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a b s t r a c t 

This paper presents a new approach for constructing simple and computationally efficient 

improvements of generic Artificial Intelligence (AI) systems, including Multilayer and Deep 

Learning neural networks. The improvements are small network ensembles added to the 

existing AI architectures. Theoretical foundations of the approach are based on stochastic 

separation theorems and the ideas of the concentration of measure. We show that, subject 

to mild technical assumptions on statistical properties of internal signals in the original AI 

system, the approach enables fast removal of the AI’s errors with probability close to one 

on the datasets which may be exponentially large in dimension. The approach is illustrated 

with numerical examples and a case study of digits recognition in American Sign Language. 

© 2019 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

1. Introduction 

Artificial Intelligence (AI) systems have risen dramatically from being the subject of niche academic and practical inter-

ests to a commonly accepted and widely-spread facet of modern life. Industrial giants such as Google, Amazon, IBM, and

Microsoft offer a broad range of AI-based services, including intelligent image and sound processing and recognition. 

Deep Learning and related computational technologies [8,27] are currently perceived as state-of-the art tools for pro-

ducing various AI systems. In visual recognition tasks, these systems deliver unprecedented accuracy [40] at reasonable

computational costs [29] . Despite these advances, several fundamental challenges hinder further progress of these technolo-

gies. 

All data-driven AI systems make mistakes, regardless of how well an AI system is trained. Some examples of these have

already received global public attention [6,15] . Mistakes may arise due to uncertainty in empirical data, data misrepresenta-
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tion, and imprecise or inaccurate training. Conventional approaches to reducing spurious errors include altering training data

and improving design procedures [33,35,37,49] , transfer learning [10,36,48] and privileged learning [44] . These approaches

invoke extensive training procedures. The training itself, whilst eradicating some errors, may introduce new errors by the

very nature of the steps involved (e.g. randomized sampling of mini-batches, randomized training sets etc). 

In this work, we propose a training approach and a technology whereby errors of the original legacy AI are removed, with

high probability, via incorporation of small neuronal ensembles and their cascades into the original AI’s decision-making. En-

sembles methods and classifiers’ cascades (see e.g. [16,17,38,45] and references therein) constitute a well-known framework

for improving performance of classifiers. Here we demonstrate that geometry of high-dimensional spaces, in agreement

with “blessing of dimensionality” [12,21,31] enables efficient construction of AI error correctors and their ensembles with

guaranteed performance bounds. 

The technology bears similarity with neurogenesis deep learning [13] , classical cascade correlation [14] , greedy approx-

imation [5] , and randomized methods for training neural networks [41] , including deep stochastic configuration networks

[46,47] . The proposed technology, however, does not require computationally expensive training or pre-conditioning, and in

some instances can be set up as a non-iterative procedure. In the latter case the technology’s computational complexity

scales at most linearly with the size of the training set. 

At the core of the technology is the concentration of measure phenomenon [18,19,24,25,34] , a view on the problem of

learning in AI systems that is stemming from conventional probabilistic settings [11,43] , and stochastic separation theorems

[20,21,23] . Main building blocks of the technology are simple threshold, perceptron-type [39] classifiers. The original AI

system, however, needs not be a classifier itself. We show that, subject to mild assumptions on statistical properties of

signals in the original AI system, small neuronal ensembles consisting of cascades of simple linear classifiers are an efficient

tool for learning away spurious and systematic errors. These cascades can be used for learning new tasks too. 

The paper is organized as follows: Section 2 contains a formal statement of the problem, Section 3 presents main re-

sults: namely, the algorithms for constructing correcting ensembles ( Section 3.2 ) preceded by their mathematical justifi-

cation ( Section 3.1 ). Section 4 presents a case study on American Sign Language recognition illustrating the concept, and

Section 5 concludes the paper. Proofs of theorems and other statements as well as additional technical results are provided

in Appendix A and Appendix B . 

Notation 

The following notational agreements are used throughout the paper: 

• R denotes the field of real numbers; 

• N is the set of natural numbers; 

• R 

n stands for the n -dimensional real space; unless stated otherwise symbol n is reserved to denote dimension of the

underlying linear space; 

• Let x , y be elements of R 

n , then 〈 x , y 〉 = 

∑ n 
i =1 x i y i is their inner product; 

• Let x ∈ R 

n , then ‖ x ‖ is the Euclidean norm of x : ‖ x ‖ = 

√ 〈 x , x 〉 ; 
• B n ( R ) denotes a n -ball of radius R centered at 0: B n (R ) = { x ∈ R 

n | ‖ x ‖ ≤ R } ; 
• If S is a finite set then |S| stands for its cardinality; 

• V(�) is the Lebesgue volume of � ⊂ R 

n ; 

• If X is a random variable then E [ X ] is its expected value. 

2. Problem statement 

In what follows we suppose that an AI system is an operator mapping elements of its input set, U , to the set of outputs,

Q . Examples of inputs u ∈ U are images, temporal or spatiotemporal signals, and the outputs q ∈ Q correspond to labels,

classes, or some quantitative characteristics of the inputs. Inputs u , outputs q , and internal variables z ∈ Z of the system

represent the system’s state. The state itself may not be available for observation but some of its variables or relations may

be accessed. In other words, we assume that there is a process which assigns an element of x ∈ R 

n to the triple ( u , z , q ). A

diagram illustrating the setup for a generic AI system is shown in Fig. 1 . 

In addition to the core AI system we consider an add-on ensemble mapping samples x into auxiliary signals s ∈ S (shown

as improvement signals in Fig. 1 ) which are then used to improve performance of the original core AI. An example of such

an improvement signal could be an indication that the current state of the core AI system represented by x corresponds to

an erroneous decision of the core AI. At the integration stage, this information will alter the overall response. 

With regards to the operations f i performed at the individual nodes (circles in the diagram on Fig. 1 ), we will focus on

the following relevant class 

f i ( x ) = f ( 〈 w i , x 〉 − c i ) , (1)

where the function f : R → R is piece-wise continuous, w i ∈ R 

n , and c i ∈ R . This class of functions is broad enough to enable

the ensemble to function as a universal approximation device (e.g. by choosing the function f in the class satisfying condi-

tions discussed in [5] ) as well as to fit into a wide range of common AI architectures including decision trees, multilayer
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Fig. 1. Functional diagram of correcting neuronal ensembles for a generic Artificial Intelligence system. 

 

 

 

 

 

 

 

 

 

 

 

 

neural networks and perceptions, and deep learning convolutional neuronal networks. Additional insight into “isolation”

properties of elements (1) in comparison with more natural choices such as e.g. ellipsoids or balls (cf. [1] ) is provided in

Appendix B . 

