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Abstract—Modern large-scale datasets are frequently said to
be high-dimensional. However, their data point clouds frequently
possess structures, significantly decreasing their intrinsic dimen-
sionality (ID) due to the presence of clusters, points being located
close to low-dimensional varieties or fine-grained lumping. We
introduce and test a dimensionality estimator, based on analysing
the separability properties of data points, on several benchmarks
and real biological datasets. We show that the introduced measure
of ID has performance competitive with state-of-the-art measures,
being efficient across a wide range of dimensions and performing
better in the case of noisy samples. Moreover, it allows estimating
the intrinsic dimension in situations where the intrinsic manifold
assumption is not valid.

Index Terms—high-dimensional data, intrinsic dimensionality,
separability, cancer mutation, single cell RNA-Seq

I. INTRODUCTION

High-dimensional data are becoming increasingly available
in real-life problems across many disciplines. Multiple re-
search efforts in the field of machine learning are currently
focused on better characterising, analysing, and comprehend-
ing them. A key feature related to data complexity, which
is still largely unexplored, is the intrinsic dimensionality
(ID), sometimes also called effective dimensionality, of the
cloud of points. Informally, ID describes the effective number
of variables needed to approximate the data with sufficient
accuracy. ID can be measured both globally and locally (i.e.,
by segmenting the data cloud) [1].

Different approaches have been used to formalise the con-
cept of ID. We refer the reader to other works for a list
and comparisons of the different definitions and a discussion
of their properties [1], [2]. A compact presentation of the
currently used definitions is also available in Section II.

Despite the great diversity of currently used approaches for
defining the intrinsic data dimensionality, most of them assume
that there exists a relatively low-dimensional variety embedded
into the high-dimensional space around which the data cloud is
organised. Moreover, it is frequently assumed that the nature
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Fig. 1. Stereotypical scenarios of real-life high-dimensional data point cloud
organisation, affecting the effective dimensionality of the data. (Top) Data
point cloud can be modeled as a close-to-uniform multidimensional distri-
bution (and benefit from “blessing of dimensionality” in high dimensions).
(Bottom-left) Data point cloud can be organized into a relatively small number
of well-defined clusters. (Bottom-middle) Data point cloud can be located
close to a low-dimensional variety (or manifold, in simple cases). (Bottom-
right) Data point cloud can be characterised by a fine-grained lumping
(heterogeneity) which can not be well represented as being located close to
a manifold of low dimension. In cases represented in the bottom panels the
data cloud is characterised by lower ID than the full (ambient) dimension
of the data space. The figure is drawn from personal communication with
A.N.Gorban and I.Tyukin who coined the term “fine-grained lumping”..

of this variety is a manifold, and that the data point cloud
represents an i.i.d. sample from the manifold with some simple
model of noise. In practice, the ID of the manifold is assumed
to be not only much smaller than the number of variables
defining the data space but also to be small in absolute number.
Thus, any practically useful non-linear data manifold should
not have more than three or four intrinsic degrees of freedom.

Theoretically, the manifold concept does not have to be
universal in the case of real-life datasets. Even if a low-
dimensional variety exists, it can be more complex than
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a simple manifold: for example, it can contain branching
points or be of variable local intrinsic dimension. Principal
trees, graphs and principal cubic complexes (direct product
of principal graphs as factors) have been suggested as a
constructive approach to deal with such complex cases [3],
[4]. In the case of existence of a well-defined cluster structure
in the data cloud, the underlying variety can be thought of as
discontinuous (e.g., the model of principal forest [5]).

Conversely, a typical mental image of a “genuinely high-
dimensional” data point cloud is a uniformly sampled n-
dimensional sphere or a n-hypercube, where n � 1 (at least
several tens). Interestingly, in this model, the data point cloud
can enjoy the “blessing of dimensionality”, which results in
almost any two data vectors being almost orthogonal and
almost any data point being linearly separable from the rest
of the data point cloud [6]. The separability properties can
be used, for example, to provide simple non-destructive (not
requiring retraining) correctors for the legacy AI systems [7]–
[9]. In this sense, truly high-dimensional data distributions are
characterised by surprising “simplicity” as opposite to low-
dimensional varieties which can possess rather complex non-
linear branching or looping structure.

