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Abstract—Object handling and manipulation are vital skills
for humans and autonomous humanoid robots. The fundamental
bases of how our brain solves such tasks remain largely unknown.
Here we develop a novel approach that addresses the problem
of limb movements in time-evolving situations at an abstract
cognitive level. We exploit the concept of generalized cognitive
maps constructed in the so-called handspace by a neural network
simulating a wave simultaneously exploring different subject
actions, independently on the number of objects in the workspace.
We show that the approach is scalable to limbs with minimalistic
and redundant numbers of degrees of freedom (DoF). It also
allows biasing the effort of reaching a target among different
DoF.

I. INTRODUCTION

The effective and efficient object handling and manipulation

are vital for humans’ daily life. In this context, the sensory-

motor abilities ordinarily exhibited by humans may appear

simple at first glance. However, many of them, e.g., playing

ping-pong, require forecasting the future states of different

objects in the environment, their matching with feasible body

movements, and selecting optimal strategies. The intrinsic

complexity of these simple-but-difficult tasks impedes modern

robots to mimic smoothly even basic human sensory-motor

skills in real-life scenarios.

An extensive literature suggests that a purely programmatic

approach to the problem of limb movement can only work in

tailor-made scenarios [1]. It is not robust to changes in the

environment and requires complete rebuilding if, e.g., we try

to transfer mathematical methods developed for a manipulator

with minimal number of degrees of freedom (DoF) to a

redundant one [2]. Thus, the problem of effective manipulation

of objects requires support at an abstract cognitive level.

Growing experimental evidence suggests that mammals,

and humans in particular, use an internal representation of

the environment and their body for movement planing and

execution [3]–[8]. Such a representation can be implemented

in the form of cognitive maps, which provide an abstract

description of the environment. A cognitive map structures

relevant geometric information and rules on how a subject can

act in a given situation. Usually it offers multiple solutions,

which allows selecting different strategies to accomplish the

goal [8]–[10]. However, the concept of cognitive maps is

limited to the description of static situations [11]. When a

scenario rapidly changes in time, creating individual cognitive

maps for each time frame becomes unfeasible.

Existing works dealing with manipulators usually exploit

one of the following paradigms: 1) The potential field method,

originally putted forward by Khatib [12]–[14]; 2) The tech-

nique based on learning from demonstration [15]–[17]; 3) The

dynamical system approach based on construction of attractors

and repellers in a phase space [18]; and 4) The neural network

approach for solving the kinematic problem [19], [20]. Despite

important results recently obtained, still most of the works

deal with either static or quasi-static situations and pay little

attention to the cognitive abilities of the developed solutions.

Moreover, frequently the provided approaches have a limited

level of abstraction and hence lack scalability or portability.

In this work, we develop a general neural network approach

implementing the concept of cognitive maps for a versatile

controlling of limbs in time-evolving situations. The approach

provides a robust scalable solution and is applicable to limbs

with minimalistic and redundant number of DoF. It also allows

setting a constraint that can bias efforts in target reaching

among different DoF.

Earlier, we generalized the notion of cognitive maps into

time-evolving situations and introduced the so-called gener-

alized cognitive maps (GCMs) [11], [21]. Briefly, a GCM is
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built by a wave propagating in a neural network that models all

possible subject’s movements. The wave extracts the relevant

spatiotemporal events from the environment and projects them

into a purely spatial map. Thus, the explicit time dimension

disappears and we get a static representation that can further be

used for path planing and execution, like an ordinary cognitive

map [22], [23].

The original procedure of building GCMs [11] assumes that

the subject (human or robot) has a rigid body, i.e., there are

no internal degrees of freedom. Then, the essential spatial

extension and changing geometry of a limb bring an additional

degree of complexity. Thus, GCMs cannot be applied straight-

forwardly to control limb movements. To resolve this problem,

recently we have proposed a transformation from a workspace

to a new space, which allows extending the GCM-theory into

limbs with minimalistic DoF [24], [25]. In the new task or the

so-called handspace [26] we can easily build GCMs and trace

global collision-free trajectories for limb movements. In this

work, we further develop and generalize the GCM concept

and apply it to limbs with minimalistic and redundant DoF.

II. THE PROBLEM

Figure 1 illustrates a kinematic model of an upper limb

consisting of three segments moving in a two-dimensional

workspace, W ⊂ R
2. The limb shoulder is fixed at the origin

of the (x1, x2)–plane and it is joined to an articulated elbow

by a rigid segment of length ρ. A forearm of length l joins the

elbow with the hand located at ~xh ∈ W . The wrist can bend,

thus changing the angle of the last limb segment of length h.

