jf con- .
tracts fibers uniformly. This gives a unique bounded Jf-invariant section which
takes values in Jd = jets of differentiable sections. Since x == J_o.x. 15 also

xif
Jf-invariant we see that Tieg is differentiable with uniformly bounded derivative.

r-1

To Tocate the tangent bundle of oi*f(x(e)) we can consider the (€ bundle

L over X(e)
Lx = L(TXX,EX) .

Then i*f induces a natural map L{i*f) on L{1) as follows. For any P € Lx(l),
Tz(i*f)(graph P} = graph(L(i*f)}P) where we used triviality of E to translate T.E
to T,E, z= of(x). In the local charts this becomes

P (C+KP)o(R+BP)) .

As in (4.1) we see that L{i*f) contracts L(1) into itself with strength

. IIN;fl!-m("l'pf). For I8, 1CH 20 as N+ N and e~ 0 subordinately, (Note
since f is not fiber preserving B Z 0 as it was in (6.7). Also we needed the
sum Finsler on TM to rep]acs m(NF@Tf) by m(Tf).) Thus, L(i*f) is an
(r-1)-fiber contraction when N 1is near N and ¢ 1is small. In particular, the
tangent bundle of kg is cpntinuous because it gives the Lf-invariant section of
t(1); i.e., Oing is C]. Also, L{i*f} is Cr']—uniform respecting the natural
charts on L, as in (6.7). Thus, (6.7: r-1) applied to L(i*f) gives a unique

L(i*f)-invariant section which is ¢"Vouniform. This makes Tikg and




w! = expoi oo ue C"-uniform.

To plaquate w! exactly on X(e) may be too hard. Instead consider
Ng «¢(X(w'e€)) where w' <1 fis as above. We know '*f(wg) D K'. Rescaling
all plaques in B by a factor on the order of (1-m‘) » we can plaquate a neigh-
borhood of X{w'e) in X{e} in such a way that one plaque is centered at each
point of X{w'e). Call the new plaquat1on By» the union of its plaques X1 and
Xq = X(w'e). By the Chain Rule and c’ -uniformity of o, s*¢ @S in (6.7),
{expei oo, *foB BGEB y ¢" -plaquates w! with a plague centered at each point of
XU'
To see that w” is a C1 leaf immersion is not hard. Let ﬁu, f, N®  be
continuous extensions of NY, T, N° to a neighborhood of A = T(V). Let [ be the
continuous bundle defined near A such that

L, = L(RVeT,N%) .

Then Tf dinduces a contraction Lf: fp(T) > ffp(l) in the natural way, for p
near A,

A B
Le(p) = (C+RpP)(A+8p)) Tf = [E i?.] resp. (NV&T) & N°

By construction f overflows wulxo, and so over its closure there is a unique
ff-overflowing invariant section. By uniqueness it is clear that this section is
the tangent planes to w'X{e) and that at A the section is N @ T. That is, we
have found the extended 1-tangent to w" and proved that Tw'T X(e) NMeT. It
remains to prove X(e) is complete respecting the w Yobull back metric. let {xn}
be a Cauchy sequence in X{c) respecting the wl-pull back metric. In the uniform
charts, it is clear that the chart representation of {o, *f X )} is Cauchy and so
x, converges in the chart metric. Hence it converges in the wH -pull back metric.
This completes the proof that wd is a C] leaf immersion.

Finally, we prove that f 1is r-normally contractive at w'. We need to con-
struct a Tf-invariant splitting T® N over w“(X(e)) such that T is the
extended tangent of w! and N is sharply contracted. N°f s not a monomorphism
because we trivialized NS, so we must be a little careful,

Call M0 the original manifold on which the diffeomorphism f was defined.

By invariance, w"(X(e)) C M- Using £

oh M0 we can construct NO Tf-invari-
antly such that T &iNO = TM, over w'X(e) and NO = N° at A. See [24], Then



tet N be ﬁo @ Verto(c) where ¢ was the bundle over
A. By continuity this N 1is sharply contracted, for small e, since NS s
sharply contracted at A.

M, trivializing NS at

By (6.6) w“1x0 is a C" 1leaf immersion. By invariance, w’ is a ¢’ teaf

jmmersion. This completes the proof of (6.1) parts (a), {d). Parts (b), (c)
(uniqueness and characterization in i*n) are proved as in (4,1) using the uniform
charts. Likewise part (g), Linearization. Part (e}, Lamination, has already been
proved in §5.

part (f), permanence under perturbation, is attacked as follows. If f' s
near f and z € i*n{e) then there is a unique point z' din i*n near i*f(z)
such that expei,(z') = f'(exp i,(z)). Thus, f' pulls back to i*f' near i*f,
i*f'(z) = z'. The construction of w! given above works for f' near f: the
main thing to observe is that the same uniform E-charts serve to prove i*f' -over-
flows the neighborhood of V, making the graph transform (i*f')# well defined.
‘Likewise the proofs of smoothness work just as well when f' replaces f and f'
is near f. The resulting section is ¢" near that of f. Thus we get a c"
Hg, C i*n(e) which is i*f'-overflowing invariant and C" near wg. Dealing with
1 and 71 gives W3, and V' = Wi, NKZ,.

Then gg.: V ~» i*n(e) dis an i*f'-invariant section where gf.(V) =V'. We
define i': V -+ M to make

1*
Vi ——— T

M
]gfl lEXp
v — M

[ F—

*

commute. Using the uniform charts as in (4.1(c)), we see that for each q €V,
gei(q) = g' is the unique point of i*nq such that

(i*¢')"(q') € i*n(e) forall n€eZ

and similarly that wg. or wi. consists of the points whose backward or forward
i*f'-orbits remain in i*n{e). Similar remarks hold for the strong stable and
unstable laminations of Ni., wg..

From the preceding characterization of ¢ it is clear that {i' is the
unique f'-leaf immersion near i such that i(q) € exPi(q)”(E) for all q €V,
In this sense, we can say 1i' is "essentially unigue" or "unique modulo n".




" Summing this up we state

(6.8) PERMANENCE THEOREM. ILet f, n be as in (6.1). If ' isa C"
diffeomorphiem of M which is C] near f then there is a section g ! V+i*n
such that (i*f')n(gf.(q)) € i*nle) for all n€Z, gqE€V. This 9¢ 18 unique
among all sections of i*n, continuous or not. Besides, 9¢ ie  i*f'-invariant,
ie of class Cr, and tends €' to 0 as f' tends C to f. The sets

W, = n (%) "i*n(e), N?. = n (i*f")Yi*nle) are o manifolds intersecting
n>0 n<0

y
transvegéally at V' = gf.(V). Eﬁey are C' laminated by sets of sharply P*F'.
asymptotically equivalent points. These C" laminations and the manifolds H:.,

N;. tend €7 to those for f ae f' tends " to f. The map 1' = expoi*ogf.
isa C leaf immersion at which f' s r-normally hyperbolie. Modulo n, it

is the unique F'-invariant leaf immersion near 1.

§6A. Forced Smoothness of i: V > M. In this appendix we generalize {4.1d)

‘to leaf immersions. As usual M 1is a complete ¢” Riemann manifold.

(6A.1) THEOREM. If f: M~>M 4s a C diffeomorphism which is r-normally
hyperbolic to the boundaryless (3.| leaf immersion 1i: V + M then there is an iso-
topy of V¥, hyt V=V, 0 <t <1, such that h0
c" leaf immersion, ji v~ M, and ¥ <s r-normally hyperbolic at

= identity and i=doh, iz a

i,

Remark. (6A.1) says that V was really ¢” immersed. For instance if V is
a compact submanifold of M then (6A.1) says V is ¢", see (4.1d). The isotopy
ht takes place on V, not M, and is C] small.

To prove (6A.1) we use the following Temma which is a generalization of the
fact that a C1 diffeomorphism between ¢” manifolds can be C1 approximated (in
the Whitney sense if the manifolds are noncompact) by a ¢”  diffeomorphism [33].

(6A.2) LEMM. Let w: WM bea C  immersion, v >1, If Gu: W > GM
ig also of class " then w is isotopie along W to a CN.I Lmmeraion
w: W M,

Remark. The hypothesis of (6A.2) is not absurd. For example, let w: S] -+ R2
be any C.I embedding of S] ~onto itself which is nowhere Cz. Then the map

Gw: S] > GR2 is of class C] even though Tw: TS] > TR2 is only continuous.



embedded disc is a

Proof of (64.2). W and M are ¢” manifolds and have C atlasses. At

-each point q of W there is an open disc D_ which w embeds into M. The

Cr‘+1 submanifold of M since Gw 1is of class c". Hence

there are a pair of charts, one for W and one for M, in which wqu appears to

bea C" map from 0" into R*x0 CR™ The W chart is C and the M chart

r+l r+]

is C (since w(D ) isa C disc). By convolution approximation [20] in
r+1

these charts, we finda C map w_: Dq + M such that wq(Dq) = w(Dq) and w

. r q g
is C near wqu.

The {wh} give a Cr+1 structure on W which is the one it inherits as a
subset of M. (It is xnot just the w-pull back of the ¢ structure of M,) Let
W denote W with this CH"I structure and consider the pointwise identity map
i:Wo W This i isa C" diffeomorphism of the C* manifold W onto the €'

manifold W. (i 1is not Cr+1 if w 1is not Cr+1.) By [33] there is ¢" approxi-
mation to i, i]: W+ W, whichisa C

r+] diffeomorphism. Any small perturbation
of a diffeomorphism can be achieved by isotopy {33] and so there is an isotopy
: W+ W starting at ig =1 and ending at 1.