However, real life datasets can be characterised by prop-
erties which are difficult to fit into such simple paradigms.
In particular, real-life datasets are expected to significantly
violate the i.i.d. sampling assumption. The data inhomogeneity
can manifest by the existence of micro-clusters which are not
globally organized into a low-dimensional structure [7]. These
micro-clusters might be undetectable by standard clustering al-
gorithms because of their small size, fuzziness and instability.
Existence of such fine-grained lumping in the data (Figure 1)
can be also thought of as a decrease in ID. For example, it
leads to destroying the separability and measure concentration
properties, making the data more similar to lower-dimensional
(but uniformly distributed) data point clouds.

A single data point cloud can combine regions with several
structure types described above in different regions of the
data space, and hence be characterised by variable ID. In this
context, two important questions are: 1) what parts of the point
cloud can be reasonably approximated by a low-dimensional
object (e.g., principal curves or trees) and which can not? 2)
for those parts which can not be described by a locally small
intrinsic dimension, can we estimate how close we are to the
“blessing of dimensionality” scenario and can we profit from
it, or not? In this work, we suggest an approach for answering
these questions.

In recent works by A. Gorban, I. Tyukin and colleagues,
the authors proved a series of stochastic separation theorems
that can be used to define the properties of high-dimensional
data distributions in an efficient and scalable fashion. The
authors exploited a convenient framework of Fisher linear
discriminants [6]–[8]. We show that such framework can be
adapted to construct computationally efficient estimators of
local dimensionality tackling different data organization types
(Figure 1). This analysis will then be applied to biological
data to show the value of dimensionality analysis in deriving

actionable information from data.
Throughout the text, Rn will denote the Euclidean n-

dimensional linear real vector space, x = (x1, . . . , xn) the
elements of Rn, (x,y) =

∑
k=1...n xkyk the inner product of

x and y, and ||x|| =
√

(x,x) the standard Euclidean norm
in Rn. Sn−1 ⊂ Rn will denote the unit n-dimensional sphere
and |Y | or N the number of points in a finite set Y .

II. DEFINING AND MEASURING INTRINSIC
DIMENSIONALITY

Despite being used in machine learning research, the term
intrinsic dimensionality lacks a unique consensus definition
[1]. One of its first use traces back to the context of signal
analysis, referring to the minimum number of parameters
required by a signal generator to closely approximate each
signal in a collection [10]. Other authors, e.g. [11] define
the ID of a dataset to be m if it lies entirely within an m-
dimensional manifold embedded in Rn with none or little
information loss. By shifting the attention from a finite set
of points to a generating process, other authors say that the
data generating process Yi has ID m if Yi can be written as
Yi = Xi + εi, where Xi is sampled according to a probability
measure with a smooth density and with a support on a smooth
m−dimensional manifold M , εi is a noise component which
is small on a scale where M is well approximated by a m-
dimensional subspace [12]. These definitions are grounded in
the so-called manifold hypothesis, i.e. that data is sampled
from an underlying m-dimensional manifold. Following this
hypothesis, the goal of ID estimation is to recover m.

While these definitions are very important to better com-
prehend the problem at hand, they do not provide a way
to directly estimate ID. Over the years, researchers devised
different estimators, which can be roughly classified by their
mode of operation (see [1] for the details of these categories).

Topological methods explicitly seek to estimate the topo-
logical dimension (e.g. as defined by the covering dimension)
of a manifold. However, they are unsuitable for most practical
applications [1], [13], [14]. Fractal methods are grounded in
the theory of fractal geometry and have been developed by
adapting the ideas originally used to study strange attractors’
dimensionality. Projective methods use different approaches
(such as multi-dimensional scaling (MDS) or principal com-
ponent analysis (PCA)) that perform a mapping of the points
into a relatively low-dimensional subspace, by minimising
some cost function, which should not exceed certain threshold
(e.g. the reconstruction error in ISOMAP) [15]. Graph-based
methods exploit scaling properties of graphs, such as the
length of the geodesic minimum spanning tree [16]. Finally,
the Nearest neighbours category includes those methods that
work at the local level, and rely on properties of distributions
of distances or angles. It is worth noting that some recent
estimators in this category have been expressly designed to
exploit properties of concentration of measure [12], [17]–[19].