Over a relevant period of time, the AI system generates a finite but large set of measurements x i . This set is assessed by

an external supervisor and is partitioned into the union of the sets M and Y: 

M = { x 1 , . . . , x M 

} , Y = { x M+1 , . . . , x M+ k } . 
The set M may contain measurements corresponding to expected operation of the AI, whereas elements from Y consti-

tute core AI’s performance singularities. These singularities may be both desired (related e.g. to “important” inputs u ) and

undesired (related e.g. to errors of the AI). The function of the ensemble is to respond to these singularities selectively by

producing improvement signals s in response to elements from the set Y . 

A straightforward approach to derive such ensembles is to use standard optimization facilities such as e.g. error back-

propagation and its various modifications, or use other iterative procedures similar to greedy approximation [5] , stochastic

configuration networks [47] (cf. [13] ). This approach, however, requires computational resources and time that may not nec-

essarily be available. Even in the simplest case of a single-element add-on system that is to separate the entire set X from

Y, determining the best possible solution, in the form of e.g. support vector machines [43] , is non-trivial computation-

ally. Indeed, theoretical worst-case estimates of computational complexity for determining parameters of the single-element

system are of the order O ((M + k ) 3 ) [9] . 

The question, therefore is: if there exists a computationally efficient procedure for determining ensembles or add-on

networks such that 

1) They are able to “improve” performance of a generic AI system with guaranteed probability, and 

2) They consist of elements (1) ? 

Preferably, computational complexity of the procedure is to be linear or even sub-linear in M + k . 
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In the next sections we show that, subject to some mild technical assumptions on the way the sets M and Y are gener-

ated, a family of simple algorithms with the required characteristics can indeed be derived. These algorithms are motivated

by Stochastic Separation Theorems [20,21,23] . For consistency, adapted version of these theorems are presented and dis-

cussed in Section 3.1 . The algorithms themselves are presented and discussed in Section 3.2 . 

3. Main results 

3.1. Mathematical preliminaries 

Following standard assumptions (see e.g. [11,43] ), we suppose that all x are generated in accordance with some distri-

bution, and the actual measurements x i are samples from this distribution. For simplicity, we adopt a traditional setting

in which all such samples be identically and independently distributed (i.i.d.) [11] . With regards to the elements of x i , the

following technical condition is assumed: 

Assumption 1. Elements x i are random i.i.d. vectors drawn from a product measure distribution: 

A1) their x ij th components are independent and bounded random variables X j : −1 ≤ X j ≤ 1 , j = 1 , . . . , n, 

A2) E[ X j ] = 0 , and E[ X 2 
j 

] = σ 2 
j 

. 

The distribution itself, however, is supposed to be unknown. Let 

R 

2 
0 = 

n ∑ 

i =1 

σ 2 
i > 0 . 

Then the following result holds (cf. [20] ). 

Theorem 1. Let x i ∈ M ∪ Y be i.i.d. random points from the product distribution satisfying Assumption 1 , 0 < δ < 1, 0 < ε < 1 and

R 0 > 0 . Then 

1) for any i , 

P 

(
1 − ε ≤ ‖ x i ‖ 

2 

R 

2 
0 

≤ 1 + ε 

)
≥ 1 − 2 exp 

(
−2 R 

4 
0 ε 

2 

n 

)
;

P 

(‖ x i ‖ 

2 

R 

2 
0 

≥ 1 − ε 

)
≥ 1 − exp 

(
−2 R 

4 
0 ε 

2 

n 

)
;

(2)

2) for any i, j , i � = j , 

P 

(〈 
x i 
R 0 

, 
x j 

R 0 

〉 
< δ

)
≥ 1 − exp 

(
−R 

4 
0 δ

2 

2 n 

)
;

P 

(〈 
x i 
R 0 

, 
x j 

R 0 

〉 
> −δ

)
≥ 1 − exp 

(
−R 

4 
0 δ

2 

2 n 

)
;

(3)

3) for any given y ∈ [ −1 , 1] n and any i 

P 

(〈 
x i 
R 0 

, 
y 

R 0 

〉 
< δ

)
≥ 1 − exp 

(
−R 

4 
0 δ

2 

2 n 

)
. (4)

Proof of Theorem 1 as well as those of other technical statements are provided in Appendix A . 

Remark 1. Notice that if σ 2 
i 

> 0 then R 2 
0 

> n min i { σ 2 
i 
} . Hence the r.h.s. of (2) –(4) become exponentially close to 1 for n large

enough. 

The following Theorem is now immediate. 

Theorem 2 (1-Element separation) . Let elements of the set M ∪ Y be i.i.d. random points from the product distribution satisfying

Assumption 1 , 0 < ε < 1, and R 0 > 0 . Consider x M+1 ∈ Y and let 

� 1 ( x ) = 

〈 
x 

R 0 

, 
x M+1 

R 0 

〉 
, h 1 ( x ) = � 1 ( x ) − 1 + ε. (5)

Then 

P ( h 1 ( x M+1 ) ≥ 0 and h 1 ( x i ) < 0 for all x i ∈ M ) 

≥ 1 − exp 

(
−2 R 

4 
0 ε 

2 

n 

)
− M exp 

(
−R 

4 
0 (1 − ε) 2 

2 n 

)
. (6)
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(The proof is provided in Appendix A .) 

Remark 2. Theorem 2 not only establishes the fact that the set M can be separated away from Y by a linear functional

with reasonably high probability. It also specifies the separating hyperplane, (5) , and provides an estimate from below of

the probability of such an event, (6) . The estimate, as a function of n , approaches 1 exponentially fast. Note that the result

is intrinsically related to the work [32] on quasiorthogonal dimension of Euclidian spaces. 

Let us now move to the case when the set Y contains more than one element. Theorem 3 below summarizes the result.

Theorem 3 ( k -Element separation. Case 1) . Let elements of the set M ∪ Y be i.i.d. random points from the product distribution

satisfying Assumption 1 , and R 0 > 0 . Let, additionally, 〈 
x i 
R 0 

, 
x j 

R 0 

〉 
≥ β (7) 

for all x i , x j ∈ Y, x i � = x j . Pick 

0 < ε < 1 , 1 − ε + β(k − 1) > 0 , 

and consider 

� k ( x ) = 

〈
x 

R 0 

, 
x 

R 0 

〉
, x = 

1 

k 

k ∑ 

i =1 

x M+ i , 

h k ( x ) = � k ( x ) −
1 − ε + β(k − 1) 

k 
. 