1

Finally, we put w, = woi'1oit and claim that w, is a ¢™'  immersion.

This can be verified in the charts for W, M used to construct the {wq} because

those charts were Cr+].

Proof of (64.1). 1f r =1 there is nothing to prove so suppose r > 2 and
(6A.1) holds for r-1. Intrinsically the manifold V is of class ¢”, as in any
C.| manifold [33]. We just want to prove that the "wrong" Teaf immersion was chosen
to represent V.

tet NY, T, N° be C” subbundles of TM which c? approximate NY, T, N°

on A. Consider the € vector bundle L whose fiber at z near A is

Yoo (WUsT wS
Lz L(NZGBTZ,NZ) .

Tf acts naturally on the unit disc 12(1), by P (Ed—RP)o(ﬁ-+§P)'] where

A B T NS

TF=1| . . resp. (N@T) @ N .
C K

Let Lf be this fiber preserving map 1(1) > L covering f. As in §§4,6, it is

easily checked that Lf contracts fibers and sends EZ(1) into Ifz(l), at least

if z s near A. Besides, the fiber contraction rate of Lf s approximately
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3 s
€A, = N
kpap s P A where k lef! ap m(Tpf)

Now consider the unstable manifold for f at V, w: W+ M where

W = graph o, w = 9,
i*f
and kg’ X ~ E was the i*f-invariant section constructed in §6. By {(6.1), w”
jsa €l 1leaf immersion.

The pull back of L to WY, w (L), is a C] bundie over WY, The sharp-
ness of the fiber contraction of w" (Lf) is 2 k ap1 which is < the base con-
traction . o, by r- normal hyperbolicity. By (6.5) there is a unique w! (Lf)-
invariant section of w! (L) and it gives a C] Teaf immersion into [. Since
™ s i*f-invariant, we get by uniqueness that G’ x — Tixwu(wau) isa C

leaf immersion into GM at which Gf 1is r-1 normally contractive.

1

Cr-]

By induction on r we cannot conclude that 't is because W' has a

boundary.

But, applying everything to f-], we get w: W GM, a C] Teaf immer-
sion. Since Tp = (N;@Tp) N (TPEBN;), we see that Gi: V> GM 1is also a c!
leaf immersion. [This does not imply that i is C2 -- see the remark after the

statement of (6A.2).].

By (6A.2), 1 1is isotopic to 11 along V, where 11 is a C2 leaf immer-
sion. For Gi and 1 are C1. when r = 2, this completes the proof of (6A.1),
SO suppose r > 3.

By (6.4), Gf is (r-1)-normally hyperbolic to the ¢! leaf immersion Gi].
(Note that we needed the ¢ leaf immersion ip in (6.4), but i was only Cl.)
By (6A.1: r-1) applied to Gf there is an isotopy of V, ht’ such that
Giyohy = G(ijoh,) dsa €' leaf fmmersion. That is, ich; isa ™! qeaf
immersion and g P»—G(10h1)(q) is also Cr']. By (6A.2) i1oh1 is isotopic along
V toa C° Tleaf immersion 3. Since i is just a reparameterization of i, it
is clear that f 1is normally hyperbolic to i as claimed.

§6B. Branched Laminations. In this appendix we deal with some global pheno-
mena naturally arising from a Teaf immersion. As usual, M is a c® complete

Riemann manifold.




[ -

Definition. A ¢’ boundaryless leaf immersion i: V-+M is a ¢"  branched
lamination of A CM if and only if (V) = i(V) = A. A lamina of i is the
restriction of 1 to a connected component of V.

Strictly speaking, we should say "possibly branched" instead of "branched." If
all the laminae are unbranched, then we have an umnbranched lamination -- which is
what we call a lamination in §7.

A branched lamination is a sort of foliation whose leaves are branched mani-
folds of Williams [50]. Interestingly enough, our laminae seem to form a proper
subclass of all possible branched manifolds.

(6B.1) THEOREM. If i: V> M isa ¢’ boundaryless leaf immersion, then
there ig a natural maximal branched lamination u: u + M such that u{u) = A
= (V) and one lamina of u <s 1.

There is a plaquation {p} =P of V by (6.2). Since {iop} is C" pre-
compact let us call "plaques" all the Jop plus all their Timits, say
{8} = B CEmb (DY,M). We must build laminae in addition to i. We will do so by
gluing together plaques from B. In case dimV =1, this is fairly trivial. When
dim(V) > 2, it is not even clearly possible. The following definition helps us
organize new laminae.

Definition. A finite union of plagues BOlJ---lJBk is well branched
(respecting i) if and only if for every € > 0 there are plaques Pge - 2Py =
such that pOLJ---lka CV is connected and dr(iopj,sj) < e. By dr we mean a
fixed metric on Embr(DV,M). For instance, any single plaque B € B is well
branched.

For convenience, we often deal with restrictions of the plaques p € P, B € B,
Call

o = plaD" g% = glaD .
If a 1is small then
o?ﬂo; e = D?sz and ngp1 .
Hence
o3 N3 70, n=1.2.3,...
Pin " By Py, T By, @ N

= B]UB5 C By N8,



If we say B] and 82 are unbranehed whenever the1r union is conta1ned in some

embedded r-disc then, replacing P with (0%} for some small a, we can assume

P1n N 02n.# $, n=1,2,3,...
(u) Plp* By s Pop ™ By @ N>

= B1 and 82 are unbranched .

To prove (6B.1) we use

(6B.2) LEMMA. Let B = BO

lJBk be well branched and p € B be given.

I
i
]

Then there 18 aq well branched extension BO iJBliBk+1 with Bk+1 €B centered

at p.

Proof. There exist sequences p‘].n €P with
d (B ,1op ) +0 as n-»

U---Up

Pon kn

i €g. f ome J there is a sequence . €.
Since p BJ or some Jj q pJn pJn

See the figure.

connected .

such that

i(pjn) + p.

Choese a plagque P+l n centered at pjn and choose a subsequence (unrelabeled)

so that
U+

1.Opkﬂ n
pOn

Proof of (6B.1). Choose any 80 € B and any Py € BBO.
centered at P, so that BO U B] is well branched. Choose any P, € BBO-(BOLJsl),
if possible, and add 82 at’ p, soO that BOtJB]LJBZ is well branched.

converges to some Bk+1 in B as n » «,

Clearly

Ulkern 18 connected, so ByY VB is well branched.

Select

0.E.D.
B, €B

Continue

until all of 380 is covered by plaques. Compactness of BBD and B insure this

can be done with finitely many R € B. Then proceed to cover the so far uncovered



‘points of ae];"etc.'étc{hmwé'gétqémébuntab1eﬁfémi1y*df'p1édﬁé§hmféjTr578" such
that

(a) 8yU---UB, is well branched, 0 <k <

(b) pjnrjpkn =@ for all k > some K(j) independent of n
for some sequence {pjn} in P with Pin * Bj as n -+« (a) follows from (6B,2)
and (b) from construction, compactness of B, etc.

Now we build a manifold by identifying Z+_XInt(DV) under

(3.x) < (k,y) =+ Bj(x) = Bj(y) and
pjnr)pkn # @ for all large n .

Note that this is an equivalence relation. Call the jdentification space B and
let

Ujk = {x € Int(DY): (i,x) < (k,y) for some y G.Int(DV)} .

For each x € Int(DV) consider

U.(x) = n v, .
J Jk
XEUjk

Uj(x) is a neighborhood of x since Ujk is open, and from {b), there are < K(j)
values of k such that Ujk 0.

Now we cover B with charts

Uj(x)‘—+ B

x' > [(j,x')] = equivalence class of (j,x') .
Chart transfers are maps

-1
Bl leuj(x)

J J

such that Pin ~ Bj, Pkn > B» and p; Nop . #0. By (U), B; and By are
unbranched, so this BE]ij isa C" map defined on an open subset of DY, id.e.,

B iJs a ¢” manifold.

The natural map

b: B — M

(3,007 = 85(x)

is clearly a well-defined ¢c" immersion with extended tangent contained in T,



Toprove b s a €' leaf immersion we must show B is complete respecting a b
-pullback Finsler from TM. This follows easily from compactness of B, Also, since
'b(B) is composed of 1imit plagues, it is clear that b is a ¢’ leaf immersion

r > 2. Its extended r-tangent bundle is contained in T,

Finally, let U be the disjoint union of all such manifolds B we can con-
struct as above and let u be the union of the Teaf immersions b: B = M. Then
u: U+ M dis a leaf immersion with u(U) = A, completing the proof of (6B.1).

(6B.3) COROLLARY. If it Vg > M dsa boundaryless leaf immersion, with
iOVO =M and T <s normally hyperbolic at 10, then there are natural branched
laminations w“, w® of M tangent to N @ I, Te N°>  and invariant under f.

Proof. By (6B.1) there is i: V+M a leaf immersion with i(V¥) = M. By

(6.1) there are leaf immersions w“, w> for 4. Their laminae form w”, w®.

