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Abstract—The curse of dimensionality causes well-known and
widely discussed problems for machine learning methods. There
is a hypothesis that usage of Manhattan distance and even frac-
tional quasinorms lp (for p less than 1) can help to overcome the
curse of dimensionality in classification problems. In this study,
we systematically test this hypothesis for 37 binary classification
problems on 25 databases. We confirm that fractional quasinorms
have greater relative contrast or coefficient of variation than
Euclidean norm l2, but we demonstrate also that the distance
concentration shows qualitatively the same behaviour for all
tested norms and quasinorms and the difference between them
decays while dimension tends to infinity. Estimation of classifica-
tion quality for kNN based on different norms and quasinorms
shows that the greater relative contrast does not mean the better
classifier performance and the worst performance for different
databases was shown by the different norms (quasinorms). A
systematic comparison shows that the difference in performance
of kNN based on lp for p=2, 1, and 0.5 is statistically insignificant.

Index Terms—curse of dimensionality, blessing of dimension-
ality, kNN, metrics, high dimension

I. INTRODUCTION

The term “curse of dimensionality” was introduced by
Bellman [1]. Nowadays, this is a general term for problems
related to high dimensional data, for example, for Bayesian
modelling [2], neural networks [3], nearest neighbour predic-
tion [4] and search [5], and many others. Many authors [6],
[7], [8], [9], [10] studied the “meaningfulness” of distance
based classification in high dimensions. These studies are
related to the distance concentration, which means that in high
dimensional space the distances between almost all pairs of
points have almost the same value.

The term “blessing of dimensionality” was introduced by
Kainen in 1997 [11]. The “blessing of dimensionality” con-
siders the same distance concentration effect from the different
point of view [12], [13], [14], [15], [16]. The distance concen-
tration was discovered in the foundation of statistical physics
and analysed further in the context of probability theory,
functional analysis, and geometry (reviewed by [17], [14],
[18], [19]). The blessing of dimensionality allows us to use

The project is supported by the Ministry of Education and Science of the
Russian Federation (Project No 14.Y26.31.0022).

some specific high dimensional properties to solve problems
[21], [20]. The important property is linear separability of
points from random sets in high dimensions [14], [16].

The lp functional ‖x‖p in d dimensional vector space is
defined as

‖x‖p =

(
d∑
i=1

xpi

)1/p

. (1)

It is a norm for p ≥ 1 and a quasinorm for 0 < p < 1 because
of violation of the triangle inequality [30]. It is well known
that for p < q we have ‖x‖p ≥ ‖x‖q,∀x.

Measurement of dissimilarity and errors by subquadratic
functionals reduces the effect of outliers and can help to
construct more robust data analysis methods [31], [8], [19].
Utilisation of these functionals for struggling with the curse
of dimensionality was proposed in several works [8], [19],
[32], [33] [34], [35].

In 2001, C.C. Aggarwal with co-authors [8] described
briefly the effect of using fractional quasinorms for high-
dimensional problems. They demonstrated that using of lp
(p ≤ 1) can compensate the distance concentration. This idea
was used further in many works [22], [23], [10]. One of the
main problems of lp quasinorms usage for p < 1 is time of
calculation of minimal distances and solution of optimization
problems with lp functional (which is even non-convex for
p < 1). Several methods have been developed to accelerate the
calculations [22], [24]. The main outcome of [8] was the use of
Manhattan distance instead of Euclidean one [25], [26], [27].
The main reason for this is the fact that for p < 1 functional
lp is not a norm but is a non-convex quasinorm. All methods
and algorithms which assume triangle inequality [26], [28],
[29] cannot use such a quasinorm.

Comparison of different lp functionals for data mining
problems is yet fragmental, see, for example, [8], [36], [37].
In our study, we performed systematic testing. In general
case distance concentration for lp functionals was less for
lower p but for all p the shape of distance concentration as a
function of dimension is qualitatively the same. Moreover, the
difference in distance concentration for different p decreases
with dimension increasing. We selected 25 databases and
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systematically tested the hypothesis that the measurement of
dissimilarity by subquadratic norms lp(1 ≤ p < 2) or even
quasinorms (0 < p < 1) can help to overcome the curse
of dimensionality in classification problems. We demonstrated
that these norms and quasinorms do not improve k Nearest
Neighbour (kNN) classifiers in high dimensions systematically
and significantly.

There are two main results in this study: (i) usage of
lp functionals with small p does not prevent the distance
concentration and (ii) the smaller distance concentration does
not mean the better accuracy of kNN classification.