(8) 

Then 

P 
(
h k ( x j ) ≥ 0 & h k ( x i ) < 0 for all x i ∈ M , x j ∈ Y 

)
≥ 1 − k exp 

(
−2 R 

4 
0 ε 

2 

n 

)
− M exp 

(
−R 

4 
0 (1 − ε + β(k − 1)) 2 

2 k 2 n 

)
. 

(9) 

(The proof is provided in Appendix A .) 

The value of β in estimate (7) may not necessarily be available a-priori. If this is the case then the following corollaries

from Theorems 2 and 3 may be invoked. 

Corollary 1 ( k -Element separation. Case 1) . Let elements of the set M ∪ Y be i.i.d. random points from the product distribution

satisfying Assumption 1 , and R 0 > 0 . Pick 

0 < δ, 0 < ε < 1 , 1 − ε − δ(k − 1) > 0 , 

and let 

� k ( x ) = 

〈
x 

R 0 

, 
x 

R 0 

〉
, x = 

1 

k 

k ∑ 

i =1 

x M+ i , 

h k ( x ) = � k ( x ) −
1 − ε − δ(k − 1) 

k 
. 

(10) 

Then 

P (h k ( x j ) ≥ 0 & h k ( x i ) < 0 for all x i ∈ M , x j ∈ Y) 

≥ 1 − k exp 

(
−2 R 

4 
0 ε 

2 

n 

)
− k (k − 1) 

2 

exp 

(
−R 

4 
0 δ

2 

2 n 

)

− M exp 

(
−R 

4 
0 (1 − ε − δ(k − 1)) 2 

2 k 2 n 

)
. 

(11) 

Corollary 2 ( k -Element separation. Case 2) . Let elements of the set M ∪ Y be i.i.d. random points from the product distribution

satisfying Assumption 1 , 0 < ε < 1, 0 < μ < 1 − ε and R 0 > 0 . Pick x j ∈ Y and consider 

� k ( x ) = 

〈 
x 

R 0 

, 
x j 

R 0 

〉 
, h k ( x ) = � k ( x ) − 1 + ε + μ, 

� = 

{ 

x ∈ R 

n 

∣∣∣〈 x j 
R 0 

, 
x j − x 

R 0 

〉 
≤ μ

} 

(12) 

Then 
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Fig. 2. The probability (frequency) that an element of the set M (formed by random i.i.d. vectors drawn from the n-cube [ −1 , 1] n ) is separable from 

the rest by hyperplanes (5) (and their variants) as a function of n ; M = |M| = 10 4 . Red stars correspond to empirical frequencies of the events A i : 〈 x i , 
x j 〉 < ‖ x i ‖ 2 for all x j ∈ M , x i � = x j . Blue circles show frequencies of the events B i : ‖ x i ‖ 2 /R 2 0 ≥ 1 − ε and 〈 x i /R 0 , x j /R 0 〉 < 1 − ε for all x j ∈ M , x i � = x j , ε = 0 . 2 . 

Black squares show the right-hand side of (14) for the same value of ε = 0 . 2 . (For interpretation of the references to color in this figure legend, the reader 

is referred to the web version of this article.) 

 

 

 

 

 

 

P (h k ( x ) ≥ 0 and h k ( x i ) < 0 for all x i ∈ M , x ∈ �) 

≥ 1 − k exp 

(
−2 R 

4 
0 ε 

2 

n 

)
− M exp 

(
−R 

4 
0 (1 − ε − μ) 2 

2 n 

)
. (13)

Proofs of the corollaries are provided in Appendix A . 

Theorems 1 –3 and Corollaries 1, 2 suggest that simple elements (1) with f being mere threshold elements 

f (s ) = Step (s ) = 

{
1 , s ≥ 0 

0 , s < 0 

, 

posses remarkable selectivity. For example, according to Theorem 2 , the element 

f ( 〈 x , w 〉 − c ) , w = 

x M+1 

R 

2 
0 

, c = 

‖ x M+1 ‖ 

2 

R 

2 
0 

assigns “1” to x M+1 and “0” to all x i ∈ M with probability that is exponentially (in n ) close to 1. To illustrate this point,

consider a simple test case with a set comprising of 10 4 i.i.d. samples from the (uniform) product distribution in [ −1 , 1] n .

For this distribution, R 0 = 

√ 

n/ 3 , |M| = M = 9999 , and estimate (6) becomes: 

P (h 1 ( x M+1 ) ≥ 0 and h 1 ( x i ) < 0 for all x i ∈ M ) 

≥ 1 − exp 

(
−2 

9 

nε 2 
)

− M exp 

(
− 1 

18 

n (1 − ε) 2 
)
. 

(14)

The right-hand side rapidly approaches 1 as n grows. The estimate, however, could be rather conservative as is illustrated

with Fig. 2 . 

A somewhat more relaxed approach could be to allow a small margin of error by determining a hyperplane separating

the set Y from “nearly all” elements x ∈ M . An estimate of success for the latter case follows from Lemma 1 below 

Lemma 1. Let elements of the set M be i.i.d. random points, and let 

� ( x ) = 〈 x , w 〉 , h ( x ) = � ( x ) − c 

and 0 ≤ p ∗ ≤ 1 be such that 

P ( h ( x i ) ≥ 0 ) ≤ p ∗

for an arbitrary element x i ∈ M . Then 

P (h ( x ) ≥ 0 for at most m elements x ∈ M ) 

≥ (1 − p ∗) M exp 

(
(M − m + 1) p ∗

1 − p ∗

)(
1 − 1 

m ! 

(
(M − m + 1) p ∗

(1 − p ∗) 

)m 

)
. 
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Fig. 3. Probability estimates (14) (black squares) and (15) (magenta triangles) as functions of n for the set M formed by random i.i.d. vectors drawn from 

the n-cube [ −1 , 1] n and ε = 0 . 2 . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

(The proof is provided in Appendix A .) 

According to Lemma 1 and Theorem 1 , 

P (h 1 ( x M+1 ) ≥ 0 and h 1 ( x i ) ≥ 0 for at most n x i ∈ M ) 

≥ (1 − p ∗) M exp 

(
(M − n + 1) p ∗

1 − p ∗

)(
1 − 1 

n ! 

(
(M − n + 1) p ∗

(1 − p ∗) 

)n )

− exp 

(
−2 R 

4 
0 ε 

2 

n 

)
, p ∗ = exp 

(
−R 

4 
0 (1 − ε) 2 

2 n 

)
. 