(6B.4) COROLLARY. For i 0° f as above, the strong unstable and strong stable

plaque familiee of (5.5) form unbranched laminations of M subordinate to WU, w,

Proof. Since the plaque families are self coherent, the proof of (6B.2) pro-
duces injectively immersed laminae everywhere tangent to N and N°.

§7. Normally Hyperbolic Foliations and Laminations. In this section we apply
the results of §54,6 to foliations and laminations. Let us recall these definitions.




A continuous foliation of a manifold M (with leaves of dimension k) is a
disjoint decomposition of M into k-dimensional injectively immersed connected
submanifolds -- "leaves" -- such that M is covered by CO charts ~- "foliation
boxes" -- '

o: DXx D™k M

and ¢(Dk><y) C the leaf through o¢(0,y). The foliation is of class C' if the
charts ¢ can be chosen of class c’.

Definition. A C"  unbranched lamination of M is a continuous foliation of
M whose leaves are C" coherently immersed submanifolds. That is, for r =1,
the tangent planes of the leaves give a continuous k-plane subbundle of TM. For
r > 2, the r-th order tangent multiplane to the leaf at p € M depends
continuously on p.

Conmvention. Unbranched lamination = lamination. See §5§6, 6B, and later 1in §7
for more discussion of branched Taminations.

Laminations occur naturally in dynamical systems as we saw in §§4, 5, 6. Also,
the stable manifolds of a C'  Anosov diffeomorphism form a ¢” lamination, not a
¢" foliation in general [3]. The leaves of a lamination L will be called
laminae. The tangent bundle of L, TL, refers to the tangent planes of all the
laminae.

The following definitions generalize some jdeas of dynamical systems to
invariant laminations.

Definition. A diffeomorphism f of M preserves the lamination L if and
only if it sends the lamina through p onto that through fp. We also say
f(L) =L or L 1is f-invariant.

Definition. If f, f' are diffeomorphisms of M preserving the Taminations
L, L' then {f,L) is leaf conjugate to (f',L') if and only if there is a homeo-
morphism h of M onto itself such that h carries laminae of [ to laminae of
t' and hf(L) = f'h{L) for all laminae L of L.

Definition. If f preserves L then (f,L) is structurally stable if and
only if f has a neighborhood N in Diff](M) such that each f' & N preserves
some L' with (f,L) leaf conjugate to (f',L').




This definition of structural stability for laminations is a natural extension
of the classical notion of structural stability of vector fields.

Definition. An e-pseudo orbit of f: M+ M is a bi-infinite sequence {p.}
such that
dy(foPpsPpeq) <€ nez .

For n > 0 this means: take Pg apply f to produce f(po), budge it by < ¢
to produce Pys apply f to produce f(p]), budge it by < &€ to produce Pys etc.

let L be a lamination of M. Think of the nonseparable, non-connected mani-
fold V consisting of the laminae with their intrinsic (non-induced) topology.
The inclusion 1i: V- M 1is a leaf immersion and has a plaquation P,

Definition. If f: M+ M preserves the lamination L then a pseudo orbit

{pn} respects P if and only if f(pn), p " Tie in a common plague of P.

n+l
Definition. f 1is plagque expansive if there exists an £ > 0 with the follow-

ing property. If {pn}, {qn} are e-pseudo orbits which respect P and if

dM(pn,qn) < ¢ for all n then for each n, Pn and 9, 1ie in a common plaque.

Remark 1. The definition is independent of dM and plaquations P with small
plaques.

Remark 2. When we think of M laminated by its own points (zero-dimensional
Tamination)} then "plaque expansive" becomes "expansive" as defined in [48];
"normally hyperboiic” becomes "Anosov."

Definition. A c’
C] lamination L if and only if f preserves L and Tf 1is normally hyperbolic
over TL. That is,

diffeomorphism f: M > M 1is r-normally hyperbolic to a

™M=NoTLeN , T = Nf o Lf ® N°F ,
inf m(N;f) > 1, sup lIN;fiI <1,
. u - S -r

f £ 1, INS £ NP
in m(Np)[lLp [ sup | o ilm(Lp } ]

It is easy to see that the laminae of a ¢” lamination are the images of ¢’
leaf immersions.




" “Since the laminae are injectively immersed, f is normally hyperbolic to each
one, as defined in §6. Thus, we have the canonical perturbation theory of (6.8) at
our disposal. Interpreting the characterization in (6.8) in terms of pseudo orbits
we get the following assertion where n is a smooth complement to TL. If f' s
CT
{f'n(P')} can be e-shadowed by an f-pseudo orbit which respects 7. We call the
map hf,: M-+ M the canonical candidate for a leaf conjugacy hf,(p) =p'. By {xn}
‘e-shadowing {yn} we mean dM(xn,yn) < g for all n.

near f and p €M then there is a unique point p' € exppn(e) whose f'-orbit

(7.1) THEOREM. Let f be r-normally hyperbolic to the ¢" ilamination L.
If f 1is plaque expansive then (f,Ll) <e structurally stable. The canonical eandi-
date for the leaf conjugacy hf. is a leaf eonjugacy. Moreover f' 1g renormally

hyperbolic and plaque expansive at L' = hf.L.

Remark 1. Less general theorems can be proved more easily: for instance we
could have assumed L was a C" foliation. Even with this assumption, however,
L' will not in general be a C] foljation. Anosov gives an example of a linear

6 which is e-normally hyperbolic at a linear

‘hyperbolic automorphism f of T
foliation F but which can be perturbed (by C' small analytic perturbations) so
that the new invariant foliation is not C]. This is why we deal with ¢" lamina-
tions, not just C" foliations, in the first place. Note also that (f',L') has
the same properties as (f,L) had: r-normal hyperbolicity and plaque expansiveness.
That is, the category of normally hyperbolic plaque expansive diffeomorphisms of
laminations is closed under perturbations. However, there are several open funda-

mental questions about laminations; see below.

Remark 2. (7.1) gives a unified proof that Anosov diffeomorphisms, Anosov
flows, and Anosov actions are structurally stable, using the orbit foliations. See
the discussion following (7.3).

Remark 3. Verification that f 1is plaque expansive can be nontrivial in
interesting cases.

Remark 4. If f is Anosov then &Y s plaque expansive. The proof is left
to the reader.

Question 1. I1f f 1is normally hyperbolic at L then is f automatically
plaque expansive? Partial Answer: Yes, if L 1is smooth (see (7.2)); yes if f|TL

is an isometry [11].



w! an wnbranched lamination? Partial Answer: Yes if L is smooth (i.e., L 1is a

foliation).

Question 3. If f 1is normally hyperbolic and plaque expansive at L and W f
is a lamination, then is f plaque expansive at w!? This is a combination of
questions 1 and 2.

Question 4. I1f f 1is normally hyperbolic and plaque expansive at [ then is
L the unique f-invariant lamination tangent to TL?

Proof of (7.1). Let V be the disjoint union of the laminae of L with their
leaf-topologies. Let i: V> M be the inclusion. Then 1 1is a leaf immersion to
which f 1is r-normally hyperbolic. If f' s ¢" near f then by (6.8) there
is an essentially unique Teaf immersion i': V> M at which f' 1is r-normally
hyperbolic. By definition, he,(L)) = 1'1'1(Lp). Hence, L' =h.l isa C"
lamination of M if and only if i': V-+ M 1is a bijection.

Bijectivity of i': V> M is equivalent to bijectivity of hf.: M- M Injec-
tivity of hf. 1f0110ws by plaque expansiveness. let f be e-plaque expansive and
let U bea C neighborhood of f so small that d(hf,,id) < g¢f2 for all
f' € U. By construction, there is a unique f-pseudo orbit which £/2-shadows the
f'-orbit through hf.(p):

f'"(he (p)) € exp | (n
PP

€
RN
Indeed hf.(p") = f'n(hf.(p)). Thus, if hf.(x) = hf.(y) then there exist f-pseudo
orbits {x"}, {y"} through x, y which e/2-shadow the same f' orbit; and so

dM(xn,yn) <.

By e€-plaque expansiveness of f at L, the points x, y must lie in the same

plague. But h is an embedding of each plaque, so x =y, completing the proof

f [}
of injectivity of hf..

Surjectivity of hf. is implied by continuity of hf. since hf. is near the
identity. As in 86, i*f' denotes the pull back of f' to i*n. Let &6 >0 be
given. By the uniformities in the proof of (6.1c) there is an N = N(§) such that
if z€ i*np(v) has lgf.(p)-z| > & then (i*f )(2) & i*n(2v) for at least one
n, |n] <N. (This asserts that points 2z uniformly far from a uniformly normally




hyperbolic manifold are forced to leave a larger fixed neighborhood of it within a !
uniform time.) Interpreting this in M, we get:

(*) For any & > 0 there is an N .= N(8) such that if f' €N and
d (p ') <2v, -N<n<N, for some f-pseudo orbit {p"}
and some p' €M, then d (p hf,(p )) < 8.

