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Abstract Codifying memories is one of the fundamental problems of modern Neuro-
science. The functionalmechanismsbehind this phenomenon remain largely unknown.
Experimental evidence suggests that some of the memory functions are performed by
stratified brain structures such as the hippocampus. In this particular case, single neu-
rons in the CA1 region receive a highly multidimensional input from the CA3 area,
which is a hub for information processing. We thus assess the implication of the abun-
dance of neuronal signalling routes converging onto single cells on the information
processing. We show that single neurons can selectively detect and learn arbitrary
information items, given that they operate in high dimensions. The argument is based
on stochastic separation theorems and the concentration of measure phenomena. We
demonstrate that a simple enough functional neuronal model is capable of explaining:
(i) the extreme selectivity of single neurons to the information content, (ii) simultane-
ous separation of several uncorrelated stimuli or informational items from a large set,
and (iii) dynamic learning of new items by associating them with already “known”
ones. These results constitute a basis for organization of complex memories in ensem-
bles of single neurons. Moreover, they show that no a priori assumptions on the
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structural organization of neuronal ensembles are necessary for explaining basic con-
cepts of static and dynamic memories.

Keywords Neural memories · Single-neuron learning · Perceptron · Stochastic
separation theorems

1 Introduction

The human brain is arguably among the most sophisticated and enigmatic nature
creations. Over millions of years it has evolved to amass billions of neurons, featuring
on average 86×109 cells (Herculano-Houzel 2012). This remarkable figure is several
orders of magnitude higher than that of the most mammals and several times larger
than in primates (Herculano-Houzel 2011). While measuring roughly 2% of the body
mass, the human brain consumes about 20% of the total energy (Clark and Sokoloff
1999).

The significant metabolic cost associated with a larger brain in humans, as opposed
to mere body size—a path that great apes might have evolved (Herculano-Houzel
2011), must be justified by evolutionary advantages. Some of the benefits may be
related to the development of a remarkably important social life in humans. This, in
particular, requires extensive abilities in the formationof complexmemories. Indirectly
this hypothesis is supported by the significant difference among species in the number
of neurons in the cortex (Herculano-Houzel 2009) and the hippocampus (Andersen
et al. 2007). For example, in the CA1 area of the hippocampus there are 0.39 × 106

pyramidal neurons in rats, 1.3 × 106 in monkeys, and 14 × 106 in humans.
Evolutionary implications in relation to cognitive functions have been widely dis-

cussed in the literature (see, e.g., Platek et al. 2007; Sherwood et al. 2012; Sousa et al.
2017). Recently, it has been shown that in humans new memories can be learnt very
rapidly by supposedly individual neurons from a limited number of experiences (Ison
et al. 2015). Moreover, some neurons can exhibit remarkable selectivity to complex
stimuli, the evidence that has led to debates around the existence of the so-called “grand
mother” and “concept” cells (Quiroga et al. 2005;Viskontas et al. 2009;Quiroga 2012),
and their role as elements of a declarative memory. These findings suggest that not
only the brain can learn rapidly but also it can respond selectively to “rare” individual
stimuli. Moreover, experimental evidence indicates that such a cognitive functionality
can be delivered by single neurons (Ison et al. 2015; Quiroga et al. 2005; Viskontas
et al. 2009). The fundamental questions, hence, are: How is this possible? and What
could be the underlying functional mechanisms?

Recent theoretical advances achieved within the Blue Brain Project show that the
brain can operate in many dimensions (Reimann et al. 2017). It is claimed that the
brain has structures operating in up to eleven dimensions. Groups of neurons can
form the so-called cliques, i.e., networks of specially interconnected neurons that
generate precise representations of geometric objects. Then the dimension grows
with the number of neurons in the clique. Multidimensional representation of spa-
tiotemporal information in the brain is also implied in the concept of generalized
cognitive maps (see, e.g., Villacorta-Atienza et al. 2015; Calvo et al. 2016; Villacorta-
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Atienza et al. 2017). Within this theory, spatiotemporal relations between objects in
the environment are encoded as static (cognitive) maps and represented as elements
of an n-dimensional space (n � 1). The cognitive maps as information items can be
learnt, classified, and retrieved on demand (Villacorta-Atienza and Makarov 2013).
However, the questions concerning how the brain or individual neurons can distin-
guish among a huge number of different maps and select an appropriate one remain
unknown.

In this work we propose that brain areas with a predominant laminar topology
and abundant signalling routes simultaneously converging on individual cells (e.g.,
the hippocampus) are propitious for a high-dimensional processing and learning of
complex information items. We show that a canonical neuronal model, the percep-
tron Rosenblatt (1962), in combination with a Hebbian-type of learning may provide
answers to the above-mentioned fundamental questions. In particular, starting from
stochastic separation theorems (Gorban and Tyukin 2017, 2018) we demonstrate that
individual neurons gathering multidimensional stimuli through a sufficiently large
number of synaptic inputs can exhibit extreme selectivity either to individual infor-
mation items or to groups of items. Moreover, neurons are capable of associating and
learning uncorrelated information items. Thus, a large number of signalling routes
simultaneously converging on a large number of single cells, as it is widely observed
in laminar brain structures, translates into a natural environment for rapid formation
and maintenance of extensive memories. This is vital for social life and hence may
constitute a significant evolutionary advantage, albeit, at the cost of high metabolic
expenditure.

2 Fundamental Problems of Encoding Memories

Different brain structures, such as the hippocampus, have a pronounced laminar orga-
nization. For example, the CA1 region of the hippocampus is constituted by a palisade
of morphologically similar pyramidal cells oriented with their main axis in parallel
and forming a monolayer (Fig. 1a). The major excitatory input to these neurons comes
through Schaffer collaterals from the CA3 region (Amaral and Witter 1989; Ishizuka
et al. 1990; Wittner et al. 2007), which is a hub routing information among many
brain structures. Each CA3 pyramidal neuron sends an axon that bifurcates and leaves
multiple collaterals in theCA1with dominant parallel orientation (Fig. 1b). This topol-
ogy allows multiple parallel axons conveying multidimensional “spatial” information
from one area (CA3) simultaneously leave synaptic contacts on multiple neurons in
another area (CA1). Thus, we have simultaneous convergence and divergence of the
information content (Fig. 1b, right).

Experimental findings show that multiple CA1 pyramidal cells distributed in the
rostro-caudal direction are activated near-synchronously by assemblies of simultane-
ously firing CA3 pyramidal cells (Ishizuka et al. 1990; Li et al. 1994; Benito et al.
2014). Thus, an ensemble of single neurons in the CA1 can receive simultaneously the
same synaptic input (Fig. 1b, left). Since these neurons have different topology and
functional connectivity (Finnerty and Jefferys 1993), their response to the same input
can be different. Moreover, experimental in vivo results show that long-term poten-
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Fig. 1 General principles of encodingmemories by single neurons in laminar structures. a Laminar organi-
zation of the CA3 and CA1 areas in the hippocampus facilitates multiple parallel synaptic contacts between
neurons in these areas bymeans of Schaffer collaterals. bAxons fromCA3 pyramidal neurons bifurcate and
pass through the CA1 area in parallel (left panel) giving rise to the convergence–divergence of the informa-
tion content (right panel). Multiple CA1 neurons receive multiple synaptic contacts from CA3 neurons. c
Schematic representation of three memory encoding schemes. (1) Selectivity. A neuron (shown in yellow)
receives inputs frommultiple presynaptic cells that code different information items. It detects (responds to)
only one stimulus (purple trace), whereas rejecting the others. (2) Clustering. Similar to 1, but now a neuron
(shown in pink) detects a group of stimuli (purple and blue traces) and ignores the others. (3) Acquiring
memories. A neuron (shown in green) learns dynamically a new memory item (blue trace) by associating
it with a know one (purple trace) (Color figure online)

tiation can significantly increase the spike transfer rate in the CA3–CA1 pathway
(Fernandez-Ruiz et al. 2012). This suggests that the efficiency of individual synaptic
contacts can be increased selectively.

In this work we will follow conventional and rather general functional representa-
tion of signalling in the neuronal pathways. We assume that upon receiving an input, a
neuron can either generate a response or remain silent. Forms of the neuronal responses
as well as the definitions of synaptic inputs vary from onemodel to another. Therefore,
here we adopt a rather general functional approach. Under a stimulus we understand
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a number of excitations simultaneously (or within a short time window) arriving to a
neuron through several axones and thus transmitting some “spatially coded” informa-
tion items (Benito et al. 2016). If a neuron responds to a stimulus (e.g., generates output
spikes or increases its firing rate), we then say that the neuron detects the informational
content of the given stimulus.

We follow the standard machine learning assumptions (Vapnik and Chapelle 2000;
Cucker and Smale 2002). The stimuli are generated in accordance with some dis-
tribution or a set of distributions (“Outer World Models”). All stimuli that a neuron
may receive are samples from this distribution. The sampling itself may be a com-
plicated process, and for simplicity we assume that all samples are identically and
independently distributed (i.i.d.). Once a sample is generated, a stimuli sub-sample is
independently selected for testing purposes. If more than one neuron is considered,
we will assume that a rule (or a set of rules) is in place that determines how a neuron
is selected from the set. The rules can be both deterministic and randomized. In the
latter case we will specify this process.

Let us now pose the following fundamental questions related to the information
encoding and formation of memories by single neurons and their ensembles in lami-
nated brain structures:

1. Selectivity: detection of one stimulus from a set (Fig. 1C.1) Pick an arbitrary
stimulus from a reasonably large set such that a single neuron from a neuronal
ensemble detects this stimulus. Then what is the probability that this neuron is
stimulus-specific, i.e., it rejects all the other stimuli from the set?

2. Clustering: detection of a group of stimuli from a set (Fig. 1C.2) Within a set
of stimuli we select a smaller subset, i.e., a group of stimuli. Then what is the
probability that a neuron detecting all stimuli from this subset stays silent for all
remaining stimuli in the set?