(15) 

Observe, however, that n + 1 random points (in general position) are linearly separable with probability 1. Thus, with proba-

bility 1, spurious n points can be separated away from x M+1 by a second hyperplane. Fig. 3 compares separation probability

estimate for such a pair with that of for h 1 ( Theorem 2 , (6) ). 

3.2. Fast AI up-training algorithms 

Theorem 3 as well as Corollaries 1,2 and Lemma 1 motivate a simple computational framework for construction of net-

works and cascades of elements (1) . Following the setup presented in Section 2 , recall that the data is sampled from the

core AI system and is partitioned into the sets M and Y . The latter set Y corresponds to singular events which are to be

picked by the cascade. Their union, S = M ∪ Y, is the entire data that is available for the cascade construction. 

We are now ready to proceed with the algorithms for fast construction of the correcting ensembles. The first algorithm

is a recursion of which each iteration is a multi-step process. The algorithm is provided below. 

Algorithm 1 (Correcting Ensembles) . Initialization: set M 

1 = M , Y 

1 = Y, and S 1 = S, define a list or a model of correcting

actions – formalized alternations of the core AI in response to an error/error type. 

Input to the ith iteration: Sets M 

i , Y 

i , and S i = M 

i ∪ Y 

i ; the number of clusters, p , and the value of filtering threshold, θ .

1. Centering . All current data available is centered. The centered sets are denoted as S i c and Y 

i 
c and are formed by subtracting

the mean x (S i ) from the elements of S i and Y 

i , respectively: 

S i c = { x ∈ R 

n | x = ξ − x (S i ) , ξ ∈ S i } 

Y 

i 
c = { x ∈ R 

n | x = ξ − x (S i ) , ξ ∈ Y 

i } . 
2. Regularization . The covariance matrix, Cov (S i ) , of S i is calculated along with the corresponding eigenvalues and eigen-

vectors. New regularized sets S r , Y r are produced as follows. All eigenvectors h 1 , h 2 , . . . , h m 

that correspond to the

eigenvalues λ1 , λ2 , . . . , λm 

which are above a given threshold are combined into a single matrix H = (h 1 | h 2 | · · · | h m 

) .

The threshold could be chosen on the basis of the Kaiser–Guttman test [30] or otherwise (e.g. by keeping the ratio of

the maximal to the minimal in the set of retained eigenvalues within a given bound). The new sets are defined as: 

S i r = { x ∈ R 

m | x = H 

T ξ , ξ ∈ S i c } 
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Y 

i 
r = { x ∈ R 

m | x = H 

T ξ , ξ ∈ Y 

i 
c } . 

3. Whitening . The two sets then undergo a whitening coordinate transformation ensuring that the covariance matrix of the

transformed data is the identity matrix: 

S i w 

= { x ∈ R 

m | x = W ξ , ξ ∈ S i r , W = Cov (S i r ) −
1 
2 } 

Y 

i 
w 

= { x ∈ R 

m | x = W ξ , ξ ∈ Y 

i 
r , W = Cov (S i r ) −

1 
2 } . 

4. Projection (optional) . Project elements of S i w 

, Y 

i 
w 

onto the unit sphere by scaling them to the unit length: x 
→
ϕ ( x ) , ϕ ( x ) = x / ‖ x ‖ . 

5. Training: Clustering. The set Y 

i 
w 

(the set of errors) is then partitioned into p clusters Y 

i 
w, 1 

, . . . , Y 

i 
w,p that’s elements are

pairwise positively correlated. 

6. Training: Nodes creation and aggregation. For each Y 

i 
w, j 

, j = 1 , . . . , p and its complement S i w 

\ Y 

i 
w , j 

we construct the fol-

lowing separating hyperplanes: 

h j ( x ) = � j ( x ) − c j , 

� j ( x ) = 

〈
w j 

‖ w j ‖ 

, x 

〉
, c j = min ξ∈Y i 

w , j 

〈
w j 

‖ w j ‖ 

, ξ

〉
w j = ( Cov (S i w 

\ Y 

i 
w , j 

) + Cov (Y 

i 
w , j 

)) −1 ( x (Y 

i 
w , j 

) − x (S i w 

\ Y 

i 
w , j 

)) . 

Retain only those hyperplanes for which c j > θ . For each retained hyperplane, create a corresponding element (1) 

f j ( x ) = f 

(〈
W H 

T ( x − x (S i )) , 
w j 

‖ w j ‖ 

〉
− c j 

)
, (16)

with f being a function that satisfies: f ( s ) > 0 for all s ≥ 0 and f ( s ) ≤ 0 for all s < 0, and add it to the ensemble. If

optional step 4 was used then the functional definition of f j becomes: 

f j ( x ) = f 

(〈
ϕ 

(
W H 

T ( x − x (S i )) 
)
, 

w j 

‖ w j ‖ 

〉
− c j 

)
, (17)

where ϕ is the mapping implementing projection onto the unit sphere. 

7. Integration/Deployment. Any x that is generated by the original core AI is put through the ensemble of f j ( ·). If for some

x any of the values of f j ( x ) > 0 then a correcting action is performed on the core AI. The action is dependent on

the purpose of correction as well as on the problem at hand. It could include label swapping, signalling an alarm,

ignoring/not reporting etc. The combined system becomes new core AI. 

8. Testing. Assess performance of new core AI on a relevant data set. If needed, generate new sets M 

i +1 , Y 

i +1 , S i +1 (with

possibly different error types and definitions), and repeat the procedure. 

Steps 1–3 of the algorithm are standard pre-processing routines. In the context of Theorems 1 –3 , step 1 aims to ensure

that the first part of A2) in Assumption 1 holds, and step 2, in addition to regularization, results in that all components of x i
are uncorrelated (a necessary condition for part A1) of Assumption 1 to hold). Whitening transformation, step 3, normalizes

the data in the sense that σ 2 
i 

= 1 for all i relevant. Step 4 (optional) is introduced to account for data irregularities and

clustering that may negatively affect data separability. An illustration of potential utility of this step is shown in Fig. 4 . Note

that individual components of the data vectors may no longer satisfy the independence assumption. Nevertheless, if the

data is reasonably distributed, different versions of separation theorems may apply to this case too [21,23] . In Section 4 we

illustrate the effect of this step in an example application. 

Step 5, clustering, is motivated by Theorem 3 and Corollaries 1, 2 suggesting that the rate of success in isolating multiple

points from the background set M increases when these multiple points are positively correlated or are spatially close to

each other. 