One of the most popular dimensionality estimator uses the
notion the fractal correlation dimension [20], which is based
on the fact - also exploited by many other estimators - that



the number of points contained in a ball of growing radius r
will scale exponentially with the dimension of the underlying
n-manifold. This counting process is performed by computing
the correlation sum :

C(r) = lim
N→∞

2

N(N − 1)

∑
i<j

H(r − ||x(i)− x(j)||)

with H the Heaviside step function H(x) = {0, if x <
0; 1, if x ≥ 0}. The dimension m is then

m = lim
r→0

logC(r)

log r

In practice, m is approximated by fitting a linear slope of
a series of estimates of increasing r and C in logarithmic
coordinates.

As outlined before [2], an ideal estimator should be robust
to noise, high dimensionality and multiscaling, as well as
accurate and computationally tractable. Moreover, it should
provide a range of values for the input data in which it
operates properly. As of today, no single estimator meets all
these criteria and using an ensemble of estimators is generally
recommended.

Many dimensionality estimators provide a single value for
the whole dataset and thus belong to the category of global
estimators. However, datasets can be composed of complex
structures with zones of varying dimensionality. In such a case,
the dataset should be explored using local estimators, which
estimate ID for each point by looking at its neighbourhood.
The neighbourhood is typically defined by taking a ball, with a
predetermined fixed radius, centered in the reference points or
by considering the k closest neighbours. Such approaches al-
low repurposing global estimators as local estimators. Notably,
it is also possible to partition the data into contiguous areas
and compute the dimensionality in each of them. However,
this may lead to unwanted border effects.

The idea behind local ID estimation is to operate at a scale
where the manifold can be approximated by its tangent space
[2]. The data contained in each neighbourhood is thus usually
assumed to be uniformly distributed over an m-dimensional
ball [12], [17]–[19]. In practice, ID proves sensitive to scale
and finding an adequate neighbourhood size can be difficult,
as it requires a trade-off between opposite requirements [1],
[21]. Ideally, the neighbourhood should be big relative to the
scale of the noise, and contain enough points for the chosen
method to work properly. At the same time, it should be small
enough to be well approximated by a flat and uniform tangent
space.

III. ESTIMATING INTRINSIC DATA DIMENSION BASED ON
SEPARABILITY PROPERTIES

In the present work, we will follow the framework and
notations on estimating the dimensionality of a data point
cloud based on the description provided in the works by
A.Gorban, I.Tyukin and their colleagues [7].

We remind the reader that a point x ∈ Rn is linearly
separable from a finite set Y ⊂ Rn if there exists a linear

functional l such that l(x) > l(y) for all y ∈ Y . If for
any point x there exists a linear functional separating it from
all other data points, then such a data point cloud is called
linearly separable or 1-convex. The separating functional l
may be computed using the linear Support Vector Machine
(SVM) algorithms, the Rosenblatt perceptron algorithm, or
other comparable methods. However, these computations may
be rather costly for large-scale estimates. Hence, it has been
suggested to use the simplest non-iterative estimate of the
linear functional by Fisher’s linear discriminant which is com-
putationally inexpensive, after a well-established standardised
pre-processing described below [7].

Let us assume that a dataset X is normalized in the
following (standardised) way:

1) centering
2) projecting onto the linear subspace spanned by first k

principal components, where k may be relatively large
3) whitening (i.e., applying a linear transformation after

which the covariance matrix becomes the identity ma-
trix)

4) normalising each vector to the unit length, which corre-
sponds to the projection onto a unit sphere.

