
Recognition of patterns of optimal diel vertical
migration of zooplankton using neural networks

1st Oleg Kuzenkov
Institute of Information Technology

Lobachevsky State University
Nizhni Novgorod, Russia

kuzenkov o@mail.ru

2nd Andrew Morozov
Experimental Ocean Physics Laboratory

Shirshov Institute of Oceanology
Moscow, Russia

am379@leicester.ac.uk

3rd Galina Kuzenkova
Institute of Information Technology

Lobachevsky State University
Nizhni Novgorod, Russia

galina.kuzenkova@itmm.unn.ru

Abstract—Here we apply artificial neural networks to facil-
itate recognition of regular diel vertical migrations (DVM) of
zooplankton in the ocean and lakes, the phenomenon which
is considered to be the most significant synchronous biomass
movement on Earth. The underlying mathematical framework of
finding the optimal (i.e. evolutionary stable) strategies of DVM
of zooplankton is based on the generic idea of maximization of
fitness of many competing subpopulations each of which uses a
particular strategy. To be able to recognize patterns of DVM
from data, we have created novel software which technically
consists of two interconnected complexes. The first complex is
required to find the evolutionarily stable behaviour using the
principle of optimality and its implementation produces training
samples for the neural network. The second complex provides
recognition of evolutionarily stable DVM taking into account a
few key characteristics of the aquatic environment and this also
allows for some uncertainty (only partial information available) in
the input data. In our work, we use a four-layer neural network.
Extensive testing of our method demonstrates its efficiency in
revealing the presence of detectable regular DVMs as opposed to
a random vertical movement of zooplankton.

Index Terms—zooplankton, diel vertical migration, evolution-
arily stable strategy, fitness, calculus of variations, recognition,
neural network, learning, training set.

I. INTRODUCTION

Methods of patterns recognition and neural networks tech-
nologies are now widely implemented in various research areas
(see [1] for a short review), in particular, in life sciences,
and an important current application area is the recognition
of evolutionarily stable behaviour of living organisms.

In evolutionary biology, we are generally interested in
determining a certain behavioural strategy (or a life trait) that
would persist within the population (community) under given
environmental conditions for a relatively long period of time
[2]. Such a strategy would persist in the population even if
some mutants with other different behavioural strategies are
occasionally introduced: in this case, the strategy is called
evolutionarily stable. The knowledge of an evolutionarily
stable strategy in the biological system generally allows us
to understand and predict outcomes of long-term biological
evolution.

Darwin’s idea of ”survival of the fittest” is often used as
the methodological basis for predicting evolutionarily stable
strategies in various biological systems [3]. This idea suggests,

in particular, that the strategy remaining in the population after
a long time is the one that should have the highest fitness.
This paradigm is often used to formulate different variational
principles in mathematical modelling in biology [4]–[9], which
eventually allow us to derive equations predicting optimal
behaviours in a similar way as fundamental equations of
motion in theoretical mechanics can be obtained from Euler-
Lagrange’s variational principles.

To practically implement the fundamental idea of Darwin,
it is necessary to be able to compare the values of fitness of
different hereditary strategies with each other and to numeri-
cally express fitness as a functional of hereditary strategies.
Proceeding in this way, we first need to select some key
characteristics of hereditary strategies that determine fitness.
For example, this may be the reproduction or mortality rates
of species depending on the biotic or/and abiotic factors. Each
hereditary strategy will determine a set of life traits under
given environmental conditions. Then, it is necessary to find
a fitness function that would link all significant characteris-
tics based on available information on long-term population
dynamics. The above concept of fitness reflects the selective
advantages of each hereditary strategy within the population.
Thus, predicting the evolutionarily stable strategy consists of
finding the optimal fitness (e.g. by using calculus of variations
or other methods) for the abiotic/biotic parameters describing
the environment.