Now let x> p in M and suppose d (hf.(x) he,(p}) > 6 > 0. Through x there is
a unique f-pseudo orbit {x"} such that hf.(x”) f‘"(hf,(x)) By a diagonal
process and the fact that L is a Tamination, we can choose a subsequence of the
x's tending to p such that x> pn as x-+p, ne€Z. C(Clearly {pn} is an
f-pseudo orbit through p. It is probably not the f-pseudo orbit shadowing

{f'n(hf.(p))}. However,

dy(p",x") + dy(x", " (he, (6)))

<v+vs=sdv

dy{p", 1" (het (%))

| A

for all n, |n| <N, and all x far enough along in our sequence of x's converg-
ing to p. By (*) we conclude d (hf.(x) hf.(p)) < &, a contradiction. Hence hf.
is continuous, surjective, and L' = h L is an f'-invariant c" 1lamination.
Clearly f' dis r-normally hyperboTic at L',

Plaque expansiveness of f' at L' = hf.(L) is a consequence of (f',L')
being 1eaf-con3ugate to the p]aque expansive (f,L). If {x 1, {y } are f'-pseudo
orbits then (x IR {h (y )} are f-pseudo orbits. Thus, if du(x ,yn) is

always very sma11 then d (hf.(x )s th(y }) < ¢ for all n and so h;](xo), h;](yo)

lie in a common [-plaque since f is plaque expansive. Therefore, xo, y  lie in
common L'-plaque proving that f' is plaque expansive. This completes the proof

of (7.1).

The next theorem gives a sufficient condition for plaque expansiveness.

(7.2) THEOREM. If f ¢ a C.| diffeomorphism of M which is Q-normally
hyperbolic at the C] foliation F then f <is plaque expansive.

Remark. More generally it seems that F could be a Lipschitz foliation.

Proof of (7.2). It suffices to prove that some iterate of f 1is plaque expan-
sive. Fixing a Riemann structure on TM and a high iterate of f we may assume



1

NP >4, m;fn <"
A>2

for all p €M. As usual by NYf, N°f we mean Tleu, TleS.
Define a new Finsler on TM by
|z = max({x|,|v],]y])
where 2z = x®v®y € N:eTpFQN;, p €M,

1
The length of a ¢! path g: [0,1] + M is defined to be L(g) = I lg'(t)|dt.
0

The distance from p to q in M is
dy(p,q} = inf L(g)
where g ranges over all C1 paths from p to q.
The normal length of such a path g is

1
o) = [ Ime' (0t

where w: TM -~ NY®N® s the bundle projection with kernel TF. Since F is a ¢!

foliation, any curve which is everywhere tangent to the leaves of F 1lies in a sin-
gle leaf. (This is false for laminations in general.) Thus, LN(g) =0 if and
only if g maps into a leaf of F. If dM(p,q) < v then we define

dx(p,q) = jinf {LN(g): L(g) <v and g is a C1 path from p to g} .

The following estimate is a consequence of F bheing a C1 foliation:

v Jv, v/ =0
dy(p,q)
(1 5 I 1 where diam {p,p',q,q'} < min{v,v')
dN (p +q ) dN(p:p') - O = dN(Q,q')

Here is a proof. M can be covered by a finite family of C] foliation boxes {¢i}

dy: Uy - RY xRY x R®




J'such that T¢1. carries N:i & TFpi @ Nsi isometrically onto RU@R' @ Rs, where
Py = ¢;](0), and ¢ is nearly an isometry. Indeed the ¢, can be chosen so that
-{Ui} stills covers M when ‘U% has half the radius that Ui had. As v, v' =+ 0,
‘(1) concerns only points p, p', 9, g' and paths g well inside some Ui‘ Since
¢ is nearly an isometry, the ratio of the apparent length (or apparent normal
length) of a path in ¢1(U1) to its true length in M 1is nearly 1. Using the
flat, product Finsler on RYxRYxRS, (1} is trivial: the ratio in question is

identically 1. This proves (1).

OQur aim is to show that f s "dN-expansive.“ Because of technical problems
we shall not make this idea precise. However, an expansiveness estimate on LN
does arise naturally:

(2) max (Ly (7 eg) Ly (foq)) > 3 L ()

for all C] paths g. To see this, write n{z) = n'(z) ® rz)eNeN, z€ TpM.
‘Put

Alg) = {t € [0,1]: [nYg' (t)] > |=°g' (£)]}
B(g) = [0,1] - A(g) .
Then
L,(g) = {rlg' (t)]dt + |n°g' (t)]dt
N J:ﬂ«(g) J13(9)

using the Lebesgue integral. Since Tf expands NY and contracts N° we get

A(fog) D Alg) B(f 'og) D B(g) .
Therefore
[Meyerta (0)]de 22 [ |y (e) et
A(g)

L(f Tog) > (NSF Dorg' () |dt > A Sq'(t)ldt .
N(F eg _JBH_L’Q)I g'(t)]dt > [B(g)ivg (t)|

L. (foq)
NS iL\(fag)

Adding these gives LN(fog)-FLN(f'1og) Z_ALN(g) which implies (2).

Since F is a {:.l foliation, it has a plaquation P = {p} which we consider
fixed. We also fix a number AO’ 2 < Ag < A.




_ Now we are ready to prove (7.2), Let {p"}, {q"} be e-pseudo orbits
.respecting P so0 that dM(p",qn) <eg forall ne€eZ. If e 1is small enoguh we
shall show that p-, q0 lie in a common plaque.

Given any v > 0 we can find a v' > 0 so that L(g) < v for all paths g
with L(feg) <v' or L(f-]og) < v'. This is a restatement of the continuity of f
and £ Let o=supd) (p"q") and, if o #0, choose m so that
n .

¥ (p",q")

N ]

(3) e 1
Call p=7p", q=q". By choice of V'

d;j'(fp,fq) = inf {Ly(g): g(0) = fp, g(1) = fq, L(g) <v'}
inf {Ly(feg): g(0) =p, g(1) =q, L(g) < v}

|v

and similarly for f'1p, f']q. Hence (2) yields
(4) max (4 (fp.fq),d) (£ 'p,£7'q)) > 3 d(p.q) .
N N 2z N
Dividing (4) through by dﬁ(p,q) and using (1) we get

+ -
dx(pm+1,qm 1) 4 pm 1

m-1
o o N »q )>£Q
-~ 2 -2

(5)
d,‘q’(pm,qm)

This is valid for small v since Ag < A. But (5) is incompatible with (3) since
AO/B is fixed and > 1., Hence o =0 and po, q0 Tie in a common plague. This

completes the proof of (7.2).
The same proof adapts to perturbations of f and L, yielding

(7.3) THEOREM. Let f: M > M be O-normally hyperbolic to the (:1 foliation
F. Then there exists a neighborhood N C Diff](M) of f and a neighborhood V of
F in the space of C1 foliations of M such that if f' € N preserves F' €V

then f' <is plaque expansive at F'.

Remark. If f is T1-normally hyperbolic to F then (7.1) plus (7.2) implies
that f' determines F', (f,F) ~ (f',F'), and thus f' is plague expansive.



~ We now derive the classical structural stability theorems of Anosov, as well

‘as their recent generalization to other Lie Group actions.

Recall that an Anosov flow on a compact manifold M is a (:.I action of R on
M, t— f, € Diff](M), such that some ft is normally hyperbolic to the orbit

t
foliation F. It follows that all f t # 0, are normally hyperbolic to F,

t!

‘Moreover, M has a Riemann structure making each f an isometry on leaves; conse-

quently there is no branching in f ) or WS (f ) Since the f commute, it
follows from the character1zat1or of strong stab]e and unstable 1eaves that WY (f1)
and W* (f ) are invariant under the flow, and hence are the same for all t. We
know that f] is plaque expansive by (7.2) since F is a C] foliation, From
(7.1) we obtain the structural stability of Anosov flows, For let {fé} be another
flow which is C1 near f and tet F be its orbit foliation. By {7.1), fi

‘Teaves invariant a unique 1am1nat1on F' near F and there is a leaf conjugacy h

from (f],F ) to {(fI,F"). Since fi preserves F', dits tangent preserves TF',

By (2.12), TF' = TF". By van Kampen's Uniqueness theorem [20] we get F" = F'.

The leaf conjugacy h: (f,F) - (f',F') means that the flows {ft}, {fé} are orbit-
conjugate, i.e. {ft} is structurally stable.

The case of Anosov diffeomorphisms is, in this context, trivial. An Anosov
diffeomorphism amounts to a C] action of Z on M such that one ft is normally
hyperbolic to the orbit foliation F. (Orbits are finite or countable sequences of
points.) The foliation is C and so the same arguments as for Anosov flows show

that f, 1is structurally stable.

1
Similar arguments apply to Anosov actions of connected Lie Groups G on M.

This means that G acts Cl, locally freely on M, and some g€ G is J1-normally

hyperbolic to the orbit foliation F. It follows that F is a C1 stable folia-

tion. For if F' is another foliation of M which is 01 near F then one can

obtain a diffeomorphism g' which is C] near g such that g¢' preserves F';

the leaf conjugacy from (g,F) to (g',F') resulting from (7.1,2) shows that F

is structurally stable. The construction of g' 1is given in [21]. In case g Tlies

on a l-parameter subgroup {gt} of G, say g = gy» One constructs g' by pro-

jecting the vector field X(p) = é% gt(p) into leaves of F'; g' 1is the time-

t=0
one-map of the resulting flow.

The proofs of (7.1,2,3) can be adapted to deal with unbranched laminations of
subsets of M. As in §6B, an unbranched lamination of a compact set A CM is an
injective leaf immersion i: V =+ M such that di(V) = A. We say that the lamination
L of A is C' smoothable if and only if at each p € A, L extends to ¢’
foliation of a neighborhood of p in M. The various extensions need not be




.coherent. This means L gextends to a ¢’ pre-foliation of a neighborhood of A
in M.

