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Abstract—This paper presents a technology for simple and
non-iterative improvements of Multilayer and Deep Learning
neural networks and Artificial Intelligence (AI) systems. The
improvements are, in essence, shallow networks constructed
on top of the existing Deep Learning architecture. Theoretical
foundation of the technology is based on Stochastic Separation
Theorems and the ideas of measure concentration. We show that,
subject to mild technical assumptions on statistical properties
of internal signals in Deep Learning Al, with probability close
to one the technology enables instantaneous ”’learning away” of
spurious and systematic errors. The method is illustrated with
numerical examples.

Index Terms—Deep Learning, Stochastic Separation Theo-
rems, Linear Separability, Perceptron, Shallow Networks

I. INTRODUCTION

In recent years, Artificial Intelligence (AI) systems have
risen dramatically from being the subject of mere academical
and focused specialized practical interests to the level of
commonly accepted and widely-spread technology. Industrial
giants such as Google, Amazon, IBM, Microsoft offer a broad
range of Al-based services, including intelligent image and
sound processing and recognition.

As a rule of thumb, Deep Learning and related compu-
tational technologies [1], [2] are currently perceived as the
state-of-the art systems capable of handling large volumes of
data and delivering unprecedented accuracy [3] at a reason-
able computational costs, albeit after some optimization [4].
Despite these advances, several fundamental challenges hider
further progress of the technology.

All Artificial Intelligence systems make mistakes. Mistakes
may arise due to uncertainty that is inherently present in em-
pirical data, data misrepresentation, or imprecise or inaccurate
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training. Conventional approaches aimed at tackling inevitable
errors include altering training data and improving design
procedures [5], [6], [7], [8]. Al knowledge transfer, transfer
learning [9], [10], [11], and privileged learning [12] constitute
a viable way to reduce generalization errors and hence improve
performance. These approaches, however, invoke extensive
training procedures. The latter, whilst eradicating some errors,
are inherently prone to new errors by the very virtue of steps
involved (e.g. mini-batches, randomized training sets etc).

In this work, we propose an alternative. Instead of trying
to solve the issue of inevitable spurious errors arising in
iterative trial-end-error re-training of state-of-the art large Al
systems with sophisticated Deep Learning architectures, we
advocate the technology of non-iterative shallow correctors.
As a concept, the technology has been presented in [13]
(cf. [14]). Here we develop this concept further, extend it to
Deep Learning Al systems, and demonstrate viability of the
technology both theoretically and numerically. Main building
blocks of the technology are simple linear perceptron-type
[15] classifiers. In the theoretical basis of this work are the
ideas of measure concentration [16], [17], [18], [19], [20],
and Stochastic Separation Theorems [21].

We show that, subject to mild assumptions on statistical
properties of “internal” signals in Deep Learning systems,
shallow cascades of simple linear classifiers are an efficient
tool for learning away spurious and systematic errors of Deep
Learning systems. These cascades can be used for learning
new skills too. Remarkably, construction of the cascades
themselves can be achieved in a non-iterative one-shot manner,
making the technology particularly efficient for systems that
have already been deployed and are in operation.

The paper is organized as follows: Section II contains a
formal statement of the problem, Section III presents the main
results, in Section IV we relate functionality of the proposed
linear classifiers to the quadratic ones, Section V provides
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Fig. 1. Shallow cascades for Deep Learning Al

numerical examples illustrating the concept, and Section VI
concludes the paper.

NOTATION

The following notational agreements are used throughout

the paper:
o R denotes the field of real numbers;
o N is the set of natural numbers;
« R" stands for the n-dimensional real space; unless stated
otherwise symbol 7 is reserved to denote dimension of
the underlying linear space;
o let m € R™, then ||x|| is the Euclidean norm of x: ||z| =
7 +tals

. (R) denotes a m-ball of radius R centered at O:
By (R) ={z € R"| ||z|| < R};

e V(Z) is the Lebesgue volume of = C R™;

« if X is a random variable then E[X] is its expected value.

II. PROBLEM STATEMENT

Our main question is: If there exist shallow networks such
that
1) they are able to “improve” performance of state-of-the art
Deep Learning Networks with guaranteed probability;
2) training of these shallow networks can be accomplished
in non-iterative and computationally efficient way?