The further part of our paper is organised as follows.
Section ‘Measure concentration’ presents results of an em-
pirical test of distance concentration for Relative Contrast
(RC) and Coefficient of Variation (CV) also known as relative
variance. Section ‘Comparison of lp functionals’ describes
the approaches used for lp functionals comparison, the used
databases and the classification quality measures. Results of
the described tests are presented. In Section ‘Discussion’,
discussion and outlook are presented.

All software and databases used for this study can be found
in [38].

II. MEASURE CONCENTRATION

Let us consider a database X with n data points X =
x1, . . . , xn and d real-valued attributes, xi = (xi1, . . . , xid).
We consider databases of two types: randomly generated
database with i.i.d. components from the uniform distribution
on the interval [0, 1] (this section) and real life databases
(Section III). The lp functional for vector x is defined by (1).
For comparability of results in this study, we consider set of
norms and quasinorms used in [8] with one more quasinorm
(l0.01): l0.01, l0.1, l0.5, l1, l2, l4, l10, l∞.

Fig. 1 shows forms of unit level sets for all considered
norms and quasinorms excluding l0.01 and l0.1. For these
two quasinorms, graphs are visually indistinguishable from the
central cross.

Several different indicators were used to study distance
concentration:
• Relative Contrast (RC) [6], [8], [19]

RCp(X, y) =

∣∣maxi ‖xi − y‖p −mini ‖xi − y‖p
∣∣

mini ‖xi − y‖p
;

(2)

Fig. 1. Unit level sets for lp functionals (“Unit spheres”).

TABLE I
COMPARISON OF RC FOR l1 AND l2 FOR DIFFERENT DIMENSION (DIM)

AND DIFFERENT NUMBER OF POINTS

Dim P (RC2 < RC1) for # of points
10 [8] 10 20 100

1 0 0 0 0
2 0.850 0.850 0.960 1.00
3 0.887 0.930 0.996 1.00
4 0.913 0.973 0.996 1.00
10 0.956 0.994 1.00 1.00
15 0.961 1.000 1.00 1.00
20 0.971 0.999 1.00 1.00

100 0.982 1.000 1.00 1.00

• Coefficient of Variations (CV) or relative variance [28],
[29], [19]

CVp(X, y) =

√
var(‖xi − y‖p)

mean(‖xi − y‖p)
, (3)

where var(x) is variance and mean(x) is mean value of
random variable x;

• Hubness (popular nearest neighbours) [10].
In our study, we use RC and CV.

Table 2 in [8] shows that fraction of cases where RC1 >
RC2 increases with dimension. It can be easily shown that for
specific choice of X and y all three relations between RC1

and RC2 are possible RC1(X, y) > RC2(X, y), RC1(X, y) =
RC2(X, y), or RC1(X, y) < RC2(X, y). To evaluate the prob-
abilities of these three outcomes, we performed the following
experiment. We generated dataset X with k points and 100
coordinates. Each coordinate of each point was uniformly
randomly generated for the interval [0, 1]. For each dimen-
sion d = 1, 2, 3, 4, 10, 15, 20, 100, we create d dimensional
database Xd by selection of the first d coordinates of points
in X . We calculated RCp(X) as the mean value of RC for
each point of Xd:

RCp(X) =
1

k

k∑
i=1

RCp(Xd\{xi}, xi),

where X\{y} is the database X without point y. We repeated
this procedure 1000 times and calculated the fraction of cases
when RC1(X) > RC2(X). Results of this experiment are
presented in Table I. Table I shows that for k = 10 points
our results are very similar to the results presented in Table
2 in [8]. Increasing of number of points shows that already
for relatively small number of points (k ≈ 20) for almost all
databases RC1(X) > RC2(X).

This means that appearance of non-negligible fraction of
cases where RC2 > RC1 is caused by very small size of
a sample. For not so small samples we almost always have
RC2 < RC1. The main reason for this is different pairs
of closest and furthest points for different metrics. Several
examples of such sets are presented in Fig. 2. Fig. 2 shows
that RC2 < RC∞ in rows 3, 5, 6, and 8 and RC1 < RC2

in row 6. These results allow us to formulate a hypothesis
that in general case almost always RCp < RCq,∀p > q. RC



Fig. 2. 10 randomly generated sets of 10 points, thin red line connects the
furthest points and bold blue line connects closest points, columns (from left
to right) corresponds to p = 0.01, 0.1, 0.5, 1, 2,∞

widely used to study properties of finite set of points but for
distributions of points the CV is more appropriate. We assume
that for CV hypothesis CVp < CVq,∀p > q is also true.