Step 6 is a version of (8) , albeit with a different normalization and a slight perturbation of weights. The choice of this

particular normalization is motivated by the experiments shown in Fig. 2 . As for the choice of weights, these hyperplanes

are standard Fisher discriminants. Yet, they are not far from (8) . In view of the previous steps, Cov (S i w 

\ Y 

i 
w , j 

) + Cov (Y 

i 
w , j 

) is

diagonally dominated and close to the identity matrix. When |S i w 

| � |Y 

i 
w , j 

| , term x (S i w 

\ Y 

i 
w , j 

) is nearly zero, and hence w j

is approximately at the centroid of the cluster. Filtering of the nodes is necessitated by the concentration of measure effects

as exemplified by Theorem 1 . 

Functions f in step 7 can be implemented using a range of ReLU, threshold, tanh ( ·), sigmoidal functions etc.; these are

available in the majority of standard core AI systems. 

Computational complexity of each step in the recursion, except for step 5, is at most M + k . Complexity of the clustering

step may generally be superpolynomial (worst case) as is e.g. the case for standard k -means clustering [3] . If, however,
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Fig. 4. Linear separability via projection onto a sphere. Sets A (shown as a shaded gray domain) and B (depicted as a blue filled hexagon) are not lin- 

early separable in the original coordinates. Their projections onto the sphere, however, are separable (the separating hyperplane is shown in red). (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

sub-optimal solutions are accepted [26] then the complexity of this step scales linearly with M + k . Further speed-ups are

possible through randomized procedures such as e.g. in k -means ++ [2] . 

Algorithm 1 is based primarily on the intuition and rationale stemming from Theorems 2, 3 and their corollaries. It can

be modified to take advantage of the possibility offered by Lemma 1 and the subsequent discussion. The modification is

that each node added in step 6 is assessed and “corrected” by an additional hyperplane if required. The modified algorithm

is summarized as Algorithm 2 below. 

Algorithm 2 (With cascaded pairs) . Initialization: set M 

1 = M , Y 

1 = Y, and S 1 = S, define a list or a model of correcting

actions – formalized alternations of the core AI in response in response to an error/error type. 

Input to the ith iteration: Sets M 

i , Y 

i , and S i = M 

i ∪ Y 

i ; the number of clusters, p , and the value of filtering threshold, θ .

1–5. As in Algorithm 1 . 

6. Training: Nodes creation and aggregation. For each Y 

i 
w, j 

, j = 1 , . . . , p and its complement S i w 

\ Y 

i 
w , j 

construct the fol-

lowing separating hyperplanes: 

h j ( x ) = � j ( x ) − c j , 

� j ( x ) = 

〈
w j 

‖ w j ‖ 

, x 

〉
, c j = min ξ∈Y i 

w , j 

〈
w j 

‖ w j ‖ 

, ξ

〉
w j = ( Cov (S i w 

\ Y 

i 
w , j 

) + Cov (Y 

i 
w , j 

)) −1 ( x (Y 

i 
w , j 

) − x (S i w 

\ Y 

i 
w , j 

)) . 

Retain only those hyperplanes for which c j > θ . For each retained hyperplane, create a corresponding element f j ( ·) in
accordance to (16) or, if step 4 was used, then (17) . For each retained hyperplane, 

• determine the complementary set C j comprised of elements x ∈ S i w 

\ Y 

i 
w 

for which h j ( x ) ≥ 0 (the set of points that

are accidentally picked up by the f j “by mistake”) 

• project elements of the set C j ∪ Y 

i 
w , j 

orthogonally onto the hyperplane h j ( x ) = � j ( x ) − c j as 

x 
→ 

(
I − 1 

‖ w j ‖ 

2 
w j w 

T 
j 

)
x + c j 

w j 

‖ w j ‖ 

= P ( w j ) x + b( w j , c j ) ;

• determine a hyperplane 

h j, 2 ( x ) = � j, 2 ( x ) − c j, 2 , � j, 2 ( x ) = 〈 w j, 2 , x 〉;
separating projections of C j from that of Y 

i 
w , j 

so that h j ,2 ( x ) < 0 for all projections from C j and h j ,2 ( x ) ≥ 0 for all

projections from Y 

i 
w , j 

. If no such planes exist, use linear Fisher discriminant or any other relevant computational

procedure 

• create a node 

f ⊥ j ( x ) = f 
(〈

P ( w j ) W H 

T ( x − x (S i )) + b( w j , c j ) , w j, 2 

〉
− c j, 2 

)
or, in case step 4 was used 

⊥ (〈
T i 

〉 )

f j ( x ) = f P ( w j ) ϕ(W H ( x − x (S ))) + b( w j , c j ) , w j, 2 − c j, 2 ;
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Table 1 

Error types in the system. Stars mark instances/events that 

are not accounted for. 

Presence of System’s Error 

a gesture response Type 

Yes Correctly classified True Positive 

Incorrectly classified False Positive 

Not reported False Negative 

No Reported False Positive ∗

Not reported True Negative ∗

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• create the pair’s response node, f c 
j 
, so that a non-negative response is generated only when both nodes produce

a non-negative response 

f c 
j 
( x ) = f 

(
Step ( f j ( x )) + Step ( f ⊥ 

j 
( x )) − 2 

)
;

• add the combined f c 
j 
(·) to the ensemble. 

7. Integration/Deployment. Any x that is generated by the original core AI is put through the ensemble of f c 
j 
(·) . If for

some x any of the values of f c 
j 
( x ) > 0 then a correcting action is performed on the core AI. The action is dependent

on the purpose of correction as well as on the problem at hand. It could include label swapping, signalling an alarm,

ignoring/not reporting etc. The combined system becomes new core AI. 

8. Testing. Assess performance of new core AI on a relevant data set. If needed, generate new sets M 

i +1 , Y 

i +1 , S i +1 (with

possibly different error types and definitions), and repeat the procedure. 

In the next section we illustrate how the proposed algorithms work in a case study example involving a core AI in the

form of a reasonably large convolutional network trained on a moderate-size dataset. 

4. Distinguishing the ten digits in american sign language: a case study 

4.1. Setup and datasets 

In this case study we investigated and tested the approach on a challenging problem of gestures recognition in the

framework of distinguishing ten digits in American Sign Language. To apply the approach a core AI had to be generated

first. As our core AI we picked a version of Inception deep neural network model [42] whose architecture is shown in Fig. 5 .

The model was trained 

1 on ten sets of images that correspond to the American Sign Language pictures for 0–9 (see Fig. 6 ).

Each set contained 10 0 0 unique images consisting of profile shots of the persons hand, along with 3/4 profiles and shots

from above and below. 