(7.4) THEOREM. Let T be r-normally hyperbolic to the lamination L of A,i
r>0. (i) If L is C ~
(ii) Suppose r > 1, (f,l) <e plaque expansive, and f' is " near f. Then

smoothable then (f,L) <is plaque expansive.

the canonical candidate for a leaf eonjugacy h K A+M is a true leaf eonjugacy,
L = hf.L is a C' lamination, f' 4is v-normally hyperbolic at L', and (f',L')

ig plagque expansive.

Proof of (). This is an adaptation of the proof of (7.2). Let N/, N° be
fixed continuous extensions of Nu, N° to a neighborhood of A in M. let Fj be
& C] foliation of Uj which extends LrWUj, j=1,...,L. Let V. be a compact

set interior to Uj and let enough Fj be chosen that A C _U] Vj. Clearly (f,L)
J:

is plaque expansive if and only if (fK,L) is plaque expansive for some large K.

Fixing a Riemann structure on TM, replacing f by a high iterate and choosing a

small neighborhood U of A we may therefore assume
1

fib <A, A>2

cu oS
o f A, .
m(NJkp ) > NG fl <

for all p €U, where

ﬁqkf * * . N

] respecting N o TF. @ °

Tf = *  Ff x N b
T and Mo TF O,

Making U smaller causes the entries labelled * to become as small as need be.

Define new Finslers on TU M by
J

21 = max(|x]. vl 1y])

s
pa

1
is defined to be Lj(g) = [ |g'(t)|jdt. The distance from p to g in Uj is
0

dU {p,q) = inf Lj(g) where g ranges over all C1 paths from p to g in Uj.

when z = x@v@y € ﬁ;@Tij&)ﬁ p E UJ.. The length of a C.I path g: [0,1] » UJ.

The normal length of such a g is



Liy(e) = Iolﬂjg'(t)ljdt

where mw.: T, M- N'@N° 1is the bundle projection with kernel TF. Since F; is

a C]

Thus LjN(g) =0 if and only if g maps into a leaf of Fj. If dU (p,q) < v
then we define J

J
foliation, a curve everywhere tangent to TFj lies in a single leaf of Fj.

v _ - ] . 1 .
djN(p,q) inf {LjN(g). Lj(g)gj)and g is a C' path in Uj from p to q} .

Since V., 1is a compact subset interior to Uj, avjrwauj = @ and the same proof
as in (7.2) shows

d3y (p,a) ve V' >0, V.iNn{p,p',a,q'} £ P
NP> . . N - .
(]j) "T)'r-(———-)- 31 whe_r'e diam ‘[psp sq,q'} f_m'ln(\),\) )
d' p”ql = = !
The estimate (2) in (7.2) becomes

(2jk£) max(LkN(f']og),LgN(fog)] z_%—LjN(g)

for any ¢! path g: [0,1] > U, such that f-]og, feg are paths in U U,. To

see this, write wi(z) = w?(z)l® w?(z) for i=13, k, 2. Put

A.(g;)
Bi(gi)

{t € [0,1]: |wgg%(t)| z_lﬂigg(t)l}
[Os]J'A.I(g.I) i=3, k, &

for any path 9, in Ui' Then

L.o(g.) = Ygr(t)]dt + Sgr{t)|dt
iN 91 JAi(gi)lﬂ1g1 l JBi(gi)|ﬂ‘g‘ )I

using the Lebesgue integral, 1 = j, k, £. Since ﬂ;zf expands, ﬁ;Qf contracts,

ﬁ;kf'1 contracts, and ﬁ;kf'] expands, we get

Ay(Feg) > A(g) B, (F'eg) 3 B4(g)

for any path g 1in Uj such that f']og, feg are paths in Uk’ Ug. Therefore,



)]wgg=£;516£“'u'm-

n(f9) 2 J;t\jzl(f«ag)l(Nj’tf) et 22 JAJ.(g
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which, when added, imply (iji).

Fix a small plaquation P for L such that each plaque p € P lies in some
single Vj, 1<j<L. Also fix a Age 2 < Ay < A. Suppose {p"}, {q"} are
g-pseudo orbits of f which respect P.

Given any v > 0 we can find V' > 0 so that Lj(g) < v for all C1 " paths

Lg(fog) <v' and feog a path in U,

Qr

1

Lk(f'log) <v' and f ‘og a path in Uy -

Let
]
.= sup d%,(p",q"
o P dsy(piia)
where the sup 1is taken over those n such that pn or qn 1ies in Vj' Since
{Vj} cover A, ¥ is well defined for some j's. If some ¥ > 0, choose j
and m with

9; > 0; for all i, 1 <1 <L, for which P is defined.
Since Vj is a compact set inside U,, we may assume v' 1is small enough so that
d}N(pm,qm) is well defined when one of p", q" Ties in Vj' Let us say p" Tlies

in V. Call p=p", q=4q". Choose k, & such that

£(p) € v, f(p) €V,

For small v, f'1og, fog will be paths in U, U, for all paths g in Uj with

g{0) = p and Lj(g) < v. Thus by choice of V'

It

a2 (p,fa) = inf {Ly(a): g(0) =f(p), g(1)=fa, L,(g) <v'}

inf {L,,(fog): g(0) =p, g(1) =g, Lj(g)iv}

| v




-

:and s1m11ar1y for f 1p, f 1q. Hence - (2 ) y1e1ds

(4j) maX(dzN(fp fq), de(f 1o, f'1q)) > -d" n(Psa) .
Dividing (4 ) by d (p q) and using (lj) we get

N > or > 2
m) 7 4V (" CIm =2

(5,)

v m
dJ-N(p »q

for small wv. But 10/2 >1 so (Sj) is incompatible with (3.). Hence po, q0 lie

on a common plague completing the proof of (7.4(i)).

Proof of (ii}). The proof that hf. is an embedding A~ M 1is the same as
when A = M. Since hf. is covered by 1i', the canonical f'-invariant leaf immer-
sion near i, i'(V) = hf.(L) = L' is also a lamination. By V we mean the dis-
Joint union of the laminae of L with their leaf topologies.

A

AAI( ’Mf:)fl

FCEM —I)

Again, plaque expansiveness of f' at L' 1s a consequence of (f',L') being leaf
conjugate to (f,L) which is plague expansive,

We now discuss conditions sufficient to guarantee that no branching takes place
in the various laminations associated with a diffeomorphism f which is normally
hyperbolic to a boundaryless leaf immersion 1i: V - M.

Definition. A leaf immersion i: V -~ M has unique path lifting if whenever
v: [0,1] - i{V) ids a ¢! path everywhere tangent to TV, and v, is any point in
i'1y(0), then there is a unique path +v: [0,1] = V such that #%(0) =
‘i?=y.

VO and

This condition implies that no branching in 1i(V) can occur. More precisely,
if UO’ U] are neighborhoods of Xgs X in V and i(xo) i(x]), then there are
neighborhoods Vj - Uj of X (3=0,1) such that iO(VO) = i](V1). It follows
that there is a commuting diagram




_.._.._._yM

where p 1is a covering space and i]: V] + M is an injective leaf immersion. For
most purposes we can replace {i,V) by (il,v1).

Suppose that (i,V) is a branched lamination L[ of M which has unique path
lifting. Then (i],v]), obtained as above, is an equivalent wunbranched lamination,
Moregover any C1 path everywhere tangent to laminae must lie in a lamina. In parti-
cular the field TL of tangent planes to leaves of L[ is uniquely integrable:
every submanifold tangent to leaves is contained in a leaf.

(7.5) THEOREM. ILet i: V—+ M be a CI boundaryless leaf immersion. Then
(1,V) has unique path lifting in each of the following cases (a), (b), (c):

(a) There is a C-I diffeomorphism f: M+ M which 18 1-normally hyperbolic
toe V and either

(i) Tf <is an isometry on TV;
or (ii) N> =0 and WTF|TVE < 1;
or (i11) N =0 and ITFTVI < 1;

(b) There is a C1 lamination L of M and diffeomorphism F which 1is
l-normally hyperbolic to L such that V=W or W5 of (f,l) and L has unique
path lifting.

(c) (i,V) is a C] foliation of M.

Proof. To prove (a){i) Tet p Ci(V) be a plaque at x €M, Let vy: [0,1]+ M
be a C1 path in (V) tangent everywhere to TV with +v{(0) = x. It suffices to
prove that there exists e >0 with v([0,e))} Co.

Suppose not. Then for every & > 0 there exist z € y[0,1] and y € » such
that z € p and

z = exp(Z) , 1€ (NUGEJNS)y , |Z| < 8

dM(x,y) < § and dM(x,z) <8,
Since Tf is isometric on TV, it follows that

dM(fnx,fny) < 8
and
dM(fnx,fnz) < §



for all n €Z. Therefore . T T
dM(f"y,fnz) < 28
for all n€Z, But
T | -

either as n -+ - or n -+ +=, which contradicts dM(fny,fnz) < 28§ for all n,
provided & 1is small enough. This proves (i). The proofs of cases (ii) and (iii}
are similar.