The 4th transformation (projecting on the sphere) is optional
for the general framework previously defined, but it is neces-
sary for comparing the data distribution with a unity sphere.
Choosing the number of principal components to retain in the
2nd step of the normalisation has the objective of avoiding
excessively small eigenvalues of the covariance matrix (strong
collinearity in the data). An effective way to estimate k, is
by selecting the largest k (in their natural ranking) such that
the corresponding eigenvalue λk is not smaller that λ1/C,
where C is a predefined threshold. Under most circumstances,
C = 10 (i.e., the selected eigenvalue is 10 times smaller than
the largest one) will result in the most popular linear estimators
to work robustly.

After such normalization of X , it is said that a point x ∈ X
is Fisher-linearly separable from the cloud of points Y with
parameter α, if

(x,y) ≤ α(x,x) (1)

for all y ∈ Y , where α ∈ [0, 1). If equation (1) is valid for
each point x ∈ X such that Y is the set of points y 6= x
then we call the dataset X Fisher-separable with parameter α.
In order to quantify deviation from perfect separability, let us
introduce pα(x), the probability that a point x is not separable
from a random point y. Let us denote p̄α(X) the mean value
of the distribution of pα(x) over all data points.

Following [7], for the equidistribution on the unit sphere
Sn−1 ∈ Rn, pα does not depend on the data point thanks to
the distribution symmetry. It can be estimated as follows :1.

1In [22], this formula, derived for large n, has α
√

2π(n− 1) in the denom-
inator. We empirically verified (see Numerical examples section) that changing
the denominator to α

√
2πn makes this formula applicable for low dimensions,

and the two expressions are very close for large n, since n/(n− 1)→ 1. In
[7] this formula contains a misprint (personal communication with the authors
of [7]).



pα = p̄α =
(1− α2)

n−1
2

α
√

2πn
(2)

Therefore, the distribution of pα for a uniform sampling
from an n−sphere is a delta function centered in p̄α. The ef-
fective dimension of a data set can be evaluated by comparing
p̄α for this data set to the value of p̄α for the equidistributions
on a ball, a sphere, or the Gaussian distribution. Comparison to
the sphere is convenient thanks to having an explicit formula
(2). In order to use this formula, one should project data points
on a unit sphere. If p̄α can be empirically estimated for a given
α, then the effective dimension can be estimated by solving
(2) with respect to n:

nα =
W ( − ln(1−α2)

2πp̄2αα
2(1−α2) )

− ln(1− α2)
(3)

where W (x) is the real-valued branch of the Lambert function
[23]. As a reminder, the Lambert function solves equation v =
wew with respect to w, i.e. w = W (v). By substituting w =
− ln(1 − α2)n, the formula 2 can be re-written as wew =

− ln(1−α2)
2πp̄2αα

2(1−α2) from which it follows 3. The self-contained
description of the algorithm for computing nα is provided
below (Algorithm 1).

Based on the above definitions, the fine-grained lumping of
the data point cloud can be identified by two interesting fea-
tures: the histogram of empirical pα distribution (probabilities
of individual point non-separability) and the profile of intrinsic
dimensions nα (3) for a range of α values (e.g., α ∈ [0.5, 1.0)).

Algorithm 1 Computing data point cloud effective dimension
from Fisher-separability with parameter α

1: For a given data matrix X
2: Center the data by columnsX ← X − X̄
3: Apply PCA: [U, S] = PCA(X),

where Uare projections onto principal vectors,
and S are explained variances

4: Select the number of components:
k = max{i : S(1)/S(i) < C}

5: For columns of U, ui, apply data whitening:
ui ← ui/σ(ui), i = 1...k

6: Project the data vectors, rows of U, uj , onto a unit sphere:
uj ← uj/||uj ||, j = 1...N

7: Compute the Gram matrix G = UUT

8: Normalize the Gram matrix by the diagonal elements:
Gji ← Gji/Gii

9: Set to zero diagonal elements of G: Gii = 0
10: For each row of G, compute the number of elements

exceeding α: vj = #Gji > α, i, j = 1...N
11: Compute empirical unseparability probability distribution:

pjα = vj/(N − 1)
12: Compute empirical mean of pα :p̄α = 1

N

∑
i=1...N p

j
α

13: Compute intrinsic dimension nα from the formula (3)

IV. NUMERICAL RESULTS

A. Benchmark data

We first checked that the method correctly determines
the dimension of uniformly sampled n-dimensional spheres
(Figure 2). The ability to correctly estimate the dimension
in this case depends on the accuracy of estimating the mean
empirical unseparability probability for α sufficiently close to
1 which requires a certain number of data points.