In order to address this question formally, we shall suppose
that an Al system is an operator mapping elements of its input
set, U, to the set of outputs, Q. Examples of inputs u € U are
images, temporal or spatiotemporal signals, and the outputs
q € Q correspond to labels, classes, or some quantitative
characteristics of the inputs. Inputs w, outputs g, and interval
variables z € Z of the system represent the system’s state.
The state itself may not be available for observation but
some of its variables or relations may be accessed. In other
words, we assume that there is mapping or a process which
assigns an element of * € R"™ to the triple (u,z,q). A
diagram illustrating the setup for a Deep Learning Al system
is shown in Fig. 1 Following standard assumptions (see e.g.
[22], [23]), we suppose that all x are generated in accordance

with some distribution, and the actual measurements @; that
are samples from this distribution. For simplicity, let all such
samples be identically and independently distributed (i.i.d.).
With regards to the elements x;, the following technical
condition is assumed:
Assumption 1: Elements x; are random 1i.i.d. vectors drawn
from a product measure distribution:
Al) their z;;-th components are independent and bounded
random variables X;: -1 < X; <1,j=1,...,n
A2) FE[X;] =0, and E[ij] = 012».
Over a relevant period of time, the Al system generates a finite
but large set of measurements x;. This set is assessed by an
external supervisor and is partitioned into the union of the sets
M and Y

s

M= {:131,...,:13]\/[},

Y= {$M+17 cee 7$M+k}'
The set M may contain measurements corresponding to
expected operation of the AI, whereas elements ) constitute
singularities. The singularities may be both desired (related
e.g. to “important” inputs u) and undesired (related e.g. to
errors of the Al).

The formal question therefore is: If there exists a shallow
network capable of separating the set ) from M? The answer
is provided in the next section.

III. MAIN RESULTS

n
2 _ 2
Ry = g o;.
i=1

Then the following result holds (cf. [21]).

Theorem 1: Let x; be i.i.d. random points from the product
distribution satisfying Assumption 1,0 < d < 1,0 <e <1
and Ry > 0. Then
1) for any ¢,

)
)]

>; @)
p(<m‘ y><5>21—eXp<_

Ro’ Ty > 3

Proof of Theorem 1. The proof follows immediately from

Theorem 2 in [21] and Hoeffding inequality [24]. Indeed, if

t > 0, X; are independent boundei random variables, i.e.

a; < X; <b,i=1,...,n,and X = 1/n) ;" | X; then
2n2t?

Hoeffding inequality implies that
<ot )
) > i1 (bi — ai)?

0242
P (X — E[X]| >t) < 2exp (—%) .

Let

pl1_ . lml?
<

2) for any i,j, @ # j,
&T; &y

P(<Ro RO><5> 21—eXP<_

3) for any given y € [—1,1]"

2R}e?

n

<1+ )21—2exp<—

Ri?

and any 4
Ris?

P (X - E[X] >
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Given that z;; = X; where X; are independent random
variables with —1 < X; < 1, E[X;Z] = 0‘72‘ (Assumption 1),
we observe that [|;[|> = >-7_, X7 and

n 2 n 2
o[BS o] ) -
n
Yo XP R? [EAlR tn
Pl _ O >t|=p( |0 _q]>__
(‘ n n|- < R? ‘_R(%)

< 2exp (—2nt2) .

Denoting ¢ = tn/R§ and recalling that 0 < X7 < 1
we conclude that (1) holds true. Noticing that E[z;,z;i] =
E[Q}zk]E[:Ejk] =0, Flygzir] = 0, =1 < 25 < 1, -1 <
Tjr < 1,and —1 < ypwi < 1 we observe that estimates (2)
and (3) follow. [

Remark 1: Notice that if o7 > 0 then R > nmin;{o?}.
Hence the r.h.s. of (1), (2) become exponentially close to 1
for n large enough.

The following Theorem is now immediate.