To simplify further calculations, we rescale the spatial

coordinates in such a way that the length of the forearm is

l = 1 a.u. We then restrict the limb’s workspace to:

W = Bρ+1+h \ {~0} ⊂ R
2, (1)

i.e., to a disk of radius (ρ+1+h) centered at the origin (here

and further on, Br denotes a closed disk of radius r centered

at the origin).

The shoulder, elbow, and wrist joints can freely rotate

within specific angular limits that depend on the internal limb

structure. Thus, we have 3 DoF in a 2D workspace and hence

the upper limb has redundant DoF. Our goal is to touch by the

last segment (hand) a target avoiding collisions with obstacles.

Figure 1 illustrates a simple situation with a point target and

a point obstacle, marked by ~xt and ~x, respectively. Further,

we will generalize this setting into a situation with multiple

moving targets and obstacles of arbitrary shapes. We also note

that the target cannot be touched by the upper arm and forearm,

i.e., it plays the role of an obstacle for these segments of the

limb.

We now aim at providing a neural network model capable

of driving the limb in different time-evolving situations. For

example, the limb should kick a falling ball and simultaneously

avoid collisions with other, in general moving, objects. The

model will implement an approach based on construction

of Generalized Cognitive Maps [11], [24], [25]. To build a

GCM, we simultaneously perform [11]: i) prediction of the

φ

x1

x2

l = 1

ρ
~x

W

α

h

~xt

~xh

θ

Fig. 1. Model of an upper limb with 3 DoFs in a 2D workspace W . The
shoulder is fixed at the origin. The upper arm, forearm, and hand have lengths
ρ, l = 1, and h a.u., respectively. The upper arm forms the angle φ with the
direction to the point-like obstacle located at ~x (red circle). The forearm has
the angle θ with the upper arm, and α is the angle of the hand. The limb
segments can freely rotate within specific limits (around red points in open
circles). The goal is to reach the target at ~xt (green circle) by the hand
avoiding collisions.

object movements and ii) simulation of all possible subject

actions and matching them with the object movements. Both

calculations are performed “mentally” in neural networks and

must be done significantly faster than the time scale of the

dynamic situation (for more details, see [23]). Thus, in what

follows we will deal with two times: 1) t is the “real” time in

the workspaceW , and 2) τ is the “mental” time used in mental

calculations made by the neural networks in H. A sufficiently

fast calculation in mental time τ can be achieved either by a

parallel computation in hardware or through learning process

(for more details, see [22]). Then, having a solution in H, we

can rescale time τ to implement a real movement in W .

III. HANDSPACE TRANSFORMATION

To enable the use of generalized cognitive maps, we first

have to eliminate the limb spatial dimensions and rotational

degrees of freedom. This allows representing the limb as a

point in some equivalent space. Let us now introduce the so-

called handspace [24], [25]:

H3 =
(

B1+ρ \ Bmax{0,1−ρ}

)

× J ⊂ R
3, (2)

where J = [αmin, αmax] is the feasible interval of the wrist

angles. We note that the hand location and angle belong to this

space, i.e., (xh, α) ∈ H3. In general, H3 is a cylinder with a

hole in the center. For the sake of simplicity and without loss

of generality, in what follows, we assume ρ ≥ 1. Then, H3 is

a cylinder without the line segment in the center {(0, 0)}×J .

Note that dim(H3) = 3 > dim(W) = 2 and hence we

deal with a limb with redundant DoF. We can also consider

a reduction of the handspace (2) to two dimensions: H2 =
H3(α

∗). In this case the hand angle (Fig. 1) is fixed α = α∗,
i.e., the wrist is rigid and the limb is minimalistic [DoF =
dim(W)]. Then, H2 is a disk without a point at the origin.