However, our available information about environmental
factors often contains uncertainty, for example, we are not
aware of accurate instantaneous spatial distributions of temper-
ature, predators, food, light, etc. Moreover, there can always
be effects of stochasticity due to both external and internal
factors which would cause fluctuations in the individual be-
haviour. Therefore, it is more important to find some key
qualitative characteristics of a strategy rather than its precise
quantitate description. On the other hand, such key qualitative
characteristics of an optimal strategy will be determined by
the environment (we assume that after long-term evolution
the observed strategy becomes optimal). Thus, the second
problem consists in recognition of qualitative characteristics of
the evolutionarily stable strategy in the given environment. To
tackle this problem, we may use pattern recognition algorithms
and artificial neural networks. Obviously, the implementation
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of neural networks requires their initial training which can
be done using patterns of optimal behaviour predicted via
optimization procedure in population dynamics models. Then
we can use the existing efficient neural networks algorithms
to solve the problem of qualitative characteristics recognition
of patterns in biological systems [10]–[13].

In this study, we implement artificial neural networks to
a particularly important problem of recognition of patterns
of evolutionarily stable diel vertical migrations (DVM) of
zooplankton in the ocean and lakes.

II. DIEL VERTICAL MIGRATION OF ZOOPLANKTON

The phenomenon of diel vertical movements of aquatic
organisms was discovered almost two hundred years ago [4],
[14], [15] and it consists of regular ascending and descending
of zooplankton in the water column. Diel vertical movements
of zooplankton play an important role in the dynamics of
the organic matter of the ocean, they are the most significant
synchronous movement of biomass on Earth [15], [16] and can
potentially have an influence on the planet climate [17], [18].
Identifying the causes and mechanisms of DVM is an impor-
tant problem in modern ecology. The study of zooplankton
migration is also significant for the fishing industry.

The effect of diel vertical movements of zooplankton has
been studied by many scientists both empirically and theoreti-
cally. Various mathematical models of DVM were considered
in the literature, however many aspects of this phenomenon
are still poorly understood [19]–[27]. In particular, this is due
to the wide variety of patterns of DVM observed in nature [4].

Mathematical models and empirical data suggest that the
evolutionary stable movement of plankton is determined by
various environmental factors: spatial distributions across the
depth x of food E(x), predator density Sx(x), temperature
G(x), radiation level, the overall predator activity S(t) during
the day, etc. [4], [19]–[24]. All of these factors can be
considered as mathematical functions of the vertical coordinate
x (measured in meters) or time of day t (measured as a fraction
of the day).

The complexity of the problem of identifying the evo-
lutionarily stable DVM is aggravated by the inaccuracy of
environmental knowledge of the above functions and stochas-
ticity of different nature. From this point of view, determining
the qualitative characteristics of DVM is more important
than finding the exact mode of oscillations. For example,
it may be the presence or absence of detectable vertical
oscillations against the background of random movements of
individuals. It is known that some species of zooplankton
carry out detectable vertical movements, but for others, this
is not typical [4]. In addition, certain species of zooplankton
make detectable movements only when they reach a certain
age. Some recent results of the long-term observations of
DVM are available on http://www.oceannetworks.ca/zap-data-
saanich-inlet and http://hdl.handle.net/1828/4630 .

The purpose of this work is to propose a methodology
of recognizing the evolutionarily stable DVM, in particular,

reporting the presence or absence of detectable vertical move-
ments of organisms using partial information on the observable
environmental conditions as input data.

III. METHODOLOGY

The first step in our methodology is constructing and max-
imizing population fitness using a suitable theoretical model.
Deriving fitness in population models is based on considering
long-term dynamics of the population density distribution in
the space of hereditary strategies [7], [9], [28], [29], [31]. The
construction of fitness implements the so-called ranking order
reflecting selective advantages of strategies in the considered
space of strategies [9], [29], [31]. Below we provide a brief
description of the framework (for more details see [31]).