To prove (b), suppose (i,¥) = 6. Let vy: [0,11+M, v(t) = x, bea ¢!

path tangent to w. Let ps be a plague of W at Xg Let qu C:w:u be a
t

plaque at x,_ for wuu’ belonging to a plaquation of Y. For sufficiently small

t
t, there is a unique point

. auu s
.yt - Qt M P

Thus we obtain a C1 path {yt} in p°, with Yo = %o It is easy to see that

this path is everywhere tangent to L. Therefore it lies in the leaf of L through

g But this implies that x,_ 1lies in the leaf of W through Xg* This proves

{(b); and (c) is trivial.

t

Condition {a)(i) of (7.5) arises if V 1s an orbit of a locally free action
of an abelian Lie group G on M, and f €& G.

An immediate consequence of (7.5) is:

(7.6) THEOREM. Let f be a C‘| diffeomorphism which is l-normally hyper-
bolie to a C.I foliation F. Then W oand w® are unbranched C -laminations,
they have unique path lifting, and each leaf of W oor W ie a union of leaves
of F.

Remark. We are unable to prove the following natural conjecture: if f s
1-normally hyperbolic to a C1 lamination L, and L has unique path 1ifting,
then w' and ®° have unique path Tifting.

Here is an example of J. Sotomayor (communicated to us by S. Newhouse and
J. Palis) of a branched lamination which admits a normally hyperbolic diffeomor-
phism. Other interesting features of the example are discussed below.



Consider the flow in R3 generated by the vector field

Then 0 is the only fixed point, and it is non-generic; points of the z axis are j
sharply attracted toward O0; points of the y axis are sharply repelled from 0;
points of the negative x axis are weakly attracted toward O0; and points of the
positive x axis are weakly repelled from 0. Also, the foliations by lines
paraliel to the y axis and z axis (and also the x axis) are invariant. The
‘basin of attraction of 0 is the (x<0,z)-half-plane and the basin of repulsion

is the (x>0,y}-half-plane. See the figure below.

Zz

i
T N

This flow is restricted to a neighborhood of 0O and is then extended to R3

as follows. Two trajectories in the (x>0,y}-half-plane are connected to two tra-
jectories in the (x<0,z)}-half-plane. This is done by making the basin of attrac-
tion of 0 transversally intersect the basin of repulsion of 0 along the two
trajectories. See the figure below.
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This produces a non-planar figure eight, A, consisting of Yis Yoo and 0,
If the construction is done carefully, the flow ¢ will leave invariant foliations
extending the sets of segments parallel to the y and 2z axes near 0. Thus it
will be clear that T,R’ = N'@T@®N° Tg-invariantly where T 1is the obvious line
field equal to span ¢(p), p € A-0, and equal to the x axis at p = 0;
N: = the y-direction for p near 0; and N; = the z-direction for p near O,
It is easy to see that this splitting exhibits the normal hyperbolicity of ¢ to A,

There 1s a Teaf immersion 1i: S] - R3

, with i(S') = A, to which ¢ is nor-
mally hyperbolic. By (6.1), any flow ¢' near ¢ has a canonical invariant leaf
immersion i': S1 + R3. From the forms of the vector field generating ¢, it is
possible to find ¢' near ¢ such that ¢' has no fixed point near A. (0 was a
saddle node, and such fixed points can be made to vanish.) Thus, 1'(51) is injec-

tively immersed.

Indeed there are many leaf immersions into A. If s = {sn} is any bi-infinite
sequence of 1's and 2's then there is a Teaf immersion 15: R - A such that

is([n,n+1]) =y, V0. Upto reparameterization of R these are the only leaf
n

immersions of R into A. If the bi-infinite sequence s = {sn} is periodic, then

(and only then) the Teaf immersion is factors through a leaf immersion of S1

into A.

R

lﬂ\ﬂ
/
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where m: R ~» S1 is the covering map w(t) = e2ﬂ’t/m, m being the period of s.

The figure eight immersion corresponds to the sequence {...121212...}.

Returning to a perturbation ¢' of ¢ which has no fixed points near A, we
see that to each is there corresponds canonical i;: R +—R3, invariant by ¢'.
It is not hard to see that {1;} forms an unbranched lamination of a compact subset
A" near A. This shows how a branched lamination can sometimes be perturbed into
an unbranched lamination.

For Sotomayor it was important to know that A' is the only invariant set near
A. This follows from the results of §7A, see especially the remark after the proof
of (7A.1).

§7A. Local Product Structure and Local Stability. In this appendix, we
-generalize some results of [24] to laminations of dimension > 2, wusing crucially
an idea of Rufus Bowen [10]. Throughout, we assume f is a diffeomorphism of M,

normally hyperbolic to the lamination L of A. By Ng or NEA we mean
Ul v, 5 s $s
L%EA W.(p); by W, or WA we mean L%EA W2 (p).
Definition. L 1is subordinate to w! if and only if each wu(Lp) meets each
Lq in a relatively open subset of Lq for p, g€ A. Similarly S,

Definition. (f,A) has e-local product structure if and only if Wl::}\ ﬂ'n'iA = A.

Definition. (f.L) has e-loeal product structure if and only if (f,A) has

e-local product structure and [ is subordinate to w“, W,

Remark. A cleaner looking assumption would be that laminae of W, w5 meet
along laminae of L. This is unnecessarily strong.

Definition. A 18 locally maximal if it has a neighborhood in which it is the
largest f-invariant set.

Clearly if (f,L) is normally hyperbolic and A is locally maximal then (f,A)
has local product structure. The following theorem is a sort of converse to this.




©(7A.1) rEEOREM. If (f\L) has local product structure and hc,: A+ M is the
canonical eandidate for a leaf conjugacy (see page 117), ' near f, then

A= hf.A 8 "wniformly loeally f'-maximal”; that Ze, A and f have neighbor-
hoods U and U such that A' contains all f'-invariant subsets of U, f' € U.

Remark 1. A consequence of (7A.1) is that Axiom A group actions are locally
{-stable. See [43].

Remark 2. Uniform Tocal maximality of A' can be strengthened to: ény point
x €U with some forward d&-pseudo orbit for f' wholly in U belongs to HZA'.
Likewise for reverse d&-pseudo orbits. & is a positive constant depending only on
‘U, U. The proof is the same.

Remark 3. The proof we give of (7A.1) relies on (7A.2) which generalizes [10],
not [247; [10] is much more elegant than [24] in that no "semi-invariant-disc-
families" are required. On the other hand, a proof of (7A.1) using the methods of
[24] can be given and might extend, by methods of R.C. Robinson [46], to give struc-
tural stability of L in the neighborhood of A -- maybe even structural stability
for group actions satisfying Axioms A and Strong Transversality.

Remark 4. We think that (7A.1) remains true when local product structure on
(f,L) 1s replaced by local product structure on (f,A) and plaque expansiveness.
When f' = f we proved (7A.1) under this assumption, via methods of [24]. For f'
near f, the proof "by uniformities" as in [24] probably works, but to check this
seems formidable. For instance, the construction of all the machinery in §6 centered
at f must also be done at f' near f; then it must be proved that f 1is a
“small enough" perturbation of f'.

The following was proved by Rufus Bowen [10] for flow-foliations. {7A.1) is an
easy consequence.

(7A.2) SHADOWING LEMMA. If (f,L) hae local product structure and v > 0 <is
given, then there exists & > 0 such that any §&-pseudo orbit for f in A ean be
v-shadowed by a pseudo orbit for f in A which respects L. The same holds for

truncated ©&-pseudo orbits.

Remark. When L is the lamination by points, this says: any &-pseudo orbit
of f in A can be v-shadowed by a true f orbit. This greatly simplifies the
proof of the main result of [24].



Proof of (74.2). It suffices to prove (7A.2) for a high iterate of f. For if
?K =g, if {xn} is a &-pseudo orbit for f, and if & is very small then |
i""x~K’x0’xK’x2K"“} will be u-shadowed by a g-pseudo orbit
{...,y_K,yO,yK,yZK,...} which respect L and u can be arbitrarily small, Then

K-1

‘ K-1 :
{...y*K,fy_K,...,f Y_gs¥gsTygs.-osf yo,y],...}

is an f-pseudo orbit which respects L and, since A 1is compact and K is fixed,
it shadows {xn} arbitrarily well. '

Thus it 1s no loss of generality to assume

sup {déf;’:? ): z,2' € wzs(p), p € A}_i-l
, d(fz,fz'). . uu
inf { iz z,2' € W, (p), pEAL >4

where € > 0 is sufficiently small. We may also assume € chosen so (f,L) has
2e-l1ocal product structure and so

d(x,y) < e 5. (Y) A W2 (x) # 9

(1) =
X, ¥ €A wggm A3 (x) # 9

Choose & < min(v/20,e/20).

Let Xgs e 2 Xy be a truncated d&-pseudo orbit. We modify it inductively. Set
Yo = %o
(2) u 5s
Yy = wg(fyk 1) AW (xk) 1<k<N
We claim that Yy is well defined and
(3) y, € W? L (x)
K 2514t w ()R K

This is true for k = 0, 1. Suppose it is true for some k > 1. Then

k-1
51—25[]+;—+---+(;—) ]+5 ('|+J-+ +(—))




féthEo;”by“(T)Q"'yg;i““ﬁé“ié11m&éfih6d'by_(éT"Ehd'séfié?iéE'(3)?““Tﬁi§”%6mp1étéé”théi
induction and shows that ‘

{yn} is a 48-pseudo orbit which respects wg and 48-shadows {xn} .
Moreover, if {xn} respects wz then {yn} respects L = wgrwwi.