To check this hypothesis we performed the following exper-
iment. We generated database X with 10,000 points in 200 di-
mensional space. Each coordinate of each point was uniformly
randomly generated for the interval [0, 1]. We selected the set
of dimensions d = 1, 2, 3, 4, 5, 10, 15, . . . , 195, 200 and the
set of lp functionals l0.01, l0.1, l0.5, l1, l2, l4, l10, l∞. For each
dimension d, we prepared the database Xd as the set of the
first d coordinates of points in database X . For each database
Xd and each lp functional, we calculate the set of all pairwise
distances Ddp. Then we estimated the following values:

RCp =
maxDdp −minDdp

minDdp
,CVp =

√
var(Ddp)

mean(Ddp)
.

Graphs of RCp and CVp are presented in Fig. 3. Fig. 3
shows that our hypotheses are true. We can see that RC and
CV as functions of dimension have qualitatively the same
shape but in different scales: RC in the logarithmic scale.
The paper [8] states that qualitatively different behaviour of
maxi ‖xi‖p − maxi ‖xi‖p for different p. We can state that
for relative values we observe qualitatively the same behaviour
with small quantitative difference RCp−RCq which decreases
with dimensionality increasing. This means that there could
be some preference in usage of lower values of p but the
fractional metrics do not provide a panacea from the curse of
dimensionality. To analyse this hypothesis, we study the real
live benchmarks in the next section.

III. COMPARISON OF lp FUNCTIONALS

In the previous section, we demonstrated that RCp is higher
for smaller p. Paper [6] shows that greater RC means ‘more
meaningful’ task for kNN. We decide to compare different
lp functions for kNN classification. Classification has one
additional benefit in comparison with regression and clus-
tering problems: classification quality measure is classifier
independent and similarity measure independent [39]. For this
study, we selected three classification quality measures: Total
Number of Neighbours of the Same Class (TNNSC), accuracy
(fraction of correctly recognised cases), sum of sensitivity
(fraction of correctly solved cases of positive class) and
specificity (fraction of correctly solved cases of negative class).
TNNSC is not an obvious measure of classification quality
and we use it for comparability of our results with [8]. The 11
nearest neighbours as the method of classification was selected
also for comparability with [8].

A. Databases for comparison

We selected 25 databases from UCI data repository [40].
We applied the following criteria for the database selection:

1) Data are not time-series.
2) Database is formed for the binary classification problem.
3) Database does not contain any missed values.
4) Number of attributes is less than number of observations

and is greater than 3.
5) All predictors are binary or numeric.
Totally, we selected 25 databases and 37 binary classifica-

tion problems. For simplicity, further we call each problem

Fig. 3. Changes of RC (left) and CV (right) with dimension increasing for
several metrics



TABLE II
DATABASES SELECTED FOR ANALYSIS

Name Source Dim. Cases
Blood [41] 4 748
Banknote authentication [42] 4 1,372
Cryotherapy [43], [44], [45] 6 90
Vertebral Column [46] 6 310
Immunotherapy [43], [44], [47] 7 90
HTRU2 [48], [49], [50] 8 17,898
ILPD (Indian Liver
Patient Dataset) [51] 10 579
Planning Relax [52] 10 182
MAGIC Gamma Telescope [53] 10 19,020
EEG Eye State [54] 14 14,980
Climate Model Simulation
Crashes [55] 18 540
Diabetic Retinopathy Debrecen [56], [57] 19 1,151
SPECT Heart [58] 22 267
Breast Cancer [59] 30 569
Ionosphere [60] 34 351
QSAR biodegradation [61], [62] 41 1,055
SPECTF Heart [58] 44 267
MiniBooNE particle
identification [63] 50 130,064
First-order theorem proving
(6 tasks) [64], [65] 51 6,118
Connectionist Bench (Sonar) [66] 60 208
Quality Assessment of
Digital Colposcopies (7 tasks) [67], [68] 62 287
Musk 1 [69] 166 476
Musk 2 [69] 166 6,598
Madelon [70], [71] 500 2,600
Gisette [72], [70] 5,000 7,000

a ‘database’. The list of selected databases is presented in
Table II.

We do not try to identify the best database preprocessing
for each database. We simply use three preprocessing for each
database:

• without preprocessing means usage data ‘as is’;
• standardisation means to shift and scale data to have zero

mean and unit variance;
• standard dispersion means to shift and scale data to

belong interval [0, 1].