Consider v to be a hereditary strategy from some set V of
hereditary strategies of the population; ρ(v, t) is the number
of individuals realizing strategy v or the density distribution
of population over V ; ρ′(v, t) - rate of change of ρ(v, t) over
time. Then fitness J(v) has the following form

J(v) = lim
T→∞

1

T

∫ T

0

ρ′(v, t)

ρ(v, t)
dt ≡ 〈ρ

′(v)

ρ(v)
〉

or we can use any other function equivalent to J(v).
Note that fitness can be expressed analytically for a number

of relevant population models (Verhulst, von Foerster, Volterra,
etc.), determining the dynamics of the zooplankton population
[8], [9], [30], [31]. For example, consider the following
equation of population dynamics

ρ′ = k(v)ρ− ρR(v)P (t). (1)

where k(v) is the reproduction coefficient corresponding strat-
egy v, P is the result of the action of some limiting factors
(predators, interspecific competition, etc.) on the population,
R(v) is the degree of the influence of the limiting factors. In
this model, k and R are the main significant characteristics of
strategy v. It is easy to show [31] that in (1) fitness is given
by

J(v) ∼ k(v)/R(v). (2)

Consider x as the vertical coordinate of the position of zoo-
plankton; t is the time of day varying from 0 to 1; v = x(t) is
the hereditary strategy of plankton behaviour, V = C1[0; 1] is
the set of continuously differentiable functions on the segment
[0; 1], satisfying condition x(0) = x(1), v ∈ V ;E(x) is the
amount of food depending on the depth; S(x, t) = Sx(x)St(t)
is the effect of a predator depending on the depth and time
of day, G(x) is the temperature distribution depending on the
depth. In this case

k(v) =

∫ 1

0

(αE(x)− γS(x)− β(x′)2 − δG(x))dt. (3)

Here we assume that the energetic cost of the vertical
movement is proportional to the square of its velocity x′(t).
The weighting coefficients α, γ, β, δ quantify the relative con-
tribution of the corresponding environmental factors.



However, fitness function J can also be directly constructed
by observing the selection processes taking place in the system
under certain conditions (e.g. via long-term time series).

In this work, we developed an algorithm for the approximate
construction of fitness as a function of the model parameters
which are determined by a strategy. We can observe long-term
dynamics ρ(vi, t) for some hereditary strategies v1, · · · vn with
known values of corresponding significant characteristics, then
approximately calculate J(vi) = 〈ρ′(vi)/ρ(vi)〉. Comparing
them with each other allows us to introduce ranking order
in the set of strategies (and their corresponding significant
characteristics). If this order does not change with initial
condition changing, then we can introduce a function of
these characteristics reflecting the order. This function is an
approximation of fitness. It is most convenient to find this
function in the class of linear or quadratic functions. The
resulting function is actually Taylor’s approximation of fitness.

For example, assume k(vi) and R(vi) to be the only pa-
rameters determined by competing strategies vi, i = 1, n. We
can approximate fitness by, for example, a quadratic function
F of k and 1/R:

F (k, 1/R) = λ1k + λ2/R+ λ11k
2 + λ12k/R+ λ22/R

2.

In the case where we know (from either a mathematical
model or some empirical time series) that J(vi) > J(vj),
then we should take coefficients to satisfy the inequality

λ1ki + λ2/Ri + λ11k
2
i + λ12ki/Ri + λ22/R

2
i >

> λ1kj + λ2/Rj + λ11k
2
j + λ12kj/Rj + λ22/R

2
j .

Thus the problem of the fitness approximation is reduced
to solving the system of linear inequalities with respect to
coefficients λ .

As an illustrative example, we apply the above algorithm to
model (1). We considered six and nine different strategies and
corresponding values of k and R. We simulated the dynamics
of a number of individuals realizing these strategies and calcu-
lated J(vi). Then we solved the system of linear inequalities.
As a result we obtained λ1 ≈ λ2 ≈ λ11 ≈ λ22 ≈ 0;λ12 ≈ 1.
The result almost coincides with (2). The approach can be also
used to find a priory unknown coefficients α, γ, β, δ in (3).

In the case where the fitness function is known, it is
possible to find the evolutionary stable behaviour by methods
of calculus of variations or the optimal control theory. The
fitness function will be considered as the objective functional
[8], [9].

For some cases, it is analytically possible to solve the
corresponding problem of calculus of variation. For example,
consider the model (1), (3) with E(x) = x + C, Sx(x) =
x + C,G = −(x + C/2)2 , where C is a constant; St(t) =
cos 2πt+1, R(v) = 1. One can prove that the optimal strategy
is given by

x = A+B cos 2πt;A =
α− δC − γ

2δ
;B =

−γ
8βπ2 + 2δ

.