Applying exactly the same construction to the truncated 4&-pseudo orbit for
f, Yyr--+o¥ps We get a pseudo orbit zy,...,z5 for £ which respects
;wé(f']) = wg(f) and 165-shadows yy,....¥4- Thus, 252y is a pseudo orbit
for f which v-shadows Xgs« -+ s Xy and respects L. This completes the proof of
the shadowing lemma (7A.2) for doubly truncated pseudo orbits.

Let {xn}nez be a full d&-pseudo orbit for f. By the preceding construction,
there exists, for each N > 0, a pseudo orbit z?N,...,zm_1,zn for f which
respects L and v-shadows the N-truncation STERREEE IR AP Since A 1is com~-
pact, a diagonal process produces a sequence Nk + o« such that

z"B 2 neZz.

and it is clear that {zn} is a pseudo orbit for f which respects L and
v-shadows {xn}. This completes the proof of the shadowing lemma.

Remark. When the lamination L is a c! foliation, as in [10], the {zﬁ}
considered above converge uniformly to {zn} without choosing subsequences,

Proof of (74.1). Let hf.: A > M be the canonical candidate for a leaf conju-
gacy defined in §7 for all f' € UO’ some neighborhood of f in Diff](M). Let U
be a smaller neighborhood of f and U a small neighborhood of A 1in M. Suppose
some f'-orbit {xn} is wholly in U, f' € U. Then {xn} can be y-shadowed by
an f-pseudo orbit {qn} in A, and u is small when U and U are small. By
(7A.2), {qn} can be v-shadowed by an f-pseudo orbit, {p }, which respects L,
and v is small when u 1is small. Hence {xn} can be closely shadowed by an
f-pseudo orbit {pn} which respects L. From the characterization of hf. in §7,
we deduce that

where p is the point in the same L-plaque as p, such that xg € exp, nle).
Hence Xg € A = hf.A and (7A.1) is proved.




‘Remark. If 1: V> M is a leaf immersion with (V) = A, if L is the
resulting, possibly branched lamination of A, and if (f,L) has local product
structure then the proof of (7A.1) adapts easily to show that A' 1is uniformly ‘
locally maximal where A' = i'V, 1i' being the canonical f'-invariant leaf immer- .

-sion near 1.

§8, Equivariant Fibrations and Nonwandering Sets. 1In this sectibn, we apply

-§7 to prove a result in differentiable dynamical systems.

(8.1) THEOREM. There is a non-empty open subset of D'iffr('!A), T<r <o,
eongigting of diffeomorphisms which are topologically Q-stable but not Q-stable.
(T4 18 the 4&-torus.)

The proof of (8.1) occurs after (8.6). Throughout §8, M ds a compact, smooth,
boundaryless manifold.

The nomwandering set of the diffeomorphism f of M is
Qf = {p € M: for each neighborhood U of p, (flU) NU # @ for some n # P}

f s topologicaz%y Q-gstable if and only if Q¢ is homeomorphic to Qg for all g
near f in Diff (M); f 1is Q-stable if and only if it is topologically Q-stable
and the homeomorphism h: Qg > Qg can be chosen to be g conjugacy, gh = hf, on
Qf. The homeomorphism h is usually required to be C° near the inclusion
although it is not known whether this is really any restriction,

Questions. Is topological Q-stability generic? 1i.e. does the set of topolo-
gically Q-stable diffeomorphisms contain a residual {or open dense?) subset of
Diff"(M)? What can be said about (8.1) when S° replaces T ?

"The example establishing (8.1) is constructed on T4 as a twisted product of
an Anosov and a derived-from-Anosov (DA) diffeomorphism. The latter is defined by
Smale in [48]. This is similar to the Abraham-Smale counterexample which shows
Q-stability is not generic [2]. We show that Qf = T4 and that this equality per-
sists when f is perturbed. (Hence f, and all g near f, are topologically
Q-stable.). To do so requires the structural stability of a certain equivariant

lamination whose laminae are 2-tori, and for this we use &7,



" Defimition. Llet A be a compact subset of M and let X be a compact |
‘Hausdorff space. A surjection w: A+ X 1is a Cr-regular fibration if and only if
it is a locally trivial fibration and its fibers form a ¢" lamination of A.

If #: A+X disa C" regular fibration then X is the quotient space of A :
by the fibers. Since X is Hausdorff, = 1is continuous, and A is compact, it
follows that the fibers of w are compact. Thus, a Cr-regu1ar fibration amounts
toa C" 7lamination of A with compact laminae, locally trivially assembled.

Remark. In the proof of (8.1), X is the 2-torus, A is the 4-torus, and
m 1is the product projection T4 = T2><T2 - T2 onto the first factor.

Definition. The Cr-regu1ar fibration m: A+ X is f-equivariant if and only
if f: M> M permutes the m-fibers.

(8.2) PrOPOSITION. If w: A+ X is f-equivariant and f is normally hyper-

bolie to the m-fibers then f 18 fiber expansive, i.e. ffm: X + X <8 expansive.

Proof. f/m means the action of f on the =-fibers, i.e. on the quotient
space X. Let V be the (perhaps nonseparable) smooth manifold which is the dis-
joint union of the w-fibers. Let i: ¥V > M be the inclusion. As in §§6,7, i is
a leaf immersion to which f is normally hyperbolic. Let n be a smooth normal
bundle to i and let 1i*f be the pull-back of f to i*n(e), the formal e-tubu-
lar neighborhood of V. By (6.1), the zero section of i*n{e) is the maximal
i*f-invariant set.

Let nx(E) be i*n(e) restricted to n'](x) and let iX: nx(e) —it+ ™
EX, M be the tubular neighborhood of w'1(x) in M. Suppose f is not fiber-
expansive. Then, for some distinct x, x' € X, fn(n'l(x')) has points very near
f"(w'l(x)) for all n€Z. Since A 1is compact and 7 is locally trivial this
implies

(n(x)) ¢ iy (ny () x, = (f/m)(x)

for all n€Z. Theset U i7(f"(a7'(x'))) Cn(e) s i*f-invariant but does
n€Z “n
1ie in the zero section of i*n, contradicting the local maximality referred to

above. This completes the proof of (8.2).

(8.3) COROLLARY. Such a mw: A+ X <ie stable under perturbations of f.




" Proof. (8.2) verifies the hypothesis of (7.4); (8.3) is its conclusion.
Remark 1. (8.3) says that perturbations f' of f canonically produce new
'Cr-regu1ar fibrations =': A' » X' which are "fibration-conjugate" to w: A -+ X.

That is, the leaf conjugacy hf. = h: A~ A' makes the diagram

fl

A -+ A'
‘\\\Jl\\ //:L////’
A LY |
' 1 T !
X fn
h/m
i h/m 4
X! 'F‘/TFI s X!

commute. If convenient, we may identify X and X' by the homeomorphism h/m,
This makes f, f' equivariant fibrations over the same base map.

Remark 2. There is an alternate proof of the existence of the map hf, in
(7.1,4) which is more in the spirit of [22] in that it "reduces" global questions in
the manifold M to Tocal questions in a Banach manifold. Since the leaf space A/L
of a general lamination is non-Hausdorff, the construction we are about to present .
is most natural for a Cr-regu]ar fibration m: A~ X. As in (8.2) suppose w is
f-equivariant and f is r-normally hyperbolic to the =-fibers. Since A is com-
pact, all maps X - A are bounded. Let M and I be respectively the set of all
maps X + A and all sections X + A. Both M and I are Banach manifolds, even
if X 1is non-Hausdorff. The map f acts naturally on M by

g > fulg) = fogo(f/n)'} .

Then f# is a diffeomorphism and I is f-invariant. Since f is r-normally
hyperbolic to m, f# is r-normally hyperbolic at I. Now (6.1) extends to Banach
manifolds, assuming all the uniformities and [existence of] normal bundles which
come from the finite dimensional situation. If f' s C1 near f then f# will
have an invariant manifoid I' CM near ZI. The f'-invariant fibration can then

be found as

n'-](x) = {o(x): c €'} XxX€E X .



Note that we identify X and X' here, because it is easier to describe the m'~
‘fibers that way. Also, to show that these w'-fibers fit together well requires
much of the analysis of §7, except when X 1is Hausdorff. That is why we postponed

until now this Banach-manifold approach to laminations.

The next result is the form of the Cloud Lemma [48] we require for (8.1). A
‘homeomorphism f of A 1is topologically transitive if and only if there is a dense
f-orbit in A, or equivalently, if and only if the f-orbit of each non-empty,
A-open set is dense in A. '

(8.4) PROPOSITION. If f <is normally hyperbolic to the lamination L of A
and if f|A 1is topologically transitive then:
(a) If U Zs an open set of M and U meets WA then the forward f-orbit

of U (or of any f-iterate of U) contains all of WiA in ite closure:

wrc UfU forall mEZ
n>m

(b) WA NwWAC .