The performance of ID estimation methods is usually as-
sessed on synthetic data consisting of samples generated from
n-dimensional manifolds linearly or non-linearly embedded
into a higher dimensional space. The results are then evaluated
according to the mean percentage error, defined as:

Mean%error =
100

#{Mi}

#{Mi}∑
i=1

|n̂Mi
− nMi

|
nMi

where n̂Mi is the estimated ID and nMi the true ID of the
dataset Mi [24]. Different datasets have been used for this
purpose. Here, we use the benchmark library made avail-
able by Hein and Audibert [25], which is standard across
publications as a core benchmark battery. It consists in 13
uniformly sampled manifolds, to which we added isotropic
gaussian noise with standard deviation σ = .05. We also
used the ISOMAP Faces dataset [15], which is composed of
images from a sculpture’s face generated with three degrees
of freedom (horizontal pose, vertical pose, lighting direction).
Results are shown for different estimators (Table I), including
those recently published and not covered in the existing
reviews [1], [12], [26].

We find that Fisher separability is an accurate estimator of
ID across the manifold library. Notably, it is one of the few
methods performing well in high dimension. Indeed, methods
exploiting concentration of measure (FisherS, DANCo, ESS)
manage to give a close estimate for M10d, a 70-cube, while
all other methods largely underestimate the dimension. We ob-
served that the performance of the Fisher separability method
was close with DANCo and ESS. However, FisherS estimated
well small effective dimensions in addition to large ones. Both
ESS (implemented in R) and FisherS (implemented in Python
3) are faster than DANCo (implemented in MATLAB), which
scales worse with respect to increasing dimension (respectively
0.5s, 1.9s, 25.6s on M10d, over an average of 7 runs).

Additionally, we generated three versions of a dataset with
random clusters, to illustrate the idea of using the separability
probability distribution to characterise non-homogeneities in
the data cloud. These datasets consist in a mixture of sam-
ples from a uniform distribution U(0, 1) and from uniformly
sampled balls centered at random points (Figure 3).

The complete analysis containing more detailed results is
available as an interactive Python 3 notebook, including the
necessary code to test additional methods and manifolds. The
notebook can interface methods in various languages and thus
be a useful basis to perform future benchmark tests.



Fig. 2. Estimating effective dimensions of uniformly sampled unit spheres of various dimensions (from 1 to 30). (Left) Comparison of theoretical (red lines)
and empirical (blue lines with markers) estimates of the average unseparability probability p̄α. (Right) Estimated effective dimension of n-dimensional spheres
(n = 1..30), as a function of α. A single ad-hoc estimate of n is indicated by a number, as such nα for which α = 0.8αmax, where αmax is the maximum
value of α for which the empirical p̄α > 0..

TABLE I
Predicted ID for synthetic datasets evaluated globally, with added multidimensional isotropic Gaussian noise (standard deviation σ = .05), and the ISOMAP

Faces dataset. Cardinality: Number of points of the dataset, N: embedding dimension, n: intrinsic dimension. FisherS: Fisher Separability (The number in
parentheses indicates the number of components retained by PCA preprocessing for the separability-based method), CD: Correlation Dimension [20],

GMSTL: Geodesic Minimum Spanning Tree Length [16], DANCo: Dimensionality from Angle and Norm Concentration, LBMLE: Levina-Bickel Maximum
Likelihood Estimation [27], ESS: Expected Simplex Skewness, FanPCA: PCA based on [28], TwoNN: Two Nearest Neighbors [26]