This result can be used as a test to check the accuracy of the
approximation of fitness.

Fig. 1. Various patterns of zooplanctonvertical migrations for different values
of impact of the food factor (alfaA = α).

The numerically obtained solution can be analyzed with
respect to the presence of an important qualitative feature:
the appearance of detectable vertical migrations against the
background of random interference. For this, a threshold value
of the oscillation amplitude is set and the range of depth
variation in the found strategies is compared with it.

For example, the graphs in fig. 1 show different behaviour
of optimal curves of DVM obtained as a solution of the
variational problem for different values of parameter α (fig.2,
alfaA = α). If the threshold value is equal to 1 (meter), then we
have detectable vertical migrations for α = 7, α = 15, α = 17
and we have not them for α = 3.

The second important step is to recognize the presence or
absence of detectable DVM on the base of the approximate
characteristics of the environment. In this case, the key charac-
teristics of the environment (the amount of food, the predator
pressure depending on the depth and the time of day) are not
specified precisely. Only the ranges of their values are known
for a discrete set of arguments corresponding to the location
of the sensors registering these quantities.

To cope with this challenge, a learning multilayered neural
network was implemented and we used previous patterns of
optimal DVM as a training sample. Based on the recognition,
each considered case was assigned to one of two classes of
images - the absence or the presence of detectable vertical
movement corresponding to predicted evolutionarily stable
DVM.

IV. SOFTWARE IMPLEMENTATION

The software for recognition of evolutionarily stable vertical
migrations of zooplankton was developed as a system of
two interconnected complexes. The first complex provides the
possibility of calculating the evolutionarily stable movement
for the given exact functions describing the environment. The
second complex allows one to recognize the presence or



Fig. 2. The result of the numerical solution of the variational problem for
the test case.

absence of oscillations of zooplankton using only approximate
characteristics of the environment.

The first software complex uses as its input, analytical func-
tions describing the current state of the environment (vertical
profiles of food and predator, predator activity, the tempera-
ture, etc) or the input of arrays of their values corresponding
to a discrete set of arguments. The input data are visualized.
Experimental values are given in tabular form (as discrete
sets of input functions values). This data is interpolated. This
data set can be quickly corrected by a visual display of
the interpolation function graph on the screen. As a result
simulation, the theoretical optimal trajectory of DVM can be
constructed.

The efficiency of the first complex was checked using the
above test case. The outcome is shown in fig. 2 constructed
for α = 10, γ = 10, β = 0.01, δ = 0.1. One can see that the
numerical result coincides with the corresponding analytical
result.

We can compare our results with some empirical data.
For example, in accordance with the recent data provided
at http://www.oceannetworks.ca/zap-data-saanich-inlet, zoo-
plankton were located at a depth of 10 meters for one-
half day and at a depth of 100 meters for the second half
of the day. If we expand the depth function in a Fourier
series and take into account the first two terms, we get the
following harmonic approximation x = −55 − 70 cos 2πt.
In accordance with [19], the amount of food E(x) varies
from 20 in the upper water layers (x = −10m) to 0 in
the lower (x = −100m), the predator pressure Sx(x) varies
from 70 to 0, respectively. We use a linear approximation
of these quantities and a quadratic approximation of negative
factors G(x) = −(x − 50)2 when approaching the border. If
α = 100∆ = 0.1, β = 0.001, γ = 29, then we numerically
get the following solution x = −51.5 − 72.7 cos 2πt. This is
in a good agreement with the Fourier approximation of real
behaviour.

Fig. 3. The input data of the food, predator and temperature distribution,
predator activity and the result of the numerical solution.

Then we used some other empirical data on the food,
predator and the temperature distribution from [19], data on
the predator activity according to [4]. The input data and result
are shown in fig. 3.