The technique to introduce a mapping from W to H2

has been described elsewhere [24], [25]. Here we briefly

summarize the earlier result and provide its extension to a

3D case. Without loss of generality, let us first assume that

there exists a point-like target and a point-like obstacle in W
(Fig. 1, green and red circles, respectively).
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Fig. 2. Wave exploration of the handspace for a dynamic situation. A) Simple dynamic situation. A hand (last segment of the limb shown in black) should
kick a falling ball (in pink). The limb can have either 2 DoF (i.e., the wrist joint is fixed) or 3 DoF (the wrist is flexible). Gray dashed circles mark regions
reachable by different segments. B) The process of generation of a generalized cognitive map for the limb with 2 DoF in the hand space H2. Successive
snapshots illustrate a traveling wavefront exploring the environment (colored region) and the extended object corresponding to the falling ball (in black,
snapshots τ = 15, τ = 30). The wave generates a potential field (colors from blue to red) and an effective object (in white, snapshot τ = 200). C) The same
as in (B) but for the limb with 3 DoF in the hand space H3.

A. Compaction of Limb

The mapping of the limb is given:

C : P(W) → H3

L 7→ C(L) = (~xh, α),
(3)

where L ⊂ W represents the union of the upper arm, forearm,

and hand segments. Thus, the whole limb is reduced to a single

point located at (~xh, α) in the handspace H3. Note that if α
is fixed (rigid wrist) we get a mapping to H2.

B. Extension of Objects

While the limb is mapped into a point in the handspace, the

mapping of objects goes in opposite way. A point-like object

is extended into a set of curves in H2 and into a set of surfaces

in H3. Each curve or surface corresponds to collisions of the

point object with different points along a given segment of

the limb. Geometrically, such an extended object represents

the locus of wrist locations and hand angles while the limb

slides around the obstacle in the workspace.

To illustrate such a situation in H2, let us consider a limb

actuating in a dynamic situation: a ball moves in the workspace

(Fig. 2A). Then, for each time instant t, the ball occupies

different positions in the workspace W . Figure 2B (black

areas in snapshots corresponding to mental time τ = 15 and

τ = 30) illustrates the changing shape and the displacement

of the extended ball in H2. Similar but even more evolved

representations of the extended 3D object can be obtained in

H3.

Let us now describe the mapping. We consider a point object

located at some fixed t at x ∈ W . Then the map extending

the point can be expressed as:

E : W → P(H3)
x 7→ E(~x).

(4)

Since the object can collide with tree limb segments, the image

will be given by E(~x) = E1(~x)∪E2(~x)∪E3(~x), where E1,2,3

represent the extensions due to collisions with the upper arm,

forearm, and hand, respectively. Note that depending on the

position of the object x, some of Ej can be empty (e.g., if

x /∈ Bρ, then E1(~x) = ∅).

1) Extension due to collision with upper arm: If the object

is reachable by the upper arm, a contact with this segment can

take place whenever φ = 0. Thus, we obtain the expansion:

E1(~x) = {F1(θ, ~x) : θ ∈ [0, π]} × J, (5)

where

F1 (θ, ~x) =M

(

ρ− cos θ
sin θ

)

(6)

and

M =
1

‖~x‖

(

x1 −x2

x2 x1

)

, ~x = (x1, x2)
T

(7)

is the rotation matrix. Note that the constraint on θ in (5) is

imposed by assuming that the elbow joint can rotate in the

limits [0, π] (a human-like limb). Otherwise it can be relaxed.
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Fig. 3. Effective static objects and execution of limb movement for the situation shown in Fig. 2. A) Effective object in H2 (amplified from Fig. 2B,
τ = 200) contains two parts: effective target (in green) and effective obstacle (in red). B) Same as in (A) but in H3. C) Three representative examples of
limb movements receiving the ball with significantly different hand angles. The movement shown in Panel 1 can be implemented in a 2-DoF manipulator,
whereas Panels 1–3 are available for a 3-DoF manipulator.

2) Extension due to collision with forearm: Let us assume

that the object is reachable by the forearm. Then, its expansion

is given by:

E2(~x) = {F2(φ, ~x) : φ ∈ [−φmax, 0]} × J, (8)

where

F2 (φ, ~x) =
~x

λ~x(φ)
− ρ

[

1

λ~x(φ)
− 1

]

M

(

cosφ
sinφ

)

(9)

and

λ~x(φ) = (ρ2 + ‖~x‖2 − 2ρ‖~x‖ cosφ)
1

2 (10)

is the distance between the elbow and the object. Note that

φ ≤ 0 and λ~x(φ) ≤ 1. The lower bound for φ in (8) is given

by

φmax(~x) = arccos

(

ρ2 + ‖~x‖2 − 1

2ρ‖~x‖

)

. (11)