Cardinality N n FisherS CD GMSTL DANCo LBMLE ESS FanPCA TwoNN

M13 2500 13 1 1.67 (3) 1.64 3.73 4 3.74 3.16 2 5.50
M5 2500 3 2 2.57 (3) 2.14 2.47 3 2.66 2.74 1 2.73
M7 2500 3 2 2.94 (3) 2 2.24 2 2.39 2.93 2 2.67
M11 2500 3 2 1.96 (2) 2.33 2.21 2 2.49 2.34 1 2.69
Faces 698 4096 3 3.12 (28) 0.78 1.64 4 4.31 7.49 8 3.49
M2 2500 5 3 2.66 (3) 3.60 4.61 4 4.42 2.66 2 4.69
M3 2500 6 4 2.87 (4) 3.16 3.36 4 4.40 3.11 2 4.36
M4 2500 8 4 5.78 (8) 3.90 4.33 4 4.38 7.79 5 3.96
M6 2500 36 6 8.50 (12) 5.99 6.62 7 7.05 11.98 9 6.27
M1 2500 11 10 11.03 (11) 8.96 9.02 11 9.88 10.81 7 9.43
M10a 2500 11 10 9.46 (10) 7.86 9.50 10 8.90 10.31 7 8.57
M8 2500 72 12 17.41 (24) 10.97 13.04 17 14.74 24.11 18 13.15
M10b 2500 18 17 15.94 (17) 11.88 13.15 16 13.89 17.35 13 13.59
M12 2500 20 20 19.83 (20) 10.62 16.05 20 17.07 19.90 11 16.94
M9 2500 20 20 19.07 (20) 13.51 14.26 19 15.73 20.26 11 15.68
M10c 2500 25 24 22.62 (24) 15.15 21.94 23 18.24 24.42 17 17.36
M10d 2500 71 70 68.74 (70) 29.89 36.62 71 38.92 71.95 43 39.18

Mean%error 28.82 32.45 36.35 43.04 43.83 66.78 67.56 74.91

B. Cancer somatic mutation data: an example of fine-grained
lumping

Cancer is a complex disease, that is largely caused by the
accumulation of somatic mutation during the lifetime of cells
in the organism body. Large-scale genomic profiling provides
information on which genes are mutated in the cells composing
a tumor at the moment of cancer diagnosis and there is a hope
that this information can help driving therapeutic decisions.
However, application of standard machine learning methods
for this kind of data is difficult because of their extreme
sparsity and non-homogeneity of mutation profiles [29]. A
mutation matrix (genes vs tumor) in its simplest form is a

binary matrix marking non-sense or missense mutation of a
certain gene in a chohort of tumors. Because there exists very
small overlap between mutation profiles in any two tumors,
the data cloud representing a mutation matrix is usually
thought to be high-dimensional and suffering from the curse
of dimensionality.

We obtained the mutation matrix for 945 breast cancer
tumors from The Genome Cancer Atlas (TCGA) as it is
provided in [29]. After filtering genes having less than 5
mutations in all tumors, we were left with 2932 genes. For
each tumor, we divided its binary mutation profile by the total
number of mutations in this tumor, in order to compensate for



Fig. 3. Illustration of the presented method on datasets consisting of samples from a uniform distribution in the unity 10-dimensional cube, and of 10 clusters
formed by choosing random center points to sample uniform 10-balls with radiuses (from left to right) 0.1, 0.3, and 0.6. First row: histogram of unseparability
probability p̄α. Second row: 3D scatter plot of the datasets. Third row: The empirical mean unseparability probability as a function of parameter α value
(blue) shown on top of the theoretical curves (red) as the clusters become fuzzier due to increasing radius..

large differences in total mutational load between tumors. We
analyzed the data point cloud where each point corresponded
to a gene, and studied its separability properties using Algo-
rithm 1. The criterion used in the Algorithm 1 for determining
the number of principal components selected 34 dimensions,
indicating relatively large dimension of the linear manifold
approximating the mutation data. Despite this, the separability
analysis showed that the separability properties of this data
cloud is close to the uniformly sampled 7-dimensional sphere
(Figure 4,A,C).

We observed that the pα probability distributions were
overall close to the delta function (Figure 4B), indicating good
separability properties of the data cloud. However, there was
a non-negligible fraction of data points which could not be
separated from the rest of the data cloud even for relatively
small α = 0.88. We further visualized the data point cloud
by applying t-distributed stochastic neighbour embedding (t-
SNE) [30], which showed existence of small clusters where
the points are less separable, embedded into the sparse cloud
of separable points.