B. Approaches to comparison

Our purpose is to compare metrics but not to create the
best classifier to solve each problem. Following [8] we use
11NN classifier. One of the reasons to select kNN is strong
dependence of kNN on selected metrics and, on the other
hand, the absence of any assumption about data, exclud-
ing the principle: tell me your neighbours, and will I tell
you what you are. In our study, we consider 11NN with
l0.01, l0.1, l0.5, l1, l2, l4, l10, l∞ as different classifiers.

We applied several approaches to compare several lp func-
tionals (algorithms, classifiers):

• number of databases for which algorithm is the best [73];
• number of databases for which algorithm is the worst

[73];

• number of databases for which algorithm has perfor-
mance which statistically insignificantly different from
the best;

• number of databases for which algorithm has perfor-
mance which statistically insignificantly different from
the worst;

• Friedman test [74], [75] and post hoc Nomenyi test [76]
which were specially developed for multiple algorithms
comparison;

• Wilcoxon signed rank test was used for comparison of
three pairs of metrics.

The first four approaches we call frequency comparison. To
avoid discrepancies, a description of all statistical tests used
is presented below.

1) Proportion estimation: Since accuracy and
TNNSC/(11 × n), where n is number of cases in database,
are proportions we can apply z-test of proportion estimations
[77]. We compare two proportions with the same sample size,
hence, we can use simplified formula for test statistics:

z =
|p1 − p2|√

p1+p2
n

(
1− p1+p2

2

) ,
where p1 and p2 are two proportions to compare. P-value of
this test is probability of observing by chance the same or
greater z if both samples are taken from the same population.
P-value is pz = Φ(−z), where Φ(z) is standard cumulative
normal distribution. We also meet the problem of reasonable
selection of significance level. Selected databases contain from
90 to 130,064 cases. Usage of the same threshold for all
databases is meaningless [78], [79]. The necessary sample size
n can be estimated through the specified significance level of
1 − α, the statistical power 1 − β, the expected effect size
e, and the population variance s2. For the normal distribution
(since we use z-test):

n =
2(z1−α + z1−β)2s2

d2
.

In this study, we assume that the significance level is equal
to the statistical power α = β, the expected effect size is 1%
(1% difference in accuracy is big enough), and the population
variance can be estimated by

s2 = n
n+
n

(
1− n+

n

)
=
n+(n− n+)

n
,

where n+ is number of cases in the positive class. Under this
assumptions, we can estimate reasonable significance level as

α = Φ

(
d

s

√
n

8

)
.

Usage of 8 lp functionals means multiple testing. To avoid
overdetection problem, we apply the Bonferroni correction
[80]. From the other side, usage of too big significance level
is also meaningless [78]. As a result we select the significance
level as

α = max

{
1

28
Φ

(
d

s

√
n

8

)
, 0.00001

}
.



Differences between two proportions (TNNSC or accuracies)
is statistically significant if pz < α. It is necessary to stress that
for TNNSC the number of cases is 11n because we consider
11 neighbours for each point.

2) Friedman test and post hoc Nomenyi test: One of the
widely used statistical tests for algorithms comparison on
many databases is Friedman test [74], [75]. To apply this
test, we need firstly to apply tied ranking for the classification
quality measure for one database: if several classifiers provide
exactly the same quality measure then rank of all such classi-
fiers will be equal to average value of the ranks for which they
were tied [75]. Let us denote the number of used databases
as N , the number of used classifiers as m and the rank of
classifier i for database j as rji. Mean rank of classifier i is

Ri =
1

N

N∑
j=1

rji.

Test statistics is

χ2
F =

4N2(m− 1)
(∑m

i=1R
2
i −

m(m+1)2

4

)
4
∑m
i=1

∑N
j=1 r

2
ji −Nm(m+ 1)2

.

Test statistics under null hypothesis that all classifiers have the
same performance follows χ2 distribution with m− 1 degrees
of freedom. P-value of this test is probability of observing
by chance the same or greater χ2

F if all classifiers have the
same performance. P-value is pχ = 1−F (χ2

F ;m− 1), where
F (χ; df) is cumulative χ2 distribution with df degrees of
freedom. Since we have 37 databases only we decide to use
95% significance level.