The states x i are the vectors containing the values of pre-softmax layer bottlenecks of size n for however many neurons

are in the penultimate layer. Schematically the network’s layer whose outputs are x i is shown in the Diagram in Fig. 5 as

the fully connected (bottleneck layer) in Unit H. Elements of this set that gave incorrect readings are noted and copied into

the set Y . 

4.2. Experiments and results 

Once the network was trained, additional 10,0 0 0 images of the same ratio were evaluated using the trained system. For

these experiments the classification decision rule was to return a gesture number that corresponds to the network output

with the highest score (winner-takes-all) if the highest score exceeds a given threshold, γ ∈ [0, 1]. Ties are broken arbitrarily

at random. If the highest score is smaller than or equal to the threshold then no responses are returned. 

To assess performance of the resulting classifier, we used the following indicators as functions of threshold γ : 

True Positive Rate (γ ) = 

T P (γ ) 

F N(γ ) + T P (γ ) 
, 

Missclassification Rate (γ ) = 

F P (γ ) 

F P (0) 
, 

(18)

where TP ( γ ) is the number of true positives, FN ( γ ) is the number of false negatives, and FP ( γ ) is the number of false

positives. The definitions of these variables are provided in Table 1 . 

In our experiments we did not add any negatives to the test set, as the original focus was to illustrate how the approach

may cope with misclassification errors. This implies that the number of True Negatives is 0 for any threshold γ ∈ [0, 1] and,

consequently, the rate of false positives is always 1. Therefore, instead of using traditional ROC curves showing the rate of
1 https://www.tensorflow.org/tutorials/image _ retraining . 

https://www.tensorflow.org/tutorials/image_retraining
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Fig. 5. Architecture of the adopted Inception deep neural network model. (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 

Fig. 6. Examples of the sort of images that appear in the current model’s data set of the American Sign Language single hand positions for 0 (top left) to 

9 (bottom right). 

 

 

 

 

 

 

 

 

true positives against the rate of false positives, we employed a different family of curves in which the rate of false positives

is replaced with the rate of misclassification as defined by (18) . 

A corresponding performance curve for this Core AI system is shown in Fig. 7 . At γ = 0 the result was an 82.4% success

rate for the adapted algorithm. At this end of the curve, the observed performance was comparable/similar to that reported

in e.g. [7] (see also references therein). The numbers of errors per each gesture in the trained system are shown in Table 2 .

The variance of errors is mostly consistent among the ten classes with very few errors for the “0” gesture, likely due to its

unique shape among the classes. 

Once the errors were isolated, we used Algorithms 1 and 2 to construct correcting ensembles improving the original

core AI. To train the ensembles, the testing data set of 10,0 0 0 images that has been used to assess performance of Inception

was split into two non-overlapping subsets. The first subset, comprised of 6592 records of data points corresponding to
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Fig. 7. Performance curve for the Core AI system (Inception) on the testing set of 10,0 0 0 images. Threshold γ was varying from 1 (bottom left corner) to 

0 (top right corner). 

Table 2 

Errors per gesture (misclassifications). Top row corresponds to the ges- 

ture number, the bottom row indicates the number of errors for each 

gesture. 

0 1 2 3 4 5 6 7 8 9 

10 52 235 62 410 80 269 327 207 108 

Fig. 8. Values of | 〈 x i / ‖ x i ‖ , x j / ‖ x j ‖〉 | (color-coded) for the data points labelled as errors. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

correct responses and 1408 records corresponding to errors, was used to train the correcting ensembles. This subset was

the ensemble’s training set, and it accounted for 80% of the data. The second subset, the ensemble’s testing set, combining

1648 data points of correct responses and 352 elements labelled as errors was used to test the ensemble. 

Both algorithms have been run on the first subset, the ensemble’s training set. For simplicity of comparison and eval-

uation, we iterated the algorithms only once (i.e. did not build cascades of ensembles). In the regularization step, step 2,

we used Kaiser–Guttman test. This returned 174 principal components reducing the original dimensionality more than 10

times. After the whitening transformation, step 3, we assessed the values of | 〈 x i / ‖ x i ‖ , x j / ‖ x j ‖〉 | (shown in Fig. 8 ). According

to Fig. 8 , data points labelled as errors are largely orthogonal to each other apart from few modestly-sized groups. 

The number of clusters, parameter p in step 5, was varied from 2 to 1408 in regular increments. As a clustering algorithm

we used standard k -means routine ( k -means ++ ) supplied with MATLAB 2016a. For each value of p , we run the k -means

algorithm 10 times. For each clustering pass we constructed the corresponding nodes f j (or their pairs for Algorithm 2 ) as

prescribed in step 6, and combined them into a single correcting ensemble in accordance with step 7. 
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Fig. 9. True Positive rate at γ = 0 for the combined system as a function of the number of clusters, p . Left panel corresponds to Algorithm 1 with the 

optional projection step. Right panel corresponds to Algorithm 1 without the projection step. 

Fig. 10. Performance of the combined system after application of Algorithms 1 (red triangles) and 2 (green circles) on the training set for different numbers 

of clusters/nodes p in step 5. Blue squares show performance of core AI system. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 
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Fig. 11. Performance of the combined system after application of Algorithms 1 (red triangles) and 2 (green circles) on the testing set for different numbers 

of clusters/nodes p in step 5. Blue squares show performance of core AI system. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Before assessing performance of the ensemble, we evaluated filtering properties of the ensemble as a function of the

number of clusters used. For consistency with predictions provided in Theorems 1 –3, Algorithm 1 was used in this exercise.

Results of the test are shown in Fig 9 . Note that as the number p of clusters increases, the True Positive Rate at γ = 0 as

a function of p , approaches 1 regardless of the projection step. This is in agreement with theoretical predictions stemming

from Theorem 2 . We also observed that performance drops rapidly with the average number of elements assigned to a

cluster. In view of our earlier observation that vectors labelled as “errors” appear to be nearly orthogonal to each other, this

drop is consistent with the bound provided in Corollary 1 . 