3) Extension due to collision with hand: Assuming that the

hand has an angle α ∈ J and is in contact with the object at a

distance d = ‖~x− ~xh‖ ≤ h, then the expansion of the object

is given by

E3(~x) = {F3(d, α, ~x) : d ∈ [dmin, h], α ∈ J} , (12)

where

F3 (d, α, ~x) = ~xe +
sign(α)

β~x‖~x− ~xe‖
(I2 + dRα) (~x− ~xe), (13)

Rα is the standard clockwise rotational matrix,

β~x = (1 + d2 + 2d cosα)
1

2 (14)

is the distance between the elbow and the object, and

~xe =
1

2‖~x‖
M

(

‖~x‖2 + ρ2 − λ2
~x

−
[

(2‖~x‖ρ)2 − (‖~x‖2 + ρ2 − λ2
~x)

2
]

1

2

)

.

(15)

The lower bound for d in (12) is given by

dmin(α, ~x) =
[

(‖~x‖ − ρ)2 − sin2 α
]

1

2 − cosα (16)

if it is positive, or dmin = 0 otherwise.

Finally, when dealing with a real object of an arbitrary

shape, the transformation (4) is applied to the object’s bound-

ary. This generates extended objects occupying areas in H2

(see, e.g., Fig. 2B, panel τ = 15, in black) or volumes in H3

(not shown in Fig. 2C for visual clarity).

IV. EXPLORATION OF HANDSPACE AND GENERALIZED

COGNITIVE MAPS

As mentioned above, to construct a GCM we perform:

i) prediction of the objects’ movements and ii) simulation

of all possible subject’s actions matched with the objects’

movements. There are several ways to solve the first problem

(see, e.g., [11], [22], [24]). For the sake of simplicity, here

we assume that the trajectories of all objects are given and

hence we will concentrate on solving the second, much more

complex task.

Using the predicted trajectories of objects in the workspace,

we can evaluate for each time instant τ their extended images

in the handspace (Fig. 2B, black areas). Then, we can simulate

all possible hand movements by a wave (see, for details, [11],

[22]). In the handspace H3, the wave is initiated at the location

of the wrist and the initial hand angle (~xh(0), α(0)), whereas

in H2 it starts from ~xh(0) (α = 0). Figures 2B and 2C

illustrate the process of wave propagation in H2 and H3,

respectively.

The set of points on the wavefront represents all possible

configurations of the limb (wrist location and hand angle) at

time τ . If the wavefront collides with an extended object, then

such an event corresponds to a possible collision of the limb

and the object. Then, we create in the handspace effective static

objects at the locations of such collisions.

Figures 3A and 3B illustrate the shapes of the effective

static objects obtained in H2 and H3, respectively (see also

Figs. 2B and 2C, panels τ = 200). In both cases, one part of

the effective object (shown in green) corresponds to a target,

i.e., to collisions of the ball with the hand in the workspace,

while the other one (shown in red) marks collisions of the ball

with forearm. Thus, the effective static objects should be either

avoided (obstacles) or reached (targets). Using the potential

2018 International Joint Conference on Neural Networks (IJCNN)1185



field (Figs. 2B, 2C, τ = 200) and the effective objects (Figs.

3B, 3C), we can trace different trajectories to the target.

Let us now implement the wave process leading to forma-

tion of effective objects and a potential field guiding the limb.

A. Simulation of Possible Subject Actions

In earlier works, we considered 2D internal representations

of workspaces and postulated a constant velocity c for the

explorative wave [11], [24], [25]. This is equivalent to consid-

ering the handspace H2 of the limb with a rigid wrist. Then,

the velocity of the wrist ~v = d~xh/dt ∈ R
2 satisfies ‖~v‖ = c

(implementing, e.g., maximally fast displacement).

Now we take into account the rotation of the wrist joint

with an angular velocity ω = dα/dt ∈ R. Then, we impose

the following constraint on the compound velocity:

‖~v‖2(t) + γ0ω
2(t) = c2, (17)

where γ0 is the bias between the velocity of motions in

(x1, x2)–plane and rotation of the wrist. Note that such a

formulation is similar to fixing the kinetic energy of the limb.