3. Acquiring memories: learning new stimulus by associating it with one already
known (Fig. 1C.3) Let us consider two different stimuli s1 and s2 such that for
t ≤ t0 they do not overlap in time and a neuron detects s1, but not s2. In the next
interval (t0, t1], t1 > t0 the stimuli start to overlap in time (i.e., they stimulate the
neuron together). For t > t1 the neuron receives only stimulus s2. Then what is
the probability that for some t2 ≥ t1 the neuron detects s2?

These questions are in the core of a broad range of puzzling phenomena reported in
Ison et al. (2015), Quiroga et al. (2005), Viskontas et al. (2009). Inwhat followswewill
show that, remarkably, these three non-trivial fundamental questions can be answered
within a simple classical modeling framework, whereby a neuron is represented by a
mere perceptron equipped with a Hebbian-type of learning.

3 Formal Statement of the Problem

In this sectionwe specify the information content to be processed by neurons and define
a mathematical model of a generic neuron equipped with synaptic plasticity. Before
going any further, let us first introduce notational agreements used throughout the text.
Given two vectors x, y ∈ R

n , their inner product 〈x, y〉 is: 〈x, y〉 = ∑n
i=1 xi yi . If

x ∈ R
n then ‖x‖ stands for the usual Euclidean norm of x: ‖x‖ = 〈x, x〉1/2. By
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Fig. 2 Codification of high-dimensional information by a neuron. Each of M stimuli comprises of the
“spatial” information, xi ∈ R

n , (e.g., M images) conducted through n axons (in yellow) and the temporal
part, c(t − τi, j ), reflecting the times of stimuli presentation. A neuron (in blue) receives the stimuli and
generates responses determined by some transfer function f (Color figure online)

Bn(1) = {x ∈ R
n| ‖x‖ ≤ 1} we denote a unit n-ball centered at the origin; V(�) is

the Lebesgue volume of� ⊂ R
n , and |M| is the cardinality of a finite setM. Symbol

C(D), D ⊆ R
m stands for the space of continuous real-valued functions on D.

3.1 Information Content and Classes of Stimuli

Weassume that a neuron receives and processes a large but finite set of different stimuli
codifying different information items:

S = {si }. (1)

Figure 2 illustrates schematically the information flow. Each individual stimulus i
is modeled by a function s : R × R

n → R
n :

s(t, xi ) = xi
∑

j

c(t − τi, j ), (2)

where xi ∈ R
n \{0} is the stimulus content codifying the information to be transmitted

over n individual “axons”. An example of an information item could be an l×k image
(see Fig. 2). In this case the dimension of each information item is n = l × k.
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In Eq. (2) the function c(·) defines the stimulus context, i.e., the time window when
the stimulus arrives to the neuron. For the sake of simplicity we use a rectangular
window:

c(t) =
{
1, if t ∈ [0,ΔT ]
0, otherwise,

(3)

where ΔT > 0 is the window length. The time instants of the stimulus presentations,
τi, j , are ordered and satisfy:

τi, j+1 > τi, j + ΔT, ∀ j. (4)

Different stimuli arriving to the neuron are added linearly on the neuronal mem-
brane. Thus, the overall neuronal input S can be written as:

S(t) =
∑

i, j

xi c(t − τi, j ). (5)

We assume that the information content of stimuli (5) and (2), i.e., vectors xi are
drawn i.i.d. from some distribution. For convenience, we partition all information
items into two sets:

M = {x1, . . . , xM }, Y = {xM+1, . . . , xM+m}, (6)

whereM is large but finite andm ≥ 1 is in general smaller thanM . The setM contains
a background content for a given neuron, whereas the set Y models the informational
content relevant to the task at hand. In other words, to accomplish a static memory
task the neuron should be able to detect all elements from Y and to reject all elements
fromM.

The setsM and Y give rise to the corresponding subsets of stimuli:

S(M) = {si ∈ S | si (·) = s(·, xi ), xi ∈ M},
S(Y) = {si ∈ S | si (·) = s(·, xi ), xi ∈ Y}. (7)

3.2 Neuronal Model

To stay within functional description of the information processing let us consider
the most basic class of model neurons, a perceptron (Rosenblatt 1962). A single
neuron receives a stimulus s(t, x) through n synaptic inputs (Fig. 2) and its membrane
potential, y ∈ R, is given by

y(s,w) = 〈w, s〉, (8)

where w ∈ R
n is a vector of the synaptic weights. The neuron generates a response,

v ∈ R, according to:
v(s,w, θ) = f (y(s,w) − θ), (9)
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where θ ∈ R is the “firing” threshold and f : R → R is the transfer function (Fig. 2):
f ∈ C(R), f is locally Lipschitz, f (u) = 0 for u ∈ (−∞, 0], and f (u) > 0 for
u ∈ (0,∞).

Model (8), (9) captures the summation of postsynaptic potentials and the threshold
nature of the neuronal activation but disregards the specific dynamics accounted for
in other more advanced models. Nevertheless, as we will show in Sect. 4, this phe-
nomenological model is already sufficient to explain the fundamental properties of
information processing discussed in Sect. 2.

3.3 Synaptic Plasticity

In addition to the basic neuronal response mechanism (Sect. 3.2), we also model the
synaptic plasticity. The description adopted here relies on the neuronal firing rate and
Hebbian learning. Such a learning rule implies that the dynamics of w should depend
on the product of the input signal, s, and the neuronal output, v. We thus arrive to a
modified classical Oja rule (Oja 1982):

ẇ = αv(s,w, θ)y(s,w) (s − wy(s,w)) ,

w(t0) =w0 ∈ R
n, w0 �= 0,

(10)

where α > 0 defines the relaxation time. The multiplicative term v in (10) ensures that
plastic changes of w occur only when an input stimulus evokes a nonzero neuronal
response. The fact thatw0 �= 0 reflects the assumption that synaptic connections have
already been established, albeit their efficacy could be subjected to plastic changes.
In addition to capturing general principle of the classical Hebbian rule, model (10)
guarantees that synaptic weights w are bounded in forward time (see “Appendix A”)
and hence conforms with physiological plausibility.

4 Formation of Memories in High Dimensions

In Sect. 2 we formulated three fundamental problems of organization of memories in
laminar brain structures. Let us now show how they can be treated given that pyramidal
neurons operate in high dimensions.

To formalize the analysis let U be a subset of the stimulus set S. A neuron (8), (9)
parameterized by (w, θ) partitions the set U into the following subsets:

Activated(U , (w, θ)) ={si ∈ U | ∃ t≥t0 : v(si (t),w, θ) > 0},
Silent(U , (w, θ)) ={si ∈ U | v(si (t),w, θ) = 0 ∀ t ≥ t0}. (11)

The first set corresponds to the stimuli detected by the neuron, while the second one
collects background stimuli.
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Fig. 3 Selection of neuronal
parameters θ̄ = θ/‖xM+1‖ and
w∗, such that the neuron
responds to the relevant
information xM+1. Neurons
corresponding to points within
the green area detect the
stimulus xM+1. Brown areas
show projections of
hypercylinders defined in
Theorem 1 for D1 = 0.3, D2 =
0.1, D3 = 0.03 and
‖xM+1‖ = 0.6 (Color figure
online)
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4.1 Extreme Selectivity of a Single Neuron to Single Stimuli

Consider the case when the set Y in (6) contains only one element, i.e., |Y| = 1,
Y = {xM+1}, whereas the setM is allowed to be sufficiently large (|M| = M � 1).
Let us also assume that the stimuli with different information content, s(·, xi ), do not
overlap in time, i.e., we present them to a neuron one by one.

For a given nonzero xM+1 ∈ Y and stimulus s(·, xM+1) such that it is not identically
zero for t ≥ t0 we can always construct a neuron which would generate a nonzero
response to the stimulus s(·, xM+1) at some t ≥ t0. In other words, s(·, xM+1) ∈
Activated(S(Y), (w, θ)). Mathematically such a neuron can be defined as follows.
Let

w∗ = xM+1

‖xM+1‖ . (12)

Then the space from which the synaptic weights are chosen can be represented as
a direct sum of the one-dimensional linear subspace L‖(w∗) spanned by w∗ and
an (n − 1)-dimensional subspace L⊥(w∗) of R

n that is orthogonal to w∗. In this
representation, if a neuron with the synaptic weight w generates a nonzero response
to s(·, xM+1), then the coupling weight w∗ = 〈w,w∗〉 should satisfy the following
condition (Fig. 3, green area):

w∗ >
θ

‖xM+1‖ .

Indeed, such a choice is equivalent to

v(xM+1,w, θ) = f (w∗‖xM+1‖ − θ) > 0,

which in turn implies that v(s(t, xM+1),w
∗, θ) > 0 at some t and vice-versa.

Once a neuron that detects relevant information item, i.e., xM+1, is specified we
can proceed with assessing its selectivity properties.
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Fig. 4 Example of selective neuronal responses to stimulation with different (30×38)-pixels images (only
first few stimulus are shown in the time line). Each neuron responds to its own (relevant) stimulus only and
rejects the other (background) stimuli

Definition 1 (Neuronal Selectivity)We say that a neuron is selective to the information
content Y iff it detects the relevant stimuli from the set S(Y) and ignores all the others
from the set S(M).

The notion of selectivity, as stated in Definition 1, could be relaxed to account for
partial detection and rejection of information content fromY andM, respectively. This
naturally gives rise to various levels of neuronal selectivity determined, for instance, by
the proportion of elements fromM that correspond to stimuli that have been rejected.
As we will see below, different admissible pairs (w, θ) (Fig. 3) produce different
selectivity levels. The closer to the bisector, the higher the selectivity. One can pick
an arbitrary firing threshold θ ≥ 0 and select the synaptic efficiency at t = t0 as:

w(t0) = θ + ε

‖xM+1‖w
∗ + w⊥, ε > 0, w⊥ ∈ L⊥. (13)

It can be shown (see “Appendix A”) that if the stimulus s(·, xM+1) is persistent over
time and w(t0) satisfies (13) then synaptic efficiency w(t,w0) converges asymptoti-
cally (as t → ∞) to:

w∞ =
{
w∗, if θ < ‖xM+1‖

θ‖xM+1‖w
∗ + w⊥∞, if θ ≥ ‖xM+1‖, (14)

where w⊥∞ is an element of L⊥.
Figure 4 shows typical responses of neurons parameterized by different pairs (w, θ)

and subjected to stimulation by different information items xi . Here xi correspond to
(30×38)-pixels color images (i.e., xi ∈ R

3420). Firing thresholds θ have been chosen
at random, and weights w have been set in accordance with (13) with the first three
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images serving as the relevant information items for the three corresponding neurons.
No plastic changes inw were allowed. The neurons detect their own (relevant) stimuli,
as expected. Moreover, they do not respond to the stimulation by other background
information items (4 out of 103 images are shown in Fig. 4). Thus, the neurons indeed
exhibit high stimulus selectivity.