Next we assessed performance of Algorithms 1,2 and resulting ensembles on the training and testing sets for p =
76 , 150 , 224 , 298 . In both algorithms, optional projection step was used. The value of threshold θ was set to 0.2. In gen-

eral, the value of threshold θ can be selected arbitrarily in an interval of feasible values of c j . When the optional projection

step is used, this interval is (0,1). Here we set the value of θ so that the hyperplanes h j ,2 in step 6 of Algorithm 2 produced

by standard perceptron algorithm [39] consistently yielded perfect separation. Results are shown in Figs. 10 and 11 . Accord-

ing to Fig. 10 , performance on the training set grows with p , as expected. This is aligned with theoretical results presented

in Section 3.1 . The ensembles rapidly remove misclassification errors from the system, albeit at some cost to True Positive

Rate. The latter cost for Algorithm 2 appears to be negligible. On the testing set, the picture changes. We see that, as the

number p of clusters/nodes grows, performance of the ensemble saturates, with Algorithm 1 catching-up with Algorithm 2 .

This signals an over-fit and indicates a point where further increases in the number of nodes do not translate into expected

improvements of the combined systems’s performance. Apparent lack of correlations between feature vectors corresponding

to errors (illustrated with Fig. 8 ) may also contribute to the observed performance saturation on the testing set. 

Notably, for γ small both algorithms removed significant proportions of misclassification errors. This could be due to

that training and testing sets for Algorithms 1 and 2 have been created from the performance analysis of the original core

AI system at γ = 0 . 
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5. Conclusion 

In this work we presented a novel technology for computationally efficient improvements of generic AI systems, including

sophisticated Multilayer and Deep Learning neural networks. These improvements are easy-to-train ensembles of elementary

nodes. After the ensembles are constructed, a possible next step could be to further optimize the system via e.g. error

back-propagation. Mathematical operations at the nodes involve computations of inner products followed by standard non-

linear operations like ReLU, step functions, sigmoidal functions etc. The technology was illustrated with a simple case study

confirming its viability. We note that the proposed ensembles can be employed for learning new tasks too. 

The proposed concept builds on our previous work [22] and complements results for equidistributions in a unit ball to

product measure distributions. When the clustering structure is fixed, the method is inherently one-shot and non-iterative,

and its computational complexity scales at most linearly with the size of the training set. Sub-linear computational com-

plexity of the ensembles construction makes the technology particularly suitable for large AI systems that have already been

deployed and are in operation. 

An intriguing and interesting feature of the approach is that training of the ensembles is largely achieved via Fisher linear

discriminants. This, combined with the ideas from [23] , paves the way for a potential relaxation of the i.i.d. assumption for

the sampled data. Dealing with this as well as exploring the proposed technology on a range of different AI architectures

and applications is the focus of our future work. 
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Appendix A. Proofs of theorems and other technical statements 

Proof of Theorem 1. The proof follows immediately from Theorem 2 in [20] and Hoeffding inequality [28] . Indeed, if t > 0,

X i are independent bounded random variables, i.e. a i ≤ X i ≤ b i , i = 1 , . . . , n, and X = 1 /n 
∑ n 

i =1 X i then (Hoeffding inequality) 

P 
(
X − E[ X ] ≥ t 

)
≤ exp 

(
− 2 n 

2 t 2 ∑ n 
i =1 (b i − a i ) 2 

)

P 
(| X − E[ X ] | ≥ t 

)
≤ 2 exp 

(
− 2 n 

2 t 2 ∑ n 
i =1 (b i − a i ) 2 

)
. 

Given that x i j = X j where X j are independent random variables with −1 ≤ X j ≤ 1 , E[ X 2 
j 

] = σ 2 
j 

( Assumption 1 ), we observe

that ‖ x i ‖ 2 = 

∑ n 
j=1 X 

2 
j 

P 

(∣∣∣∣
∑ n 

j=1 X 

2 
j 

n 

− E 

[∑ n 
j=1 X 

2 
j 

n 

]∣∣∣∣ ≥ t 

)

= P 

(∣∣∣∣
∑ n 

j=1 X 

2 
j 

n 

− R 

2 
0 

n 

∣∣∣∣ ≥ t 

)
= P 

(∣∣∣∣‖ x i ‖ 

2 

R 

2 
0 

− 1 

∣∣∣∣ ≥ tn 

R 

2 
0 

)
≤ 2 exp 

(
−2 nt 2 

)
. 

Denoting ε = tn / R 2 0 and recalling that 0 ≤ X 2 
j 

≤ 1 we conclude that (2) holds true. 

Noticing that E[ x ik x jk ] = E[ x ik ] E[ x jk ] = 0 , E[ y k x ik ] = 0 , −1 ≤ x ik ≤ 1 , −1 ≤ x jk ≤ 1 , and −1 ≤ y k x ik ≤ 1 , we observe that es-

timates (3) and (4) follow. �

Proof of Theorem 2. Recall that for any events A 1 , . . . , A k the following estimate holds: 

P (A 1 & A 2 & · · · & A k ) ≥ 1 −
k ∑ 

i =1 

(1 − P (A i )) . (A.1)

Let 

‖ x M+1 ‖ 

2 

R 

2 
0 

≥ 1 − ε (event A 1 ) , 

and 〈 
x M+1 

R 0 

, 
x i 
R 0 

〉 
< 1 − ε (events A 2 , . . . A M+1 ) . 

The statement now follows from (2) and (3) with δ = 1 − ε, and (A.1) . �

Proof of Theorem 3. Suppose that ‖ x i ‖ 2 /R 2 ≥ 1 − ε for all x i ∈ Y (event A 1 ). Then 
0 

https://doi.org/10.13039/501100003443
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� k ( x i ) = 

1 

k 

( 

‖ x i ‖ 

2 

R 

2 
0 

+ 

∑ 

x j ∈Y, x j � = x i 

〈 
x i 
R 0 

, 
x j 

R 0 

〉 ) 

≥ 1 − ε + β(k − 1) 

k 

for all x i ∈ Y. 

Note that x ∈ [ −1 , 1] n by construction. Consider events 

� k ( x j ) = 

〈
x j 

R 0 

, 
x 

R 0 

〉
< 

1 − ε + β(k − 1) 

k 
(events A 1+ j ) 

j = 1 , . . . , M. According to Theorem 1 and (A.1) 

P (A 1 ) ≥ 1 − k exp 

(
−2 R 

4 
0 ε 

2 

n 

)

P (A 1+ j ) ≥ 1 − exp 

(
−R 

4 
0 (1 − ε + β(k − 1)) 2 

2 k 2 n 

)
. 

Hence 

P (A 1 & · · · & A 1+ M 

) ≥

1 − k exp 

(
−2 R 

4 
0 ε 

2 

n 

)
− M exp 

(
−R 

4 
0 (1 − ε + β(k − 1)) 2 

2 k 2 n 

)
. 