C. Highlighting the variable complexity of single cell datasets
through separability analysis

Single cell transcriptomics allows the simultaneous mea-
surement of thousands of genes across tens of thousands of
cells, resulting in potentially very complex biological big data
that can be used to identify cell types or even reconstruct the
dynamics of biological differentiation [5], [31].

In a recent work, this technology has been used to explore
the different cell types contained in an adult organism of
the regenerative planarian Schmidtea mediterranea [32]. Using
these data, the authors has been able to identify (via computa-
tional analysis) 51 different cell types and the transcriptional
changes associated with the commitment of different stem cells
(neoblasts) into various subpopulations.

Given the complex nature of the data, we decided to use
Fisher separability to highlight potential biological properties.
After a standard preprocessing pipeline, which included selec-
tion of the overdispersed genes and log-transformation of gene
expression, the datasets contained 21612 cells characterised by
4515 genes. After an initial filtering that retained 7 PCs, our
analysis estimates a global ID close to 4 (5A). By looking
at the unseparability probability per cell, we can further
appreciate how separability varies across different parts of the
dataset (5C). To further explore this aspect we looked at the



Fig. 4. Analysis of breast cancer somatic mutation data. The initial dataset represents a binary matrix (genes vs tumors) with ones marking any deleterious
mutation in a gene found in a tumor. A) Plot showing a range of estimated effective dimensions for a range of α. An single ad-hoc estimate is shown by cross.
B) Distribution of unseparability probability distribution for a particular value of α = 0.88. C) Empirical estimates for the mean unseparability probability
for several α values, shown on top of the theoretical curves for n-dimensional uniformly sampled spheres (starting from n=3). D) tSNE visualization of the
dataset (each point corresponds to a gene). Colors show the estimated empirical unseparabity probability pα for a given data point..

distribution of unseparability probability per cell type.
Interestingly, different populations show a tendency to have

different ranges of unseparability probabilities (5E-F) which
cannot be explained by the population size (5D). The presence
of a multi-peak distribution (5E) indicates the presence of
multiple dimensionality scales and suggests the presence of
micro/meso-clusters embedded into a more uniform manifold.

Remarkably, neurons tend to have a larger unseparabil-
ity probability, an indication of locally compact distribution
and hence of a potentially structured heterogeneity, while
epidermal cells are on the other end of the spectrum. The
different neoblast populations display a comparable range of
unseparability probability, which sits somewhere in the middle,
a potential indication of a controlled heterogeneity.

V. IMPLEMENTATION

We provide MATLAB and Python 3 implementations of
ID estimation based on data point cloud Fisher-separability at
https://github.com/auranic/FisherSeparabilityAnalysis together
with benchmarking code.

VI. CONCLUSION

In this paper, we have exploited the framework of lin-
ear Fisher separability in order to estimate the intrinsic di-
mension of both synthetic and real-life biological datasets.
The suggested approach does not assume the presence of a
low-dimensional variety around which the data point cloud
is organized. According to this framework, deviations from
uniformity of data sampling lead to a decrease in the intrinsic
dimensionality. Despite this general assumption, the approach
demonstrated a surprisingly good performance even for es-
timating the dimensionality of datasets representing noisy
samples from embedded manifolds. The advantages of the
method manifest in its efficiency across a wide range of
dimensions, robustness to noise, and ability to quantify the
presence of fine-grained lumping in the data.

Structures found in the data point clouds resulting from
applications of modern biotechnologies might reflect details
of molecular mechanisms shaping life. Indeed, computational

biology approaches have been capable to gain new insights
from mining large-scale molecular datasets and to provide new
information that continuously improve our understanding of
life and suggest new therapeutic avenues to treat diseases such
as cancer. In this paper, we demonstrated how the suggested
approach can be used in exploring the structure of two data
types that are generally considered to be hard to analyse
(mutation and single cell RNA-Seq data) and concluded that
separability analysis can provide insights into the organization
of their data point clouds.
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