The following theorem provides theoretical justification for these observations.

Theorem 1 Let elements of the sets M and Y be i.i.d. random vectors drawn from
the equidistribution in Bn(1). Consider the sets of stimuli S(M) and S(Y) specified
by (7). Let (w, θ) be the neuron parameters such that

sM+1 ∈ Activated(S(Y), (w, θ)) and 0 < θ < ‖w‖.

Then:

1. The probability that the neuron is silent for all background stimuli si ∈ S(M) is
bounded from below by:

P(si ∈ Silent(S(M), (w, θ)) ∀si ∈ S(M)
∣
∣ w, θ) ≥

≥
[

1 − 1

2

(

1 − θ2

‖w‖2
) n

2
]M

.
(15)

2. There is a family of sets parametrized by D (0 < D < min{ 12 , ‖xM+1‖}):

ΩD =
{
(w, θ)

∣
∣ ‖w − w∗‖ < D, D ≤ ‖xM+1‖ − θ ≤ 2D

}
, (16)

where w∗ = xM+1/‖xM+1‖, such that sM+1 ∈ Activated(S(Y), (w, θ)), for
(w, θ) ∈ ΩD and

P
(
si ∈ Silent(S(M), (w, θ)) ∀si ∈ S(M)

∣
∣ ∀(w, θ) ∈ ΩD

) ≥

≥ max
ε∈(0,1−2D)

(1 − (1 − ε)n)

[

1 − 1

2
ρ(ε, D)

n
2

]M (17)

where

ρ(ε, D) = 1 −
(
1 − ε − 2D

1 + D

)2

.

The proof is provided in “Appendix B”.

Remark 1 For an admissible fixed D > 0, the volume V(ΩD) > 0. Therefore, the
estimate provided by Theorem 1 is robust to small perturbations of (w, θ), and slight
fluctuations of neuronal characteristics are not expected to affect neuronal functional-
ity.
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Fig. 5 Extreme selectivity to stimuli and memory capacity of single neurons. a Stimulus selectivity vs
the neuron dimension. The selectivity index steeply increases for n ∈ [10, 20]. For n > 20 practically
all neurons become selective to a set of 103 random stimuli. b Memory capacity with reliability 0.95 of
a neuronal ensemble versus the neuron dimension. For both types of stimuli the memory capacity grows
exponentially (straight lines show regressions)

Remark 2 Theorem 1 (part 2) specifies a non-iterative procedure for constructing sets
of selective neurons. Such neurons detect given stimuli and reject the others, with
high probability. Figure 3 (in brown) shows examples of three projections of the
hypercylinders (16) ensuring robust selective stimulus detection. The smaller is the
cylinder, the higher is the selectivity.

To illustrateTheorem1numericallywefixed the neuronal dimensionality parameter
n and generated two random sets of information items comprising of 103 elements
each, i.e., {xi }103i=1. One set was sampled from the equidistribution in a unit ball Bn(1)
centered at the origin (i.e., ‖xi‖2 ≤ 1), and the other from the equidistribution in the
hypercube ‖xi‖∞ ≤ 1 (a product distribution). For each set of informational items, a
neuronal ensemble of 103 single neurons parameterized by (wi , θi ) was created. Each
neuron was assigned fixed firing threshold θi = 0.5, i = 1, . . . , 103, whereas the
synaptic efficiencies were set as wi = (θi + ε)xi/‖xi‖, ε = 0.05. For these neuronal
ensembles and their corresponding stimuli sets we evaluated output of each neuron
and assessed the neuronal selectivity (see Def. 1). The procedure was repeated 10
times. This was followed by evaluation of the frequencies of selective neurons in the
pool for each n.

Figure 5a shows frequencies of selective neurons in an ensemble, for 103 stimuli
taken from: i) a unit ball (red), ii) a hypercube (blue), and iii) the estimate provided
by Theorem 1 (dashed). For n small (n < 6) neurons exhibit no selectivity, i.e.,
they confuse different stimuli and generate nonspecific responses. As expected, when
neuronal dimensionality, n, increases, the neuronal selectivity increases rapidly; and
at around n = 20 it approaches 100%.
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4.2 Extreme Selectivity of a Single Neuron and Ensemble Memory Capacity

The property of a neuron to respond selectively to a single element from a large set
of stimuli can be related to the notion of memory capacity of a neuronal ensemble
comprising of a set of selective neurons.

Recall that in the framework of associative memory (Hopfield 1982), for each
informational item (pattern) xi from the set M there is a vicinity Vi associated with
xi and corresponding to all admissible perturbations of xi . Suppose that for each xi
there is a neuron in the ensemble that is activated for all stimuli with informational
content x in Vi and is silent for all other stimuli, i.e., for stimuli with x in ∪ j �=iV j .
The maximal size of the setM for which this property holds will be referred to as the
(absolute) memory capacity of the ensemble (cf. Hopfield 1982; Barrett et al. 2004;
Leung et al. 1995).

This conventional mechanistic definition of memory capacity, however, is too
restrictive to account for variability and uncertainty that biological neuronal ensem-
bles and systems are to deal with. Indeed, informational items themselves may bear a
degree of uncertainty resulting in that Vi ∩V j �= ∅ for some j, i , i �= j . Furthermore,
errors in memory retrievals are known to occur in classical artificial associative mem-
ory models too (see, e.g., Hopfield 1982; Amit et al. 1985; Leung et al. 1995). To be
able to formally quantify such errors in relation to the number of informational items
an ensemble is to store, we extend the classical notion as follows.

Suppose that for each xi there is a neuron in the ensemble that is activated for all
stimuli with informational content x ∈ Vi and, with probability φ, is silent for all
stimuli with x ∈ V j , j �= i . The maximal size of the set M for which this property
holds will be referred to as the memory capacity with reliability φ of the ensemble.

Assuming that Vi are sufficiently small, an estimate of the memory capacity with
reliability φ of a neuronal ensemble follows from Theorem 1.

Corollary 1 Let elements of the sets M and Y be i.i.d. random vectors drawn from
the equidistribution in Bn(1). Consider the set of stimuli S(M) as defined in (7). Then
for a given fixed φ ∈ (0, 1) the maximal size M of the stimuli set S(M) for which the
following holds

P(si ∈ Silent(S(M), (w, θ)) ∀si ∈ S(M)
∣
∣ w, θ) ≥ φ

grows at least exponentially with the neuronal dimension n:

M > − ln (φ)
(
2eαn − 1

)
, where α = ln

[
‖w‖

√‖w‖2 − θ2

]

> 0. (18)

The proof is given in “Appendix C”.
Figure 5b illustrates how the memory capacity with reliability φ grows with neu-

ronal dimension n. For each neuronal dimension n we generated i.i.d. samplesMwith
|M| = M from the equidistribution in Bn(1) and the n-cube [−1, 1]n . For each sam-
ple, we defined neuronal ensembles comprising of M neurons with synaptic weights
wi = xi/‖xi‖ and thresholds θi = 0.5, and calculated the proportion of neurons in the
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ensemble that are activated by each stimulus. If the proportionwas smaller than 0.05 of
the total number of neurons, we incremented the value of M , generated a new sample
M with increased cardinality M , and repeated the experiment. The values of M cor-
responding to samples at which the process stopped have been recorded and retained.
These constituted empirical estimates of the maximal number of stimuli for which the
proportion of neurons responding to a single stimulus is at most 0.05 = 1−φ. Figure
5b shows empirical means of such numbers for the unit ball and in the hypercube.
As follows from these observations, memory capacity grows exponentially with the
neuron dimension in both cases. Such a fast growth can easily cover quite exigent
memory necessities.

4.3 Selectivity of a Single Neuron to Multiple Stimuli

To organize memories, the ability to associate different information items is essential
(Fig. 1C2). To determine if such associations are feasible at the level of single neurons
we assess neuronal selectivity to multiple stimuli. In particular, we consider the set
Y [Eq. (6)] containing m > 1 random vectors: Y = {xM+1, . . . , xM+m}. As in Sect.
4.1, here we assume that all stimuli do not overlap in time and arrive to the neuron
separately. The question of interest is: Can we find a neuron [i.e., parameters (w, θ)],
such that it would generate a nonzero response to all si ∈ S(Y) and, with high enough
probability, would be silent to all si ∈ S(M)?

Below we will show that this is indeed possible, provided that the neuronal dimen-
sionality, n, is large enough. Moreover, the separation can be achieved by a neuron
with the vector of synaptic weights, w = w∗, closely aligned with the mean vector of
the stimulus set Y:

x̄ = 1

m

m∑

i=1

xM+i , w∗ = x̄
‖x̄‖ . (19)

This vector points to the center of the group to be separated from the set M. In low
dimensions, e.g., when n = 2, such functionality appears to be extremely unlikely.
However, high-dimensional neurons can accomplish this task with probability close
to one. Formal statement of this property is provided in Theorem 2.