If Friedman test shows enough evidence to reject null
hypothesis then we can conclude that not all classifiers have
the same performance. To identify the pairs of classifiers
with significantly different performance we applied post hoc
Nomenyi test [76]. Test statistics for comparison of i and j
classifiers is |Ri −Rj |. Critical distance

CD = qαm

√
m(m+ 1)

6N
.

is used to identify pairs with statistically significant differ-
ences. qαm is critical value for Nomenyi test with significance
level of 1 − α and m degrees of freedom. The difference
of classifiers performances is statistically significant with
significance level of 1− α if |Ri −Rj | > CD.

3) Wilcoxon signed rank test: To compare the performance
of two classifiers on several databases we applied Wilcoxon
signed rank test [81]. For this test we used standard Matlab
function signrank [82].

C. Results of comparison

Results of frequency comparison are presented in Table III.
Table III shows that indicator ‘The best’ is not robust and
cannot be considered as a good tool for performance com-
parison [73]. For example, for TNNSC without preprocessing
l0.1 is the best for 11 databases and it is maximal value but
l0.5, l1 and l2 are essentially better if we consider indicator

‘Insignificantly different from the best’: 26 databases for l0.1
and 31 databases for l0.5, l1 and l2. Unfortunately, we cannot
estimate this indicator for ‘sensitivity plus specificity’ quality
measure by used way (it can be done by t-test). Analysis of
Table III shows that in average l0.5, l1, l2 and l4 are the best
and l0.01 and l∞ are the worst. Results of Friedman and post
hoc Nomenyi tests are presented in Table IV. It can be seen
that l1 is the best for 6 of 9 tests and l0.5 is the best for the
remaining 3 tests. From the other side, performances of l0.5, l1
and l2 are insignificantly different for all 9 tests.

We compared 8 different lp functionals on 37 databases.
Authors of [8] formulated the hypotheses that: (i) l1 based
kNN is better than l2 based one and (ii) that the “fractional”
metrics can further improve performance. We can test the
differences between l0.5, l1 and l2 based kNN by direct usage
of Wilcoxon test. This comparison does not take into account
the multiple testing. Results of comparisons are presented in
Table V. The left table shows that for most cases l0.5 and
l1 based kNN have insignificantly different performances and
for the most cases l2 based kNN is slightly worse than the
previous two. Right table shows, that l0.5 and l2 based kNN
are insensitive to preprocessing (performances of both methods
are not significantly different for different preprocessing).
In contrast with these two methods, l1 based kNN shows
significant difference for standard dispersion preprocessing in
comparison with two other preprocessing.

IV. DISCUSSION

Authors of [8] found that l1 “is consistently more preferable
than the Euclidean distance metric for high dimensional data
mining applications”. Our study partially confirmed this find-
ing: kNN with l1 distance frequently demonstrates the better
performance in comparison with l0.01, l0.1, l0.5, l2, l4, l10, l∞
but this difference is not statistically significant. Really per-
formance of kNN on the base of l0.5, l1 and l2 functionals is
indistinguishable. Detailed pairwise comparison of l0.5, l1 and
l2 functionals shows that the performance of l1 based kNN
is more sensitive to used data preprocessing than l2. There is
no unique and unconditional leader in lp functionals. We can
conclude, that lp based kNN with very small p < 0.1 and very
big p > 4 are almost always worse than with 0.1 < p < 4.
Our wide test shows that for all used preprocessing and all
considered classifier quality measures, the performance of lp
based kNN classifiers for l0.5, l1 and l2 are not statistically
significantly different.

There are many questions for further study: does the kNN
performance depend on the “real” data dimension? How can
we measure this dimension? Can the number of l2 based
major principal components be considered as a reasonable
estimate of the “real” data dimension or it is necessary to
use l1 based PCA? Recently developed PQSQ PCA [24]
gives the possibility to create PCA with various subquadratic
functionals, including lp for 0 < p ≤ 2.

Authors of [8] state that “fractional distance metrics can
significantly improve the effectiveness of standard clustering



TABLE III
FREQUENCY COMPARISON FOR TNNSC, ACCURACY AND SENSITIVITY PLUS SPECIFICITY

Indicator\ p for lp functional 0.01 0.1 0.5 1 2 4 10 ∞
TNNSC

Without preprocessing
The best 2 11 5 10 7 1 1 1
The worst 19 0 1 0 1 3 4 8
Insignificantly different from the best 17 26 31 31 31 30 23 22
Insignificantly different from the worst 34 23 17 19 21 21 25 29

Standardisation
The best 0 5 10 11 6 2 1 1
The worst 18 2 0 0 1 2 4 10
Insignificantly different from the best 19 26 33 32 31 30 25 24
Insignificantly different from the worst 35 24 20 19 20 21 25 28