The result now follows. �

Proof of Corollary 1. Let ‖ x i ‖ 2 /R 2 0 ≥ 1 − ε for all x i ∈ Y (event A 1 ), and 〈 
x i 
R 0 

, 
x j 

R 0 

〉 
≥ −δ for all x i , x j ∈ Y, x i � = x j (event A 2 ) . 

The corollary follows immediately from (A.1) and Theorem 1 ( Eqs. (2), (3) ) �

Proof of Corollary 2. Let ‖ x j ‖ 2 ≥ 1 − ε. Then h ( x ) ≥ 0 for all x ∈ �. Estimate (13) hence follows from Theorem 1 and

(A.1) . �

Proof of Lemma 1. The proof follows that of Theorem 3 in [22] . Let x be an element of M and p h be the probability of the

event h ( x ) ≥ 0. Then the probability of the event that h ( x ) ≥ 0 for at most m elements from M is 

P (M, m ) = 

m −1 ∑ 

k =0 

(
M 

k 

)
(1 − p h ) 

M−k p k h . 

Observe that P ( M, m ), as a function of p h , is monotone and non-increasing on the interval [0,1], with P (M, m ) = 0 at p h = 1

and P (M, n ) = 1 at p h = 0 . Hence 

P (M, m ) ≥
m −1 ∑ 

k =0 

(
M 

k 

)
(1 − p ∗) M−k p k ∗ = (1 − p ∗) M 

m −1 ∑ 

k =0 

(
M 

k 

)(
p ∗

1 − p ∗

)k 

. 

Given that (M−m +1) k 

k ! 
≤

(
M 

k 

)
≤ M 

k 

k ! 
for 0 ≤ k ≤ m − 1 , we obtain 

P (M, m ) ≥ (1 − p ∗) M 

m −1 ∑ 

k =0 

1 

k ! 

(
(M − m + 1) p ∗

1 − p ∗

)k 

. 

Expanding e x at x = 0 with the Lagrange remainder term: 

e x = 

m −1 ∑ 

k =0 

x k 

k ! 
+ 

x m 

m ! 
e ξ , ξ ∈ [0 , x ] , 

results in the estimate 

m −1 ∑ 

k =0 

x k 

k ! 
≥ e x 

(
1 − x m 

m ! 

)
for all x ≥ 0 . 

Hence 

P (M, m ) ≥

(1 − p ∗) M exp 

(
(M − m + 1) p ∗

1 − p ∗

)(
1 − 1 

m ! 

(
(M − m + 1) p ∗

(1 − p ∗) 

)m 

)
. 
�
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Appendix B. Hyperplanes vs ellipsoids for error isolation 

Consider 

C n (ε) = B n (1) ∩ 

{ 

ξ ∈ R 

n 

∣∣∣ 〈 
x 

‖ x ‖ 

, ξ
〉 

≥ 1 − ε 
} 

(B.1) 

Let 

ρ(ε) = (1 − (1 − ε) 2 ) 
1 
2 . 

Note that ρ( ε) is the radius of the ball containing the spherical cup C n . Lemma 2 estimates volumes of spherical caps C n ( ε)

relative to relevant n -balls of radius ρ( ε). 

Lemma 2. Let C n ( ε) be a spherical cap defined as in (B.1) , ε ∈ (0, 1) . Then 

ρ(ε) n +1 

2 

[ 

1 

π
1 
2 

�
(

n 
2 

+ 1 

)
�
(

n 
2 

+ 

3 
2 

)
] 

< 

V(C n (ε)) 

V(B n (1)) 
≤ ρ(ε) n 

2 

. 

Note that [4] V(B n (r)) = r n V(B n (1)) for all n ∈ N r > 0. Hence the estimate of V(C n (ε)) from above is: 

V(C n (ε)) ≤ 1 

2 

V(B n (1)) ρ(ε) n . (B.2) 

Let us calculate the estimate of V(C n (ε)) from below. It is clear that 

V(C n (ε)) = V (B n −1 (1)) 

∫ 1 

1 −ε 
(1 − x 2 ) 

n −1 
2 dx 

The integral in the right-hand side of the above expression can be estimated from below as ∫ 1 

1 −ε 
(1 − x 2 ) 

n −1 
2 dx > 

∫ 1 

1 −ε 
(1 − x 2 ) 

n −1 
2 xdx 

= 

1 

2 

· 1 

n 

2 

+ 

1 

2 

· (1 − (1 − ε) 2 ) 
n +1 

2 = 

1 

2 

· 1 

n 

2 

+ 

1 

2 

· ρ(ε) n +1 

Recall that B n (1) = 

π
n 
2 

�
(

n 
2 + 1 

) , �(x + 1) = x �(x ) . Hence 

B n −1 (1) · 1 

n 

2 

+ 

1 

2 

= 

π
n −1 

2 

�
(

n 
2 

+ 

1 
2 

) 1 

n 

2 

+ 

1 

2 

= 

π
n −1 

2 

�
(

n +1 
2 

+ 1 

) , 

and ∫ 1 

1 −ε 
(1 − x 2 ) 

n −1 
2 dx > 

1 

2 

V(B n (1)) ρ(ε) n +1 

[ 

1 

π
1 
2 

�
(

n 
2 

+ 1 

)
�
(

n 
2 

+ 

3 
2 

)
] 

�

Corollary 3. Let C n ( ε) be a spherical cap defined as in (B.1) , ε ∈ (0, 1), and B n ( k ρ( ε)) be an n-ball with radius k ρ( ε), k ∈ R > 0 .

Then 

V(B n (kρ(ε))) 

V(C n (ε)) 
< k n 

2 π
1 
2 

ρ(ε) 

[ 

�
(

n 
2 

+ 1 

)
�
(

n 
2 

+ 

3 
2 

)
] −1 

Remark 3. Using Stirling’s approximation we observe that 

�
(

n 
2 

+ 1 

)
�
(

n 
2 

+ 

3 
2 

) = O 

(
n 

− 1 
2 

)
. 

Thus V(B n (ε)) 
V(C n (ε)) 

< k n H(n, ε) where H(n, ε) = O 

(
n 1 / 2 

ρ(ε) 

)
. 

According to Corollary 3 the volumes of B n ( ε), B n ( κρ( ε)), κ ∈ (0, 1) decay exponentially with dimension n relative to that

of C n ( ε). This implies that distance-based detectors are extremely localized, and in comparison with simple perceptrons, the

proportion of points to which they respond positively is negligibly small. On the other hand, filtering properties of hyper-

planes are extreme in high dimension (see Theorems 2, 3 in Section 3.1 ). This combination of properties makes perceptrons

and their ensembles particularly attractive for fine-tuning of existing AI systems. 
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