Theorem 2 Let elements of the sets M and Y be i.i.d. random vectors drawn from
the equidistribution in Bn(1). Consider the sets of stimuli S(M) and S(Y) specified
by (7) and let D, ε, δ ∈ (0, 1) be chosen such that

θ∗ = (1 − ε)3 − δ(m − 1)√
m(1 − ε)[1 − ε + δ(m − 1)] ∈ (D, 1). (20)

Let w∗ = x̄/‖x̄‖ and consider the set:

ΩD =
{
(w, θ)

∣
∣ ‖w − w∗‖ < D, θ ∈ (0, θ∗ − D]

}
.
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Then

P
(
[si ∈ Activated(S(Y),w, θ) ∀ si ∈ S(Y)] &

[si ∈ Silent(S(M),w, θ) ∀ si ∈ S(M)]
∣
∣
∣ (w, θ) ∈ ΩD

)
≥ p(ε, δ, D,m),

(21)

where

p(ε, δ, D,m) =(1 − (1 − ε)n)m
m−1∏

d=1

(

1 − d
(
1 − δ2

) n
2
)[

1 − 1

2
Δ

n
2

]M
,

Δ =1 − θ2

(1 + D)2
.

The proof is provided in “Appendix D”. The theorem admits the following corollary.

Corollary 2 Suppose that the conditions of Theorem 2 hold. Let θ∗ > 2D and con-
sider the set:

Ω∗
D =

{
(w, θ)

∣
∣ ‖w − w∗‖ < D, θ ∈ [θ∗ − 2D, θ∗ − D]

}
.

Then
P
(
[si ∈ Activated(S(Y),w, θ) ∀ si ∈ S(Y)] &

[si ∈ Silent(S(M),w, θ) ∀ si ∈ S(M)]
∣
∣
∣(w, θ) ∈ Ω∗

D

)
≥

(1 − (1 − ε)n)m
m−1∏

d=1

(

1 − d
(
1 − δ2

) n
2
)[

1 − 1

2
Δ

n
2

]M
,

Δ = 1 −
(

θ∗ − 2D

1 + D

)2

.

(22)

Remark 3 Estimates (21), (22) hold for all feasible values of ε and δ. Maximizing
the r.h.s of (21), (22) over feasible domain of ε, δ provides lower-bound “optimistic”
estimates of the neuron performance.

Remark 4 The term θ∗ in Theorem 2 and Corollary 2 is an upper bound for the firing
threshold θ . The larger is the value of θ , the higher is the neuronal selectivity to
multiple stimuli. The value of θ∗, however, decays with the number of stimuli m.

The extent to which the decay mentioned in Remark 4 affects neuronal selectivity
to a group of stimuli depends largely on the neuronal dimension, n. Note also that
the probability of neuronal selective response to multiple stimuli, as provided by
Theorem 2, can be much larger if elements of the set Y are spatially close to each
other or positively correlated (Tyukin et al. 2017) (see also Lemma 4 in “Appendix
F”).
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Fig. 6 Selectivity of a single neuron to multiple stimuli. a Corresponds to the case when the informational
content vectors, xi , are sampled from the equidistribution in the unit ball Bn(1), and b corresponds to the
equidistribution in the n-cube centered in the origin. In both cases the neuronal selectivity approaches 100%
when the dimension n grows. In (a) dashed curves show the estimates provided by Theorem 2. Parameter
values: ε = 0.01, D = 0.001, δ = (1 − ε)/2(m − 1), θ = θ∗ − D

Remark 5 Similarly to the case considered in Corollary 1, the maximal size of the
stimuli set S(M) for which selective response is ensured, with some fixed probability,
grows exponentially with dimension n. Indeed, denoting φ = (1 − z)M , letting z =
1/2Δn/2 (with Δ defined in Theorem 2) and invoking (34), (35) from the proof of
Corollary 1, we observe that

M > − ln(φ)(z−1 − 1) = − ln(φ)(2eβn − 1), β = ln
1 + D

√
(1 + D)2 − θ2

.

Thus, for M = |S(M)| ≤ M , the r.h.s. of (21) is bounded from below by

(1 − (1 − ε)n)m
m−1∏

d=1

(

1 − d
(
1 − δ2

) n
2
)

φ.

Similar estimate can be provided for the case considered in Corollary 2.

To illustrate Theorem2we conducted several numerical experiments. For each nwe
generated M = 103 of background information items xi (the setM) and m = 2, 5, 8
relevant vectors (the sets Y). In the first group of experiments all M +m i.i.d. random
vectors were chosen from the equidistribution in Bn(1). Neuronal parameters were set
in accordance with Theorem 2 (i.e., Eqs. 19–21). Figure 6a illustrates the results.

Similarly to the case of neuronal selectivity to a single item (Fig. 5a), we observe a
steep growth of the selectivity index with the neuronal dimension. The sharp increase
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occurs, however, at significantly higher dimensions. The number of random and
uncorrelated stimuli, m, to which a neuron should be able to respond selectively
is fundamentally linked to the neuron dimensionality. For example, the probability
that a neuron is selective to m = 5 random stimuli becomes sufficiently high only at
n > 400. This contrasts sharply with n = 120 for m = 2.

Our numerical experiments also show that the firing threshold specified in Theorem
2 for arbitrarily chosen fixed values of δ and ε is not optimal in the sense of providing
the best possible probability estimates. Playing with θ one can observe that the values
of n at which neuronal selectivity to multiple stimuli starts to emerge are in fact
significantly lower than those predicted by Eq. (22). This is not surprising. First, since
estimate (22) holds for all admissible values of δ and ε, it should also hold for the
maximizer of p(ε, δ, D,m). Second, the estimate is conservative in the sense that it is
based on conservative estimates of the volume of spherical cups Cn (see, e.g., proof of
Theorem 1). Deriving more accurate numerical expressions for the latter is possible,
although at the expense of simplicity.

To demonstrate that dependence of the selectivity index on the firing threshold is
likely to hold qualitatively for broader classes of distributions from which the sets
M and Y are drawn, we repeated the simulation for the equidistribution in an n-
cube centered at the origin. In this case, Theorem 2 does not formally apply. Yet, an
equivalent statement can still be produced (cf. Gorban and Tyukin 2017). In these
experiments synaptic weights were set to w = x̄/‖x̄‖ and θ = 0.5‖x̄‖. The results
are shown in Fig. 6b. The neuron’s performance in the cube is markedly better than
that of in Bn(1). Interestingly, this is somewhat contrary to expectations that might
have been induced by our earlier experiments (shown in Fig. 5) in which neuronal
selectivity to a single stimulus was more pronounced for Bn(1).

Overall, these results suggest that single neurons can indeed separate randomuncor-
related information items from a large set of background items with probability close
to one. This gives rise to a possibility for a neuron to respond selectively to various
arbitrary uncorrelated information items simultaneously. The latter property provides
a natural mechanism for accurate and precise grouping of stimuli in single neurons.

4.4 Dynamic Memory: Learning New Information Items by Association

In the previous sections we dealt with a static model of neuronal functions, i.e., when
the synaptic efficiency w either did not change at all or the changes were negligibly
small over large intervals of stimuli presentation. In the presence of synaptic plasticity
(10), the latter case corresponds to 0 ≤ α � 1 in (10). In this section we explicitly
account for the time evolution of the synaptic efficiency, w(t,w0) [Eq. (10)]. As we
will see below, this may give rise to dynamic memories in single neurons.

As before, we will deal with two sets of stimuli, the relevant one, S(Y), and the
background one, S(M). We will consider two time epochs: (i) Learning phase and
(ii) Retrieval phase. Within the learning phase we assume that all stimuli from the set
S(Y) arrive to a neuron completely synchronized, i.e.,:

τM+1, j = τM+2, j = · · · = τM+m, j , ∀ j. (23)
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Such a synchronization could be interpreted as a mechanism for associating or group-
ing different uncorrelated information items for the purposes of memorizing them at
a later stage.

The dynamics of the synaptic weights for t ≥ t0 is given Eq. (10) with the input
signal s replaced with:

s̄(t) =
m∑

i=1

sM+i (t). (24)

Let w0 = w(t0) and θ satisfy the following condition:

∃ sk ∈ S(Y) such that sk ∈ Activated(S(Y),w0, θ)

si ∈ Silent(S,w0, θ) for all si ∈ S \ {sk}. (25)

Thus, at t = t0 only one information item is “known” to the neuron. All other relevant
items from the set Y are “new” in the sense that the neuron rejects them at t = t0.
Theorem 1 specifies the sets of neuronal parameters w0, θ for which condition (25)
holds with probability close to one if n is large enough.

The question is: What is the probability that, during the learning phase the synaptic
weightsw(t,w0) evolve in time so that the neuron becomes responsive to all si ∈ S(Y)

while remaining silent to all si ∈ S(M) (Fig. 1C.3)? In other words, the neuron learns
new items and recognizes them in the retrieval phase. The following theorem provides
an answer to this question.

Theorem 3 Let elements of the sets M and Y be i.i.d. random vectors drawn from
the equidistribution in Bn(1). Consider the sets of stimuli S(M) and S(Y) specified
by (7). Let (23) hold, the dynamics of neuronal synaptic weights satisfy (10), (24), and
(w0, θ) be chosen such that condition (25) is satisfied. Pick ε, δ ∈ (0, 1) such that

(1 − ε)3 > δ(m − 1).

Moreover, suppose that

1. There exist L , κ > 0 such that

∫ t+L

t
v(s̄(τ ),w(τ,w0), θ)〈s̄(τ ),w(τ,w0)〉2dτ > κ, ∀ t ≥ t0.

2. The firing threshold, θ , satisfies

0 < θ <
(1 − ε)3 − δ(m − 1)√

m(1 − ε)[(1 − ε) + δ(m − 1)] = θ∗.