To account for constraint (17) in the handspace H3, we

design a neural network in the form of a 3D cylindrical lattice:

Λ =
{

(i, j, k) ∈ Z
3 : i2 + j2 ≤ r2, 1 ≤ k ≤ K

}

, (18)

where the constant r ∈ N defines the spatial resolution in

(x1, x2) and is linked with the value (ρ+ 1); K ∈ N defines

the resolution for the wrist bending, linked with |J |.
On the lattice Λ we define the following dynamical system:

duI

dτ
= qI

(

f(uI) + d0(∆x + γ∆α)uI

)

, (19)

where I = (i, j, k) ∈ Λ; uI is the membrane potential

of neuron I; ∆x, ∆α are the discrete Laplacians in the

corresponding variables; and f(u) = u(u− 0.1)(1− u) is the

cubic nonlinearity, selected to ensure propagation of waves

in the lattice. The binary function qI(τ) ∈ {0, 1} describes

formation of effective objects and will be discussed later. The

diffusion coefficient d0 can be adjusted to account for the

velocity of the arm movements in the workspace c and the

velocity bias

γ = γ0
(ρ+ 1)2K2

r2|J |2
. (20)

We note that for γ = 0 Eq. (19) is reduced to the system

on a disk (e.g., in H2). It corresponds to movements with a

rigid wrist joint. Thus, model (19) generalizes our previous

developments restricted to H2 [24], [25]. The other limit γ →
∞ and d0γ = const corresponds to the situation where the

wrist bending is the only available movement, i.e., we force

the upper arm and forearm to stay immobile.

The dynamical system (19) is considered with Neumann

boundary conditions (on the cylinder and extended objects).

At the beginning the neurons are set to uI(0) = 0 ∀I ∈ Λ\L,

uI(0) = 1 ∀I ∈ L, where L is a small spheroid region

centered at the initial hand position Ih(0) [counterpart of

(~xh(0), α(0))] and with the eccentricity defined by γ. Such

an initial condition ensures correct formation of a spheroid

wavefront at the beginning of integration of (19). We also

note that qI(τ) = 0 ∀I ∈ L and hence uI(τ) = 1 ∀τ ≥ 0.

B. Formation of Effective Static Objects

At τ > 0, a wavefront propagates in the lattice (19) and

switches cells from the initial downstate (uI = 0) to the

upstate (uI = 1). Figures 2B and 2C show the wavefront

simulating the same dynamic situation (Fig. 2A), but in H2

and H3, respectively. The time instant τ = bI when cell I
crosses a threshold (i.e., uI(bI) = uth) is stored. Thus, behind

the wavefront we obtained a potential field:

G = {bI}, I ∈ Λ, (21)

(color coded in Figs. 2B, 2C).

The circular shape (spheroid in H3) of the wavefront at the

beginning (Fig. 2B, τ = 15) means that the hand can move

equally well in all directions. However, this circular shape is

broken once the wave approaches an extended object (Fig. 2B,

τ = 30). Such events correspond to possible collisions of the

limb with the object. Part of these represent collisions with

the forearm and the others with the hand (Figs. 3A and 3B).

The former should be avoided, whereas the latter is desired

(the hand kicks the target in mental simulation).

We note that the process of collision of the wave with an

extended object technically is similar in H2 and H3. However,

in the latter case, the wave propagates in 3D and the resulting

collisions can produce much more evolved forms, in general

not reducible to H2.

Let us now provide mathematical details for the process of

formation of effective obstacles in the neural network (19). It is

convenient to introduce the discrete mental time n = 0, 1, . . .
related to the continuous time by τ = hn, where h is the

integration time step. Then, we denote by Γn the set of cells

{I} ⊂ Λ occupied by the extended objects at time instant n
in the hand space and define the following iterative process:

Ω(0)← ∅
Ωn ← Ωn−1 ∪ δΩn, n = 1, 2, . . .

(22)

where δΩn = {I ∈ Λ : uI(hn) ∈ [0.4, 0.7], I ∈ Γn}.
The dynamical set Ωn describes cells occupied by effective

objects in the network space Λ at time n. It can only grow as

the wavefront explores Λ. Then, we define:

qI(τ) =

{

0, if I ∈ Ωn ∪ L
1, otherwise.

(23)

where τ ∈ [h(n−1)h, hn). Thus, cells in Ωn have duI/dτ = 0
for τ ≥ hn [see Eq. (19)] and hence will exhibit no dynamics

in forward time, i.e., the effective objects are static and the

wavefront slips around them (Figs. 2B, τ = 120 and τ = 200).