Proof. By WA, we mean U Nuu(x), etc. Choose p € A so that {f"p}n>k
xeh .
is dense for all k €Z. Replacing p by an iterate, fkp, we can assume U meets

Nss(p). For W %(x) depends continuously on x € A, Fixan m anda &> 0. Let
MG( ) denote the &-neighborhood in M. By the A-lemma [35],

W (£7p)  Mg(F"U)

for all sufficiently large n. This says £y nearly engulfs wgu(f"p). Since

{fnp} is dense in A, we get

n>k
U n
Wd © My (U FU)

n>m

Since & > 0 4s arbitrary and m is fixed,

WiA C U £y .
n>m

Since U f'U 1is carried into itself by positive iterates of f, and since
n>m

Wia = U fk(wg ), forward f-iteration gives (a).
k>0




" The proof of (b) is very similar to the proof of the usual Cloud Lemma [48].
Let z € WANWA and Tet U be a given neighborhood of z in M. Choose

X, Yy E A so that U meets H:u(x) and st(y). Here e s large. By topological
transitivity of f|A, there exists a point p € A such that {fnp}n>k is dense in
A for all k€Z. We can assume p is so near y that U also meets NES(P).
Then, as in the proof of (a), alll nearly engulfs all of wg“(p) for large n and
fixed €. For some large values of n, fnp is very near x. Also, Ngu(fnp) is
nearly equal to N:u(x). Hence U meets wg“(f"p), n large, and since £y
nearly engulfs Ng“(f"p), f' also meets U, n large. Hence z € Qc. This com-
.pletes the proof of (8.4).

(8.5) COROLLARY. If f is normally hyperbolic to a lamination of A, if
flA ie topologically transitive, and if W =M= NSA, then f is topologically

transitive on the whole manifold M.

Proof. Part (a) shows the f-orbit of any non-empty open subset of M to be
.dense.

Remark. No use was made of TL being integrable in the above proofs. Thus,
(8.4,5) remain valid for any compact f-invariant set A if: Tf leaves invariant
a splitting EY @ EC @ E5, Tf is p-pseudo hyperbolic respecting E' @ (E¢ @ E°),
¢! s o-pseudo hyperbolic respecting E° @ (EY @ E), and p > 1. For then &5
provides the necessary strong manifold theory.

The following consequence of (8.5) is a kind of propagation theorem.

(8.6) PROPOSITION. Let f be normally hyperbolic at the C'-regular,
f-equivariant fibration 7: M > N where M, N are compact smooth manifolds.
Suppose f|m is an Anosov diffeomorphism of N having a fized point p and
Qf|ﬁ = N. If f 1is topologically transitive on the single invariant fiber v-l(p)

then f <is topologically transitive om the whole manifold M.

Remarks. It is an open question whether every Anosov diffeomorphism of N has
a fixed point and has = N. Normal hyperbolicity of f to w 1is only required
at n'](p); elsewhere, f-equivariance of 7 suffices.

Proof of (8.6). By the asymptotic characterization of the stable and unstable
manifolds it is clear that

wr Tx) = 7 (W) W (r1x) = 7 (WSx)



for all x € N. An Anosov diffeomorphism with 0 = N has Wi(x) = W(x) =N for
all x €N [3]. Hence Nu(w'1p) = Hs(n"1p) =M and (8.5) applies,

Bifurcation Theory studies the generic properties of differentiable maps
$: X ~ Diff(Y) where X and Y are differentiable manifolds. Given such a ¢ and
a diffeomorphism g: X - X, there is a natural twisted product f(x,y) = (gx,¢{x)y)

f

XxY —————— X xY

1‘” l'rr f=g§¢

X R

We denote f by gg(h. Note that = 1is the trivial fibration and is f-equivariant
If f 1is normally hyperboiic at = and f' is C] near f then (8.3) says there

is a canonical f'-equivariant fibration =' near f. This gives a new bifurcation

¢': X > Diff(Y); ¢' need only be CO close to ¢.

Proof of (8.1). Let g be an Anosov diffeomorphism of Te, the 2~torus,
having two fixed points, p and q. Let ¢: T2 - Diff(Tz) be a smooth bifurcation
such that (as in [2])

o(p) 1is an Anosov diffeomorphism of T2

(q) is the DA-diffeomorphism of T° described in [48] .

Replacing g by a high iterate, if necessary, we may and do assume f =g §¢a is

normally hyperbolic to the w-fibration. By {(8.6), f 1is topologically transitive
on the whole manifold M = T'. Hence @ = T°. If ' is C' near f then, by
4 .2

(8.3) and especially Remark 1 after its proof, there isa =n': T T

4 f' , T4
J"Tl [“'
TE g N

such that ="' 1is a Cr-regu1ar f'-equivariant fibration. Since n"](p) is
f'-invariant and is CT near n'1(p), and since f' is C1 near f, it follows
that f'lw"](p) is an Anosov diffeomorphism of the fiber w"1(p), because the
set of Anosov diffeomorphisms is open. Hence f' is topologically transitive on
n"1(p), since all Anosov diffeomorphisms of T2 are topologically transitive [3].



By (8.6), ' is topologically transitive on the whole manifold M = T'. Therefore
Qe = T4 and f 1is topologically Q-stable,

On the other hand, no C1 approximation f' to f is Q-stable. This is
proved in [2] when 52 replaces the base torus and a horse-shoe diffeomorphism !
replaces g. In our case, the proof is entirely similar, but we include it for com-'
pleteness. Let f' be ¢! near f and let ' be the canonical f'-equivariant
fibration near w. The fibers w"1(p), w"](q) are f'-invariant and f' on |
each w'-fiber is C* near f on the corresponding w-fiber. The DA has, on
-n"(q), a source -- that is, a fixed point whose unstable manifold includes a
neighborhood of g in n-](q). Such a source persists for the small change of f
to f'. (In fact the DA is structurally stable [45].) Let y' be this source for
f‘[n"](q). Consider the strong stable manifold of y. It equals the stable manie
fold of y, has dimension 1 and projects by = onto the stable manifold of g
in T2. Wi(q). In T2, w3(q) transversely intersects W'(p). Hence W (y';f')
intersects Nu(w'-](p)) in a persistent manner: no slight change of f' to f"
destroys the intersection W (y",f") N Hu(w"'](p)). (Since =" 1is not smooth, we
.do not assert differentiable transversality.) However, it is easy to perturb f'
to two non conjugate maps f? and f; as in [2]:

1° ws(y",f¥) meets Nu(x",f;) for no f?-periodic point
x" € Tr'{*}(p)
2° ws(y",fg) does meet the unstable manifold of at least

one fi-periodic point x" € ﬂa-l(D) -

Hence f' can't be conjugate to all f" near f'. This completes the proof of
(8.1).

The propagation result, (8.6), is interesting in its own right. It generalizes
to subsets as follows.

{(8.7) PROPOSITION. Let 1 be an f-equivariant fibration of A where X <is
a hyperbolie subset for g: N -+ N:

A€ > M > M

l'n

XC—s N —d N




fo——

Suppose 9 has a fized point p in X such that Wsp and Hup are dense in X
If f[ﬂ-1(p) 18 topologically transitive them A C Qf. Moreover 1f N has a form
of "global product structure at ﬂ-I(p)’ﬁ

Wi (p)) nwS(rt(p)) c A,

then f|A 1is topologically transitive. If f' is a C] small perturbation of f
then the same is true for f', ', A' where 7' <s the canonical perturbation of

e

The proof, although nontrivial, is left to the reader. The above techniques
enable us to construct a diffeomorphism f which is topologically Q-stable, not
f-stabie, and has Q¢ # M. Again, f is a twisted product f = gx¢, but this
time g 1is an Axiom A diffeomorphism of the base with no cycles and Q ? base. In
particular, if the hyperbolicity of g 1is sharp enough in the Abraham-Smale example
[2] then f = gX¢: 52 xTz <= is such an f, (7A.1) and (8.7) verify that

R = n'](ﬂg) and that equality persists when f is perturbed.

f

We close this section with several questions.

Which manifolds admit diffeomorphisms f such that f and all its perturba-
tions are topologically transitive? It is easy to imagine constructing such mani-
folds inductively, starting with two manifolds admitting Anosov diffeomorphisms and
using (8.6). Are there any other examples?

If A€ St(n,Z) has no eigenvalue which is a root of unity then A induces an
ergodic automorphism of the n-torus T", again denoted by A: ™ 51" The tan-
gent bundle of i splits as EY® E @ E° where E“, EC, E5 are the translates
of the generalized eigenspaces of eigenvalues which are > 1, =1, < 1 in absolute
value. If EC =0 then A is Anosov. If n=4 then EY, ES, E° may all be
nonzero. The splitting oo’ gives rise to six invariant laminations of
T" by the planes tangent to EY, ES, E5, EY @ €, E* @ E°, EY @ E°. The three
which include E€ are normally hyperbolic and hence stable. The others are not
normally hyperbolic. On the other hand, if f 1is C1 near A then f has

5SS which are nearly tangent to Eu, ES, We expect that

invariant foliations W'Y, w
f has no f-invariant WYS-foliation. Is this true? What if the eigenvalues of A
are rationally independent? This is a global Sternberg problem. Bill Parry has
proved that A 1is ergodic if and only if each EY-1eaf {or equivalently each £°.
leaf) is dense in T" [36]. Is the same true for f? Less extravagantly, are the
w'Y and ®°° foliations homeomorphic to the EY and E¥ foliations? Suppose A

is ergodic. Is f topologically transitive? If f preserves Lebesgue measure on



-

™ §s f ergodic? If E® = 0 then all these questions have positive answers due
to Anosov and Sinai [4].
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