Then for, any 0 < D ≤ θ∗ − θ , there is t1(D) > t0 such that

P([S(Y) ∈ Activated(S,w(t,w0), θ)] & [S(M) ∈ Silent(S,w(t,w0), θ)]) ≥

(1 − (1 − ε)n)m
m−1∏

d=1

(

1 − d
(
1 − δ2

) n
2
)[

1 − 1

2

(

1 − θ2

(1 + D)2

) n
2
]M
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Fig. 7 Dynamic memory: Learning new information items by association. a Example of the dynamic
association of a known stimulus (neuron’s response to the known stimulus is shown by green curve) and
a new one (neuron’s response shown by orange curve). Two relevant stimuli out of 502 are learnt by the
neuron. At t ≈ 2 (red circle) the orange curve crosses the threshold (red dashed line) and stays above it for
t > 2. Thus the neuron detects the corresponding stimulus for t > 2. b Same as in A but for m = 4 and
m = 12. Parameter values: ε = 0.01, D = 0.001, δ = (1− ε)3/2(m − 1), α = 1, M = 500, θ = θ∗ − D,
n = 400 (Color figure online)

for all t ≥ t1(D).

The proof is provided in “Appendix E”.
Figure 7 illustrates the theoremnumerically. First we assumed that the relevant setY

consists ofm = 2 items. One of them is considered as “known” to the neuron (Fig. 7a,
green). Its informational content, xM+1, satisfies the condition 〈w0, xM+1〉 > θ , i.e.,
this stimulus evokes membrane potential above the threshold at t = t0. Consequently,
the neuron detects this stimulus selectively as described in Sect. 4.1. For the second
relevant stimulus (Fig. 7a, orange), however, we have 〈w0, xM+2〉 < θ . Therefore,
the neuron cannot detect such a stimulus alone. The background stimuli from the set
S(M) are also sub-threshold (Fig. 7a, back curves).

During the learning phase, the neuron receives M = 500 background and m = 2
relevant stimuli. The relevant stimuli from the set S(Y) appear simultaneously, i.e.,
they are temporarily associated. The synaptic efficiency changes during the learning
phase by action of the relevant stimuli. Therefore, the membrane potential, y(t) =
〈w(t,w0), s̄(t)〉, progressively increases when the relevant stimuli arrive (Fig. 7a,
green area). These neuronal adjustments give rise to a new functionality.

At some time instant (markedby red circle inFig. 7a) the neuronbecomes responsive
to the new relevant stimulus (Fig. 7a, orange), which is synchronizedwith the “known”
one. Note that all other background stimuli that show no temporal associativity remain
below the threshold (Fig. 7a, black traces). Thus, after a transient period, the neuron
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learns new stimulus. Once the learning is over, the neuron detects selectively either of
the two relevant stimuli.

The procedure just described can be used to associate together more than two
relevant stimuli. Figure 7b shows examples for m = 4 and m = 12. In both cases
the neuron was able to learn all relevant stimuli, while rejecting all background ones.
We observed, however, that increasing the number of uncorrelated information items
to be learnt, i.e., the value of m, reduces the gap between firing thresholds and the
membrane potentials evoked by background stimuli. In other words, the neuron does
detect the assigned group of new stimuli, but with lower accuracy. This behavior is
consistent with the theoretical bound on θ prescribed in the statement of Theorem 3.

5 Discussion

Theorems 1–3 and our numerical simulations demonstrate that the extreme neuronal
selectivity to single and multiple stimuli, and the capability to learn uncorrelated
stimuli observed in a range of empirical studies Quiroga et al. (2005), Viskontas
et al. (2009), Ison et al. (2015) can be explained by simple functional mechanisms
implemented in single neurons. The following basic phenomenological properties
have been used to arrive to this conclusion: (i) the dimensionality n of the information
content and neurons is sufficiently large, (ii) a perceptron neuronal model, Eq. (9), is
an adequate representation of the neuronal response to stimuli, and (iii) plasticity of
the synaptic efficiency is governed by Hebbian rule (10). A crucial consequence of
our study is that no a priori assumptions on the structural organization of neuronal
ensembles are necessary for explaining basic concepts of static and dynamicmemories.

Our approach does not take into account more advanced neuronal behaviors repro-
duced by, e.g., models of spike-timing-dependent plasticity (Markram et al. 1997)
and firing threshold adaptation (Fontaine et al. 2014). Nevertheless, our model cap-
tures essential properties of neuronal dynamics and as such is generic enough for the
purpose of functional description of memories.

Firing threshold adaption, as reported in Fontaine et al. (2014), steers firing activity
of a stimulated neuron to a homeostatic state. In this state, the value of the threshold
is just large/small enough to maintain reasonable firing rate without over/under-
excitation. In our model, such a mechanism could be achieved by setting the value of
θ sufficiently close to the highest feasible values specified in Theorems 1 and 2.

In addition to rather general model of neuronal behavior, another major theoretical
assumption of our work was the presumption that stimuli informational content is
drawn from an equidistribution in a unit ball Bn(1). This assumption, however, can be
relaxed, and results of Theorems 1–3 generalized to productmeasures. Key ingredients
of such generalizations are provided in Gorban and Tyukin (2017), and their practical
feasibility is illustrated by numerical simulations with information items randomly
drawn from a hypercube (Figs. 5, 6, 7).

Our theoretical and numerical analysis revealed an interesting hierarchy of cogni-
tive functionality implementable at the level of single neurons. We have shown that
cognitive functionality develops with the dimensionality or connectivity parameter
n of single neurons. This reveals explicit relationships between levels of the neural
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connectivity in living organisms and different cognitive behaviors such organisms can
exhibit (cf. Lobov et al. 2017). As we can see from Theorems 1, 2 and Figs. 5 and 6,
the ability to form static memories increases monotonically with n. The increase in
cognitive functionality, however, occurs in steps.

For n small (n ∈ [1, 10]), neuronal selectivity to a single stimulus does not form. It
emerges rapidly when the dimension parameter n exceeds some critical value, around
n = 10 ÷ 20 (see Fig. 5a). This constitutes the first critical transition. Single neurons
become selective to single information items. The second critical transition occurs
at significantly larger dimensions, around n = 100−400 (see Fig. 6). At this second
stage the neuronal selectivity to multiple uncorrelated stimuli develops. The ability
to respond selectively to a given set of multiple uncorrelated information items is
apparently crucial for rapid learning “by temporal association” in such neuronal sys-
tems. This learning ability as well as formation of dynamic memories are justified by
Theorem 3 and illustrated in Fig. 7.

In the core of our mathematical arguments are the concentration of measure phe-
nomena exemplified in Gorban et al. (2016), Gorban and Tyukin (2018) and stochastic
separation theorems (Gorban and Tyukin 2017; Gorban et al. 2016). Some of these
results, which have been central in the proofs of Theorem 2 and 3, namely, the state-
ments that random i.i.d. vectors from equidistributions in Bn(1) and product measures
are almost orthogonal with probability close to one, are tightly related to the notion of
effective dimensionality of spaces based on ε-quasiorthogonality introduced inHecht-
Nielsen (1994), Kainen and Kurkova (1993). In these works the authors demonstrated
that in high dimensions there exist exponentially large sets of quasiorthogonal vec-
tors. Gorban et al. (2016), however, as well as in our current work (see Lemma 3) we
demonstrated that not only such sets exist, but also that they are typical.

Finally, we note that the number of multiple stimuli that can be selectively detected
by single neurons is not extraordinarily large. In fact, as we have shown in Figs. 6 and
7, memorizing 8 information items at the level of single neurons requires more than
400 connections. This suggests that not only new memories are naturally packed in
quanta, but also that there is a limit on this number that is associated with the cost of
implementation of such a functionality. This cost is the number of individual functional
synapses. Balancing the costs in living beings is of course a subject of selection and
evolution. Nevertheless, as our study has shown, there is a clear functional gain that
these costs may be paid for.

6 Conclusion

In this work we analyzed the striking consequences of the abundance of signalling
routes for functionality of neural systems. We demonstrated that complex cognitive
functionality derived from extreme selectivity to external stimuli and rapid learning
of new memories at the level of single neurons can be explained by the presence of
multiple signalling routes and simple physiological mechanisms. At the basic level,
these mechanisms can be reduced to a mere perceptron-like behavior of neurons in
response to stimulation and aHebbian-type learning governing changes of the synaptic
efficiency.
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The observed phenomenon is robust. Remarkably, a simple generic model offers
a clear-cut mathematical explanation of a wealth of empirical evidence related to in
vivo recordings of “Grandmother” cells, “concept” cells, and rapid learning at the level
of individual neurons (Quiroga et al. 2005; Viskontas et al. 2009; Ison et al. 2015).
The results can also shed light on the question why Hebbian learning may give rise to
neuronal selectivity in prefrontal cortex (Lindsay et al. 2017) and explain why adding
single neurons to deep layers of artificial neural networks is an efficient way to acquire
novel information while preserving previously trained data representations (Draelos
et al. 2016).

Finding simple laws explaining complex behaviors has always been the driver of
progress in Mathematical Biology and Neuroscience. Numerous examples of such
simple laws can be found in the literature (see, e.g., Roberts et al. 2014; Jurica et al.
2013; Gorban et al. 2016; Perlovsky 2006). Our results not only provide a simple
explanation of the reported empirical evidence but also suggest that such a behavior
might be inherent to neuronal systems and hence organisms that operate with high-
dimensional informational content. In such systems, complex cognitive functionality
at the level of elementary units, i.e., single neurons, occurs naturally. The higher the
dimensionality, the stronger the effect. In particular, we have shown that the memory
capacity in ensembles of single neurons grows exponentially with the neuronal dimen-
sion. Therefore, from the evolutionary point of view, accommodating large number of
signalling routes converging onto single neurons is advantageous despite the increased
metabolic costs.

The considered class of neuronal models, being generic, is of course a simplifica-
tion. It does not capture spontaneous firing, signal propagation in dendritic trees, and
many other physiologically relevant features of real neurons. Moreover, in our theo-
retical assessments we assumed that the informational content processed by neurons
is sampled from an equidistribution in a unit ball. The results, however, can already
be generalized to product measure distributions (see, e.g., Gorban and Tyukin 2017).
Generalizing the findings to models offering better physiological realism is the focus
of our future works.
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A Dynamics of Coupling Weights

The following results demonstrate that the neuronal model provided in Sect. 3 is
well-posed.

Lemma 1 Consider (9), (10) with the function s(·, x), x ∈ R
n defined as in (2). Then

(1) solutions w(·,w0) of (10) are defined for all t ≥ t0 and are unique and bounded
in forward time.