C. Motor Execution. Versatile Kicking the Ball

Once the wave has explored the handspace, we get a

potential field (21) and effective static objects (see Figs. 2 and

3, respectively). These taken together represent a Generalized

Cognitive Map of the situation. The effective objects contain

critical information about possible collisions of the limb with

2018 International Joint Conference on Neural Networks (IJCNN) 1186
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Fig. 4. Advantage of a limb with 3-DoF vs 2-DoF. A) Situation similar to Fig. 2A but now with an extra obstacle (blue bar) that “hides” the falling ball. B)
Effective objects in the handspace H3. The obstacle is shown in red and the target in green. Yellow plane corresponds to α = 0. Blue circle marks the initial
position of the limb. To catch the ball it is necessary to bend the wrist joint (rose trajectory with decreasing α(τ). Blue trajectory in the plane α = 0 fails
to reach the target. C) Examples of motor execution of trajectories shown in (B). In the case of a limb with flexible wrist, the ball can be caught (panel 1),
whereas the 2-DoF limb fails to reach the target (panel 2).

the objects in the workspace. The gradient profile of the

potential field ∇G imposes rules the limb should follow to

reach the target.

We thus use a gradient descend method to find feasible

trajectories connecting positions of the effective target and

the initial location of the limb Ih(0). Figures 3A and 3B

(arrowed curves) show three representative examples of the

trajectories. By construction of the field with a wavefront, such

trajectories circumvent effective obstacles in the handspace.

However, what is more important, if the limb follows one of

the trajectories in the workspace [11]:

• The hand will reach the target;

• During the move, the limb (forearm and upper arm) will

not bump against obstacles.

Therefore, in order to actuate in a given dynamic situation,

we use one of the trajectories obtained in the handspace.

Figure 3C shows examples of the motor execution in the

workspace. In both cases, the limb successfully accomplishes

the task “reach the target and avoid collisions with obstacles”,

as expected. However, in the 2-DoF case the repertoire of

possible angles of the hand when kicking the ball is very

limited (panel 1 in Fig. 3C). Playing a game, the ball can

be rebound to the “up-right”. The handspace H3 provides

significantly reacher dynamics. In this case, we can easily

choose the desired kick angle by selecting the value α(τend).
For example, Fig. 3C exemplifies two other choices that lead

to kicks directed to the “up-left” and to the “right” (panels 2

and 3, respectively).

V. OBJECT CATCHING IN PRESENCE OF OBSTACLES

The dynamic situation described above was intentionally

selected simple enough to gain clarity. Nevertheless, the dis-

cussed approach is aplicable to situations of arbitrary complex-

ity. To illustrate the potential of the method, let us consider

a situation similar to that shown in Fig. 2A, but now with

an extra obstacle (Fig. 4A). In this case the falling ball is

reachable by the limb during some time interval only. Then,

it hides behind the blue bar.

We repeated simulations described in previous sections.

Figure 4B shows the effective static objects in the handspace

H3. Now the part corresponding to collisions with obstacles

(marked in red) is much bigger than in Fig. 3B. We also notice

that the target (in green) does not intersect the plane α = 0
(shown in yellow). This means that there is no valid trajectory

to the target in the case of the rigid wrist. A valid trajectory

should necessarily change the hand angle α(t) (rose arrowed

curve in Fig. 4B). Although there is no trajectory with α = 0,

we can find one that goes closely to the target (blue arrowed

curve in Fig. 4B).

Figure 4C shows examples of motor execution of limb

movements given by the trajectories shown in Fig. 4B. As

expected the limb with 3DoF (panel 1) intercepts the ball,

while the limb with 2-DoF fails.

VI. CONCLUSIONS

In this work, we have provided and numerically verified

a novel approach that allows solving the problem of object

handling and manipulation on an abstract cognitive level.

We have introduced a neural network capable of creating

generalized cognitive maps in the handspace of a limb. Then

such maps can be used either for direct interaction with the

environment or for building memories and learning [22], [27].

The discussed model generalizes the theoretical develop-

ment of the effective obstacles proposed in [24], [25] for

controlling limbs in dynamic situations. The proposed 3D

neural network can be used for decision-making in problems

of controlling limbs with both minimal and redundant numbers

of DoF. Thus, the approach is scalable, which is crucial for

implementation in humanoid robots. We also note that the

model naturally enables biasing the efforts of reaching a target

among different DoF. Such an ability is frequently observed

in humans playing sport games.

Concluding, the theory of generalized cognitive maps pro-

vides a functional bridge between effective cognition, coping

with direct interaction in a workspace, and abstract cognition,

whose impact over subject’s behavior is less immediate, but

much more profound.
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