Standard dispersion
The best 1 5 10 13 4 6 1 3
The worst 23 4 2 2 3 3 4 7
Insignificantly different from the best 19 26 32 31 30 29 26 26
Insignificantly different from the worst 36 24 22 21 22 22 26 26

Accuracy
Without preprocessing

The best 3 9 9 15 6 5 1 2
The worst 13 3 1 2 4 4 9 14
Insignificantly different from the best 29 31 34 35 35 35 33 30
Insignificantly different from the worst 35 32 28 28 29 29 30 31

Standardisation
The best 2 5 12 18 7 3 1 1
The worst 13 4 0 0 2 6 7 13
Insignificantly different from the best 30 31 34 34 33 31 32 30
Insignificantly different from the worst 35 32 29 29 30 31 33 33

Standard dispersion
The best 2 7 15 8 8 3 3 6
The worst 18 6 3 4 5 9 8 8
Insignificantly different from the best 30 31 34 33 33 32 31 32
Insignificantly different from the worst 36 33 31 31 31 32 33 32

Sensitivity plus specificity
Without preprocessing

The best 4 8 7 12 7 5 1 1
The worst 14 2 1 1 3 5 8 12

Standardisation
The best 4 7 8 15 7 2 1 0
The worst 13 3 0 0 2 5 4 15

Standard dispersion
The best 5 8 13 6 9 3 4 5
The worst 15 4 2 3 3 7 8 13

TABLE IV
RESULTS OF THE FRIEDMAN TEST AND POST HOC NOMENYI TEST

Preprocessing Quality Friedman’s The best lp Set of insignificantly different
measure p-value p Ri 0.01 0.1 0.5 1 2 4 10 ∞
TNNSC < 0.0001 1 6.2639 X X X X X

Without preprocessing Accuracy < 0.0001 1 6.2639 X X X X
Se+Sp < 0.0001 0.5 6.0556 X X X X

TNNSC < 0.0001 1 6.6944 X X X
Standardisation Accuracy < 0.0001 1 6.8056 X X X

Se+Sp < 0.0001 1 6.4722 X X X X
TNNSC < 0.0001 1 6.4722 X X X X

Standard dispersion Accuracy < 0.0001 0.5 6.0000 X X X X
Se+Sp < 0.0001 0.5 6.0000 X X X X



TABLE V
P-VALUES OF WILCOXON TEST FOR DIFFERENT lp FUNCTIONS (LEFT) AND DIFFERENT TYPE OF PREPROCESSING (RIGHT): W FOR DATA WITHOUT
PREPROCESSING, S FOR STANDARDISED AND D FOR STANDARD DISPERSION PREPROCESSING, SE+SP STANDS FOR SENSITIVITY PLUS SPECIFICITY

Preprocessing Quality p-value for lp and lq Quality p of lp p-value for pair of preprocessing
measure 0.5 & 1 0.5 & 2 1 & 2 measure function W & S W & D S & D
TNNSC 0.6348 0.3418 0.0469 0.5 0.5732 0.8382 0.6151

Without preprocessing Accuracy 0.9181 0.0657 0.0064 TNNSC 1 0.9199 0.5283 0.1792
Se+Sp 0.8517 0.0306 0.0022 2 0.9039 0.3832 0.1418

TNNSC 0.3098 0.1275 0.0014 0.5 0.8446 0.5128 0.3217
Standardised Accuracy 0.6680 0.0202 0.0017 Accuracy 1 0.8788 0.0126 0.0091

Se+Sp 0.8793 0.0064 0.0011 2 0.5327 0.3127 0.3436
Standard TNNSC 0.7364 0.0350 0.0056 0.5 0.6165 0.2628 0.0644
dispersion Accuracy 0.1525 0.0218 0.2002 Se+Sp 1 0.5862 0.0054 0.0067

Se+Sp 0.1169 0.0129 0.3042 2 0.6292 0.3341 0.4780

algorithms”. Our experiments show that for both consid-
ered distance concentration measures inequalities RCp <
RCq,∀p > q and CVp < CVq,∀p > q hold. From the
other side, our results show that there is no direct relation
between distance concentration (e.g. RC or CV) and quality of
classifiers: l0.01 based kNN has one of the worst performance
but the greatest RC and CV. The question about performance
of clustering algorithms with different lp functionals remains
still open. This problem seems to be less clearly posed than
for classification because there is no unconditional criteria of
“proper clustering”.
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