If, in addition, θ ≥ 0 and there exist numbers L , δ > 0 such that:

∫ t+L

t
v(s(τ, x),w(τ,w0), θ)〈s(τ, x),w(τ,w0)〉2 dτ > δ, ∀t ≥ t0, (26)

then

(2) x/‖x‖ is an attractor, that is:

lim
t→∞w(t,w0) = x

‖x‖ . (27)

Proof of Lemma 1 (1) The right-hand side of (10) is continuous in w and piece-wise
continuous in t with finite number of discontinuities of the first kind in any finite
interval containing t0, independently on the values of w. Hence, in accordance
with Peano Theorem, solutions of (10) are defined on some non-empty interval
containing t0. Let T be the maximal interval of this solution’s definition (to the
right of t0). Since the right-hand side of (10) is locally Lipschitz inw, the solution
w(·,w0) is uniquely defined on T .
To show that T = [t0,∞) consider

V (w) = 1 − ‖w‖2.

In the interval T we have:

V̇ = −2αvy2V .

Given that vy2 ≥ 0, the above expression implies that

|1 − ‖w0‖2| ≥ |1 − ‖w(t,w0)‖2| ≥ ‖w(t,w0)‖2 − 1.

Consequently,

‖w(t,w0)‖ ≤
(
1 + |1 − ‖w0‖2|

) 1
2

(28)

for all t ≥ t0, t ∈ T . Let t1 be an arbitrary point in the interval T . Recall that
the right-hand side of (10) is continuous and locally Lipschitz with respect to w

(uniformly in t). Thus (28) implies existence of someΔ(w0, x) > 0, independent
on t1, such that the solutionw(·,w0) is defined on the interval [t0, t1+Δ(w0, x)].
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Given that t1 was chosen arbitrarily in T , we can conclude that T = [t0,∞) (cf.
Theorem 3.3 Khalil 2002).

(2) For the sake of convenience, we denote

p(t) = v(s(t, x),w(t,w0), θ)〈s(t, x),w(t,w0)〉2.

Condition (26) assures that both x �= 0, w0 �= 0. Moreover, since V (w(t,w0)) is
defined for all t ≥ t0, we can conclude that

|V (t)| =
∣
∣
∣
∣V0e

−2α
∫ t
t0

p(τ )dτ
∣
∣
∣
∣ ≤ |V0|e−2αδ

⌊
t−t0
L

⌋

.

Hence
lim
t→∞ ‖w(t,w0)‖ = 1. (29)

Consider:

w(t,w0) = e
−α
∫ t
t0

p(τ )dτ
w0

+α

[∫ t

t0
e−α

∫ t
τ p(s)dsv(s(τ, x),w(τ,w0), θ)〈s(τ, x),w(τ,w0)〉

∑

j

c(τ − τ j ) dτ

⎤

⎦ x.

Observe that the first term decays exponentially to 0, whereas the second term is
proportional to x.Moreover, since θ ≥ 0, the termv(s(τ, x),w(τ,w0), θ)〈s(τ, x),

w(τ,w0)〉 ≥ 0 for all τ ≥ t0. Hence the coefficient in front of x is non-negative.
This, combined with (29), implies that (27) holds. ��

Note that Lemma 1 applies to stimuli classes that are broader than the one defined
by (2), (3). The results hold, e.g., for the functions c(·) in (2) that are non-negative,
piece-wise continuous, and bounded. On the other hand, to determine convergence and
asymptotic properties of w(·,w0) for t ≥ t0 (part 2 of the lemma) one needs to check
that condition (26) holds. A drawback of this condition is that it requires availability
of signals v(s(t, x),w(t,w0), θ), 〈s(t, x),w(t,w0)〉 for all t ≥ t0.

For c(·) specified by (2) this latter condition can be drastically simplified. To see
this, let us get a somewhat deeper geometrical insight into the dynamics ofw governed
by (10). In order to bring the discussion in linewith the question of neuronal selectivity,
consider the stimuli sets (6), (7) with Y = {xM+1}, and suppose that stimuli s(·, xi ),
i = 1, . . . , M do not evoke any neuronal responses, i.e., v(s(·, xi ),w(·,w0), θ) = 0
for all i = 1, . . . , M . Hence no changes in w occur if the stimulus s in (10) is any of
s(·, xi ), i = 1, . . . , M .

Consider system (10) with s(·, xM+1). The variablew may change only over those
intervals of t when s(·, xM+1) �= 0. Between these intervals w(t,w0) is constant.
Let the stimulus be persistent in the sense that for any t ′ ≥ t0 there is a t ′′ such that
s(t ′′, xM+1) �= 0. Thus, without loss of generality and for the purposes of assessing
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10 θ

xM+1

10

θ

xM+1

w∗

ẇ∗

w∗

ẇ∗

Fig. 8 Sketch of the dynamics of w∗. Thick black curve shows the r.h.s. of (30) as a function of w∗ for
two cases: θ < ‖xM+1‖ (left) and θ > ‖xM+1‖ (right). Blue (red) dots correspond to stable (unstable)
equilibria. Green arrows mark trajectories. In the first case (left)w∗ tends to 1, whereas in the second (right)
it goes asymptotically to θ/‖xM+1‖ (Color figure online)

asymptotic behavior of w(t,w0) at t → ∞ variable s(t, xM+1) in (8)–(10) may be
replaced with xM+1.

Recall that w(t,w0) can be represented as a sum

w(t,w0) = w∗(t,w0)w
∗ + w⊥(t,w0), w∗(t,w0) = 〈w(t,w0),w

∗〉,

where w∗ is defined in (12) and w⊥ ∈ L⊥. In this representation,

ẇ = ẇ∗w∗ + ẇ⊥ = α f (〈xM+1, w
∗w∗ + w⊥〉 − θ)〈xM+1, w

∗w∗ + w⊥〉(xM+1−
〈xM+1, w

∗w∗ + w⊥〉[w∗w∗ + w⊥]) =
[
α f (w∗‖xM+1‖ − θ)‖xM+1‖2(1 − w∗2)

]

w∗w∗ −
[
α f (w∗‖xM+1‖ − θ)‖xM+1‖2w∗2]w⊥

or, equivalently,

ẇ∗ = α‖xM+1‖2 f (w∗‖xM+1‖ − θ)(1 − w∗2)w∗ (30)

ẇ⊥ = −
[
α f (w∗‖xM+1‖ − θ)‖xM+1‖2w∗2]w⊥. (31)

Obviously, L‖, L⊥, and the set

W(xM+1, θ) = {(w∗,w⊥), w∗ ∈ R,w⊥ ∈ L⊥ |w∗‖xM+1‖ − θ ≤ 0}

are invariant with respect to (10). Let xM+1 �= 0, θ ≥ 0, and w0 /∈ W(xM+1, θ).
Then two non-trivial alternatives (Fig. 8) are possible:

A: If θ < ‖xM+1‖ then w∗(t,w0) → 1 and, according to (31), w⊥(t,w0) → 0
as t → ∞. Thus,

lim
t→∞w(t) = xM+1

‖xM+1‖ = w∗.
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B: If θ ≥ ‖xM+1‖ thenw∗(t,w0) → θ/‖xM+1‖ as t → ∞. There is no guarantee,
however, that w⊥(t,w0) converges to the origin asymptotically. Thus, there is a
w⊥∞ ∈ L⊥:

lim
t→∞w(t) = θ

‖xM+1‖w
∗ + w⊥∞.

The above result can now be formalized as

Lemma 2 Consider (9), (10) with the function s(·, x), x ∈ R
n defined as in (2). Let

θ ≥ 0 and 〈w0, x〉 > θ . Furthermore, let the stimulus s(·, x) be persistent in the
sense that for any t ′ ≥ t0 there is a t ′′ > t ′ such that s(t ′′, x) �= 0. Then the following
alternatives hold:

1) If θ < ‖x‖ then limt→∞ w(t,w0) = x/‖x‖.
2) If θ ≥ ‖x‖ then limt→∞〈w(t,w0), x/‖x‖〉 = θ/‖x‖.
Note that alternative 1) in Lemma 2 is equivalent to the second statement of Lemma

1. Alternative 2) corresponds to the case when condition (26) of Lemma 1 is not
satisfied. ��

B Proof of Theorem 1

1. Let us first assume that ‖w‖ = 1. Notice that the condition

〈w, xi 〉 ≤ θ ∀xi ∈ M, (32)

assures that v = 0 and hence si ∈ Silent(S(M), (w, θ)) ∀si ∈ S(M).
In this case the neuron is silent for all stimuli except sM+1 that does evoke a
response by construction. Therefore, it is sufficient to estimate the probability that
(32) holds.
Let Cn(w, θ) be the spherical cap:

Cn(w, θ) = {x ∈ Bn(1) | 〈w, x〉 > θ}.

Then the ratio of volumes V(Cn(w, θ))/V(Bn(1)) is the probability that a random
vector xi ∈ Cn(w, θ). Observe that

V(Cn(w, θ))

V(Bn(1))
≤ 1

2
(1 − θ2)

n
2 .

Thus, the probability that all xi ∈ M are outside the cap Cn(w, θ) is bounded
from below:

P =
[

1 − V(Cn(w, θ))

V(Bn(1))

]M
≥
[

1 − 1

2
(1 − θ2)

n
2

]M
, (33)
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which is equivalent to (15), given that ‖w‖ = 1.
Let ‖w‖ �= 1. Noticing that, for ‖w‖ > 0

〈w, xi 〉 ≤ θ ∀xi ∈ M ⇔ 〈w/‖w‖, xi 〉 ≤ θ/‖w‖ ∀xi ∈ M,

and substituting θ/‖w‖ in place of θ in (33) results in (15).
2. Let us show that for (w, θ) ∈ ΩD the neuron detects the relevant stimulus sM+1,

i.e., v > 0. Using (16) we observe that

〈w, xM+1〉 − θ = 〈w − w∗, xM+1〉 + ‖xM+1‖ − θ ≥ 〈w − w∗, xM+1〉 + D ≥
≥ −‖w − w∗‖‖xM+1‖ + D > D(1 − ‖xM+1‖) ≥ 0,

implying that sM+1 ∈ Activated(Y, (w, θ)).
Let us evaluate the probability that the neuron rejects all background stimuli for
all (w, θ) ∈ ΩD . According to (16) the following holds:

θ

‖w‖ ≥ ‖xM+1‖ − 2D

1 + D
, ∀(w, θ) ∈ ΩD.