The base of samples was created using the results of the
work of the first software complex. It contains exact solutions
to the problem of finding evolutionally stable behaviour. They
are used further as training samples. A training sample is
formed as follows: a series of four functions of the environ-
ment is specified, the optimal migration is found and then
the amplitude of the found oscillations is compared with a
predetermined threshold value. If the amplitude is greater than
the threshold, then this precedent is considered as a case of
the presence of the detectable oscillation. If the amplitude is
less than the threshold, it is considered that the oscillation
is not detectable against the background of constant random
noise. Each series of the four external factors is assigned the
logical value of ”yes/no” – the presence/absence of detectable
oscillations. Accordingly, the series of the four external factors
are divided into two non-intersecting classes.

The second software complex is the multilayer neural net-
work. The four-layer neural network is built using the Keras
library software (https://keras.io/) on the Python Tensorflow
framework (www.tensorflow.org).

The input data for the second complex is a discrete set
of values of four external functions of the environment state.
First of all, the glueing of four arrays corresponding to four
input functions is carried out. Then, to use the Keras library
software, the input array is converted into a list of the Numpy
library format (feature vector).

At first, the input list passes through two convolution layers,
after that the max-pooling is applied to reduce dimensionaility
(see fig. 4). Finally, the fully-connected layer is applied to
obtain the resulting value that will be compared with the
threshold. The output information of the second complex is
the answer regarding the presence/absence of DVM under the



Fig. 4. The architectur of the neural network.

given environmental conditions.
We found that the main difficulty of the implementation

of the method consists in teaching the network. The current
accuracy is estimated as the proportion of correctly guessed
answers from the training set. To improve the settings, the
Adam optimizer of Keras library with Cross Entropy loss is
used. It is possible to replenish the base of comparison samples
adding information about new precedents.

The work of the network was checked for some test
cases. For example, we took E(x) = tanh(x) + 1;Sx(x) =
tanh(x) + 1;St(t) = sin(2πt) + 1;G(x) = − cosh(x); the
threshold value 1. In this case, we got the following results:

α = 0.7, β = 0.01, γ = 0.7, δ = 0.1→ NO;

α = 1, β = 0.01, γ = 0.7, δ = 0.1→ NO;

α = 1.5, β = 0.01, γ = 0.7, δ = 0.1→ Y ES;

α = 2, β = 0.01, γ = 0.7, δ = 0.1→ Y ES;

α = 1, β = 0.005, γ = 0.8, δ = 0.1→ Y ES;

α = 1, β = 0.01, γ = 0.8, δ = 0.1→ Y ES;

α = 1, β = 0.03, γ = 0.8, δ = 0.1→ NO;

α = 1, β = 0.07, γ = 0.8, δ = 0.1→ NO.

The above results show the report on the absence/presence
of DVM provided by the first complex. Then we took functions
E(x), Sx(x) and G(x) with accordance to [19], function St(t)
with accordance to [4] and the threshold value of DVM of 3m.
In this case, we got the following results:

α = 50, β = 0.001, γ = 0.1, δ = 0.1→ Y ES;

α = 10, β = 0.001, γ = 0.5, δ = 100→ Y ES;

α = 10, β = 0.001, γ = 50, δ = 0.5→ NO;

α = 10, β = 0.001, γ = 100, δ = 0.1→ NO;

α = 1, β = 0.001, γ = 1000, δ = 0.1→ NO;

In the above outcomes, we can see a mistake in the third
example (line) because the observed amplitude of DVM is
equal to 3.1m. However, the difference between the threshold
and the observed amplitude is relatively small. This is the
actual cause of the mistake.

SHORT SUMMARY

In this study, we develop a novel method and software to
explore evolutionary stable strategies of diel vertical migration
(DVM) of zooplankton. The method combines the theoretical
approach to reveal evolutionary fitness in models and the
computational approach using artificial neural networks to
recognize the presence or absence of detectable DVM based
on the existing base of reference samples. Our straightforward
tests of the new software demonstrated great potential of the
proposed methodology in revealing DVM in the case of partial
information about environmental conditions.

As future extensions, we are planning to analyse a large
number of empirical cases of DVM and include more compli-
cated theoretical models of zooplankton population growth to
better train neural networks.
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