Moreover, ‖xM+1‖ ≥ 1 − ε with probability p = 1 − (1 − ε)n . Therefore, with
probability larger or equal to p, the ratio θ

‖w‖ is bounded from below as:

θ

‖w‖ ≥ 1 − ε − 2D

1 + D
.

Finally, since the value of ε can be chosen arbitrarily in the interval (0, 1−2D) and
taking into account that the right-hand side of (33) is a monotone and increasing
function with respect to θ in the interval [0, 1], estimate (17) immediately follows
from (33) and (15).

��

C Proof of Corollary 1

Consider (15) and denote

z = 1

2

[

1 − θ2

‖w‖2
] n

2

, φ = (1 − z)M . (34)

According to (34), (1− z)M ≥ φ for all 0 < M ≤ M . Given that z ∈ (0, 1), from Eq.
(34) we get ln(φ) = M ln(1 − z). Recall that ln(1 − z) > −z/(1 − z), ∀z ∈ (0, 1).
Thus, we can conclude that

M > − ln(φ)
1 − z

z
= − ln(φ)(z−1 − 1) = − ln(φ)

(
2eαn − 1

)
, (35)
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where α is given by (18). Thus, according to (35), for 0 < M ≤ − ln(φ) (2ean − 1) <

M the following holds

P(si ∈ Silent(S(M), (w, θ)) ∀si ∈ S(M)
∣
∣ w, θ) ≥ φ.

��

D Proof of Theorem 2

The proof of the Theorem is essentially contained in Lemmas 3 and 4 (Sect. F).
Consider the set Y . With probability (1− (1− ε)n)m , all elements xi ∈ Y satisfy the
condition ‖xi‖ ≥ 1−ε. Hence, using Lemma 3 we have that the following inequality

|〈xi , x j 〉| ≤ δ

1 − ε
, ∀xi , x j ∈ Y, i �= j

holds with probability

p0 ≥ (1 − (1 − ε)n)m
m−1∏

d=1

(
1 − d(1 − δ2)

n
2

)
.

This implies that, with probability p0, the following conditions are met

‖xi‖ ≥ 1 − ε, − (m − 1)δ

1 − ε
≤

m∑

j=1, j �=i

〈xi , x j 〉 ≤ (m − 1)δ

1 − ε
, ∀ xi ∈ Y .

Consider �(x) = 〈w∗, x〉 − θ∗ + D. Invoking Lemma 4 and setting β1 = δ/(1 − ε),
β2 = −δ/(1 − ε), we can conclude that, with probability p0,

�(x) ≥ D, ∀x ∈ Y .

In fact, we can conclude that with probability p0

�0(x) = 〈w, x〉 − θ = �(x) + 〈w − w∗, x〉 − θ

+(θ∗ − D) > 0, ∀ (w, θ) ∈ ΩD, x ∈ Y .

Thus, the probability that �0(x) > 0 for all x ∈ Y and that �0(x) ≤ 0 for all x ∈ M
is bounded from below by

(1 − (1 − ε)n)m
m−1∏

d=1

(
1 − d(1 − δ2)

n
2

)
[

1 − 1

2

(

1 − θ2

‖w‖2
) n

2
]M

.

Noticing that ‖w‖ ≤ 1 + D, we can conclude that (21) holds. ��

123



High-Dimensional Brain: A Tool for. . .

E Proof of Theorem 3

According to Lemma 1, solutions w(t,w0) are defined for all t ≥ t0. Moreover,
condition 1 of the theorem and Lemma 1 imply that

lim
t→∞w(t,w0) =

∑m
i=1 xM+i

‖∑m
i=1 xM+i‖ = x̄/‖x̄‖ = w∗. (36)

Let D > 0 be chosen so that

0 < θ + D ≤ θ∗.

Given that 0 < θ < θ∗, such Ds always exist. Equation (36) implies that there is a
t1(D) > t0 such that

‖w(t,w0) − w∗‖ < D, θ ∈ (0, θ∗ − D] ∀ t ≥ t1(D). (37)

The theorem now follows immediately from Theorem 2. ��

F Auxiliary Results

Lemma 3 (cf.Gorban et al. 2016) LetY = {x1, x2, . . . , xk} be a set of k i.i.d. random
vectors from the equidistribution in the unit ball Bn(1). Let δ, r ∈ (0, 1), and suppose
that ‖xi‖ ≥ r , for all i ∈ {1, . . . , k}.

Then the probability that the elements of Y are pair-wise δ/r-orthogonal, that is

| cos( � (xi , x j ))| ≤ δ

r
for all i �= j i, j ∈ {1, . . . , k},

is bonded from below as

P
(

| cos(� (xi , x j ))| ≤ δ

r
∀ i, j ∈ {1, . . . , k}, i �= j | ‖xi‖ ≥ r, 1 ≤ i ≤ k

)

≥
k−1∏

d=1

(

1 − d
(
1 − δ2

) n
2
)

.

Proof of Lemma 3 Let xi , i = 1, . . . , k be random vectors satisfying conditions of
the lemma. Let Eδ(xi ) be the delta-thickening of the largest equator of Bn(1) that is
orthogonal to xi . There is only one such equator, and it is uniquely determined by xi .

123



I. Tyukin et al.

Consider the following probabilities:

P(x2 ∈ Eδ(x1))

P([x3 ∈ Eδ(x2)]&[x3 ∈ Eδ(x1)])
P([x4 ∈ Eδ(x3)]&[x4 ∈ Eδ(x2)]&[x4 ∈ Eδ(x1)])
· · ·
P([xk ∈ Eδ(xk−1)]& · · ·&[xk ∈ Eδ(x1)]).

Pick xi , x j ∈ Y , i �= j . Recall that, for any random events A1, . . . , Ak , the probability

P(A1&A2& · · ·&Ak) ≥ 1 −
k∑

i=1

(1 − P(Ai )). (38)

According to (38), the probability that xi ∈ Eδ(x j ) is bounded from below by 1 −
(
1 − δ2

) n
2 (cf. Gorban et al. 2016, Proposition 3; see also Fig. 1 in Gorban et al. 2016

for illustration). Then

P(x2 ∈ Eδ(x1)) ≥ 1 −
(
1 − δ2

) n
2

P([x3 ∈ Eδ(x2)]&[x3 ∈ Eδ(x1)]) ≥ 1 − 2
(
1 − δ2

) n
2

P([x4 ∈ Eδ(x3)]&[x4 ∈ Eδ(x2)]&[x4 ∈ Eδ(x1)]) ≥ 1 − 3
(
1 − δ2

) n
2

· · ·
P([xk ∈ Eδ(xk−1)]& · · ·&[xk ∈ Eδ(x1)]) ≥ 1 − (k − 1)

(
1 − δ2

) n
2
.

(39)

The fact that xi ∈ Eδ(x j ) combined with the condition that ‖xi‖ ≥ r , ‖x j‖ ≥ r
imply:

| cos( � (xi , x j ))| ≤ δ

r
.

Finally, given that x1, . . . , xk are drawn independently and that the distribution is
rotationally invariant, the probability that all vectors in Y are pair-wise orthogonal is
the product of all probabilities in the left-hand side of (39). Thus the statement follows.

��
Lemma 4 Let Y = {x1, . . . , xm} be a finite set from Bn(1). Let ‖xi‖ ≥ 1 − ε,
ε ∈ (0, 1) for all xi ∈ Y , and β1, β2 ∈ R be such that the following condition holds:

β2(m − 1) ≤
∑

j∈{1,...,m}, j �=i

〈xi , x j 〉 ≤ β1(m − 1) for all i = 1, . . . ,m. (40)
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Consider

�(x) =
〈

ȳ
‖ ȳ‖ , x

〉

− 1√
m

(
(1 − ε)2 + β2(m − 1)√

1 + (m − 1)β1

)

, ȳ = 1

m

m∑

i=1

xi ,

and suppose that parameters β1, β2 satisfy:

(1 − ε)2 + β2(m − 1) > 0, 1 + (m − 1)β1 > 0.

Then
�(xi ) ≥ 0 for all xi ∈ Y . (41)

Proof of Lemma 4 Consider the set Y . According to the lemma assumptions, ‖xi‖ ≥
1 − ε for some given ε ∈ (0, 1) and all i = 1, . . . ,m. Consider now the mean vector
ȳ

ȳ = 1

m

m∑

i=1

xi ,

and evaluate the following inner products

〈
ȳ

‖ ȳ‖ , xi

〉

= 1

m‖ ȳ‖

⎛

⎝‖xi‖2 +
∑

j∈{1,...,m}, j �=i

〈xi , x j 〉
⎞

⎠ , i = 1, . . . ,m.

According to assumption (40), the following holds

〈
ȳ

‖ ȳ‖ , xi

〉

≥ 1

m‖ ȳ‖
(
(1 − ε)2 + β2(m − 1)

)
,

and, respectively,

1

m
(1 + (m − 1)β1) ≥ 〈 ȳ, ȳ〉 = ‖ ȳ‖2 ≥ 1

m

(
(1 − ε)2 + β2(m − 1)

)

Let (1− ε)2 + β2(m − 1) > 0 and 1+ β1(m − 1) > 0. It is clear that for �, as defined
by (41), the following holds for all i = 1, . . . ,m: �(xi ) ≥ 0. ��

References

Andersen P,Morris R, Amaral D, Bliss T, O’Keefe J (eds) (2007) The hippocampus book. OxfordUniversity
Press, Oxford

Amaral DG, Witter MP (1989) The three-dimensional organization of the hippocampal formation: a review
of anatomical data. Neuroscience 31:571–591

Amit DJ, Gutfreund H, Sompolinsky H (1985) Storing infinite numbers of patterns in a spin-glass model
of neural networks. Phys Rev Lett 55:1530–1533

123



I. Tyukin et al.

Barrett Lisa Feldman, Tugade Michele M, Engle Randall W (2004) Individual differences in working
memory capacity and dual-process theories of the mind. Psychol Bull 130(4):553

Benito N, Fernandez-Ruiz A,MakarovVA,Makarova J, KorovaichukA, Herreras O (2014) Spatial modules
of coherent activity in pathway-specific lfps in the hippocampus reflect topology and different modes
of presynaptic synchronization. Cereb Cortex 11(7):1738–1752

Benito N, Martin-Vazquez G, Makarova J, Makarov VA, Herreras O (2016) The right hippocampus leads
the bilateral integration of gamma-parsed lateralized information. eLife 5:e16658. https://doi.org/10.
7554/eLife.16658

Calvo C, Villacorta-Atienza JA, Mironov VI, Gallego V, Makarov VA (2016) Waves in isotropic totalistic
cellular automata: application to real-time robot navigation. Adv Complex Syst 19(4):1650012–18

Clark DD, Sokoloff L (1999) Circulation and energy metabolism of the brain. In: Siegel GJ, Agranoff
BW, Albers RW, Fisher SK, Uhler MD (eds) Basic neurochemistry: molecular. Cellular and medical
aspects. Lippincott, Philadelphia, pp 637–670

Cucker F, Smale S (2002) On the mathematical foundations of learning. Bull Am Math Soc 39(1):1–49
Draelos TJ, Miner NE, Lamb CC, Vineyard CM, Carlson KD, James CD, Aimone JB (2016) Neurogenesis

deep learning. arXiv preprint arXiv:1612.03770
Fernandez-Ruiz A, Makarov VA, Herreras O (2012) Sustained increase of spontaneous input and spike

transfer in the ca3-ca1 pathway following long term potentiation in vivo. Front Neural Circuits 6:71
Finnerty CT, Jefferys JGR (1993) Functional connectivity from ca3 to the ipsilateral and contralateral ca1

in the rat dorsal hippocampus. Neuroscience 56(1):101
Fontaine B, Peña JL, Brette R (2014) Spike-threshold adaptation predicted bymembrane potential dynamics

in vivo. PLoS Comput Biol 10(4):e1003560
Gorban AN, Tyukin IY, Romanenko I (2016) The blessing of dimensionality: Separation theorems in the

thermodynamic limit. IFAC-PapersOnLine 49(24):64–69, 2016. 2th IFAC Workshop on Thermody-
namic Foundations for a Mathematical Systems Theory TFMST 2016

Gorban AN, Tyukin IY (2018) Blessing of dimensionality: mathematical foundations of the statistical
physics of data. Phiolosphical Trans R Soc A. https://doi.org/10.1098/rsta.2017.0237

Gorban AN, Tyukin IY (2017) Stochastic separation theorems. Neural Netw 94:255–259
Gorban AN, Tyukin IYu, Prokhorov DV, Sofeikov KI (2016) Approximation with random bases: pro et

contra. Inf Sci 364–365:129–145
Gorban AN, Tyukina TA, Smirnova EV, Pokidysheva LI (2016) Evolution of adaptation mechanisms:

adaptation energy, stress, and oscillating death. J Theor Biol 405:127–139
Hecht-Nielsen R (1994) Context vectors: general-purpose approximate meaning representations self-

organized from raw data. In: Zurada J, Marks R, Robinson C (eds) Computational intelligence:
imitating life. IEEE Press, London

Herculano-Houzel S (2009) The human brain in numbers: a linearly scaled-up primate brain. Front Hum
Neurosci 3:31

Herculano-Houzel S (2011) Gorilla and orangutan brains conform to the primate cellular scaling rules:
implications for human evolution. Brain Behav Evol 77:33–44

Herculano-Houzel S (2012) The remarkable, yet not extraordinary, human brain as a scaled-up primate
brain and its associated cost. Proc Nat Acad Sci 109:10661–10668

Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities.
Proc Nat Acad Sci 79(8):2554–2558

Ishizuka N, Weber J, Amaral DG (1990) Organization of intrahippocampal projections riginating from ca3
pyramidal cells in the rat. J Comp Neurol 295(580–623):580

Ison MJ, Quiroga R Quian, Fried I (2015) Rapid encoding of new memories by individual neurons in the
human brain. Neuron 87(1):220–230

Jurica P, Gepshtein S, Tyukin I, van Leeuwen C (2013) Sensory optimization by stochastic tuning. Psychol
Rev 120(4):798–816

Kainen PC, Kurkova V (1993) Quasiorthogonal dimension of euclidian spaces. Appl Math Lett 6(3):7–10
Khalil H (2002) Nonlinear systems, 3rd edn. Prentice Hall, Upper Saddle River
Leung Chi-Sing, Chan Lai-Wan, Lai Edmund (1995) Stability, capacity, and statistical dynamics of second-

order bidirectional associative memory. IEEE Trans Syst Man Cybernet 25(10):1414–1424
Li XG, Somogyi P, Ylinen A, Buzsaki G (1994) The hippocampal ca3 network: an in vivo intracellular

labeling study. J Comp Neurol 339:181–208
Lindsay GW, Rigotti M, Warden MR, Miller EK, Fusi S (2017) Hebbian learning in a random network

captures selectivity properties of prefrontal cortex. bioRxiv, p 133025

123

https://doi.org/10.7554/eLife.16658
https://doi.org/10.7554/eLife.16658
http://arxiv.org/abs/1612.03770
https://doi.org/10.1098/rsta.2017.0237


High-Dimensional Brain: A Tool for. . .

Lobov SA, Zhuravlev MO, Makarov VA, Kazantsev VB (2017) Noise enhanced signaling in stdp driven
spiking-neuron network. Math Model Nat Phenom 12(4):109–124

Markram H, Lubke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of
postsynaptic aps and epsps. Science 275(5297):213–215

Oja E (1982) A simplified neuron model as a principal component analyzer. J Mathe Biol 15:267–273
Perlovsky LI (2006) Toward physics of the mind: concepts, emotions, consciousness, and symbols. Phys

Life Rev 3(1):23–55
Platek M, Keenan JP, Shackelford T K (2007) Evolutionary cognitive neuroscience. MIT Press, Cambridge
Quiroga R Quian (2012) Concept cells: the building blocks of declarative memory functions. Nat Rev

Neurosci 13(8):587–597
Quiroga R Quian, Reddy L, Kreiman G, Koch C, Fried I (2005) Invariant visual representation by single

neurons in the human brain. Nature 435(7045):1102–1107
ReimannMW,NolteM, ScolamieroM, Turner K, Perin R, Chindemi G, Dlotko P, Levi R, Hess K,Markram

H (2017) Cliques of neurons bound into cavities provide amissing link between structure and function.
Front Comput Neurosci 11:48

Roberts A, Conte D, Hull M, Merrison-Hort R, al Azad AK, Buhl E, Borisyuk R, Soffe SR (2014) Can
simple rules control development of a pioneer vertebrate neuronal network generating behavior? J
Neurosci 34(2):608–621

Rosenblatt F (1962) Principles of neurodynamics: perceptrons and the theory of brain mechanisms. Spartan
Books, Sparta

Sherwood CC, Bauernfeind AL, Bianchi S, Raghanti MA, Hof PR (2012) Human brain evolution writ large
and small. Prog Brain Res 195:237–254

Sousa AM, Meyer KA, Santpere G, Gulden FO, Sestan N (2017) Evolution of the human nervous system
function, structure, and development. Cell 170(2):226–247

Tyukin IY, GorbanAN, SofeikovK, Romanenko I (2017) Knowledge transfer between artificial intelligence
systems. arXiv preprint arXiv:1709.01547

Vapnik V, Chapelle O (2000) Bounds on error expectation for support vector machines. Neural Comput
12(9):2013–2036

Villacorta-Atienza JA,MakarovVA (2013) Neural network architecture for cognitive navigation in dynamic
environments. IEEE Trans Neural Netw Learn Syst 24(12):2075–2087

Villacorta-Atienza JA, Calvo C, Makarov VA (2015) Prediction-for-compaction: navigation in social envi-
ronments using generalized cognitive maps. Biol Cybernet 109(3):307–320

Villacorta-Atienza JA, Calvo C, Lobov S, Makarov VA (2017) Limbmovement in dynamic situations based
on generalized cognitive maps. Math Model Nat Phenom 12(4):15–29

Viskontas IV, Quiroga R Quian, Fried I (2009) Human medial temporal lobe neurons respond preferentially
to personally relevant images. Proc Nat Acad Sci 106(50):21329–21334

Wittner L, Henze DA, Zaborszky L, Buzsaki G (2007) Three-dimensional reconstruction of the axon arbor
of a ca3 pyramidal cell recorded and filled in vivo. Brain Struct Funct 212(1):75–83

123

http://arxiv.org/abs/1709.01547

	High-Dimensional Brain: A Tool for Encoding and Rapid Learning of Memories by Single Neurons
	Abstract
	1 Introduction
	2 Fundamental Problems of Encoding Memories
	3 Formal Statement of the Problem
	3.1 Information Content and Classes of Stimuli
	3.2 Neuronal Model
	3.3 Synaptic Plasticity

	4 Formation of Memories in High Dimensions
	4.1 Extreme Selectivity of a Single Neuron to Single Stimuli
	4.2 Extreme Selectivity of a Single Neuron and Ensemble Memory Capacity
	4.3 Selectivity of a Single Neuron to Multiple Stimuli
	4.4 Dynamic Memory: Learning New Information Items by Association

	5 Discussion
	6 Conclusion
	Acknowledgements
	A Dynamics of Coupling Weights
	B Proof of Theorem 1
	C Proof of Corollary 1
	D Proof of Theorem 2
	E Proof of Theorem 3
	F Auxiliary Results
	References