Theorem 2 (1-Element separation): Let elements of the set
MUY be ii.d. random points from the product distribution
satisfying Assumption 1, 0 < € < 1, and Ry > 0. Let the
set ) comprises of a single element, i.e. YV = {&p 41}, and
consider

h@):<%?m%?>,h@):&@ﬂ—l+a @)

Then
P (h(xp41) > 0 and h(x;) < 0 for all z; € M)

2 /4 2 /4 1— 2 5
>1—2exp (— Foe ) — M exp <—M> . ©)
n n
Proof of Theorem 2. Recall that for any events Ay, ..., Ay the
following estimate holds
k
P(Ai&Arke- - &Ag) > 1= (1—-P(4;).  (6)
i=1

The statement now follows from (1), (2) with § = 1 — ¢, and
6). O

Remark 2: Theorem 2 not only establishes the fact that
the set M can be separated away from ) by a linear
functional with reasonably high probability. It also specifies
the separating hyperplane, Eq. (4), and provides an estimate
of the probability of such an event, Eq. (5). Note again that
the probability, as a function of n, approaches 1 exponentially
fast.

Let us now move to the case when the set ) contains more
than one element. Theorem 3 below summarizes the result.

Theorem 3 (k-Element separation. Case 1): Let elements
of the set M U Y be i.i.d. random points from the product
distribution satisfying Assumption 1, and Ry > 0. Pick

0<d<l,0<e<l, 1—e—=0(k—1)>0,

and consider

_ k
r T __1 _
gk(w)—<R#O7R—O>7 T = k;$M+u
e 6(k—1)
—

()
hi(x) =l (x) —

Then
P (hy(x;) >0 & hy(x;) <0 for all &, € M, x; €))

4.2 452
>1-—2kexp (—QR;ZE )—k(k— 1) exp <—R3f )

Ral—a—ak—ny>

k2n

— kM exp (
(3)

Proof of Theorem 3. Suppose that ||lx;||?/R2 > 1 — ¢ for all
x; €Y (event A;) and <§—“, %> > —6 for all z;,x; € ),
i # 7 (event As). Then

Sl bk-1)

O (x5) > - for all &; € V.

Consider events Agy;: <R%, m%o*" < %ﬂ(k*) forall ¢ €

M. According to Theorem 1 and Eq. (6)

4.2
P(Ay) >1—2kexp <— 23125 )

P(As) >1—k(k—1)exp (— R352>

n

P(A21i) 21— Mexp <—R3(1 e Ok~ 1))2) :

k2n
Moreover, invoking (6) we obtain

P(A & &Aoiy) >
4.2 452
1 —2kexp (— QRTSE ) —k(k—1)exp (—R(T)f )

Ra1—g—ak—ny>

— kM exp (— =

Noticing that

we conclude that A& ---&Agyy imply that fp(x) <
% for all x € M. Furthermore, A;& A5 imply that
l(x) > %(k_l) for all x € ). The result now follows
0.

Estimate (8) in Theorem 3 does not account for any spurious
correlations in the sets that are to be separated from M. In
practice, however, such correlations might occur. Theorem 4
presents an adapted statement enabling to deal with spurious
or natural correlations.

Theorem 4 (k-Element separation. Case 2): Let elements
of the set M U )Y be i.i.d. random points from the product

2018 International Joint Conference on Neural Networks (IJCNN)



distribution satisfying Assumption 1,0 <e < 1,0 < p < 1l—¢
and Ry > 0. Pick x; € Y and consider

(@) = (5 T ) hla) = tula) 12
Ry’ Ry
T; T —x ©)
{a:e <Ro/ Ro >_M}
Then
P (h(x) > 0 and h(x;) < 0 for all ; € M,x € Q)
4.2 401 _ ~ _ 2
>1—2kexp (—2R0€ )—Mexp (—M .
n n
(10)

Proof of Theorem 4. Let |z;||*> > 1 —e. Then h(z) > 0 for
all x € Q. Estimate (10) hence follows from Theorem 1 and
Eq. (6). O

IV. DiscusSION

The results presented in Theorems 1 — 4 state that simple
and elementary shallow systems are capable of singling out
random spurious errors of larger Al systems. The results can be
generalized to a broad range of distributions, including to non
i.i.d. settings (see [25] for details and bounds). Isolation of the
errors can be implemented in a non-iterative and remarkably
simple way. Moreover, such isolation can be achieved with
linear functionals. In addition to simplicity and computational
efficiency of linear functionals, they also offer good gener-
alization capabilities. And in fact, as we show below, they
may be exponentially better than e.g. n-balls or ellipsoids,
depending on the radius.

To demonstrate this point, recall that ; concentrate in a
vicinity of an m — l-sphere centered at the origin. Linear
functionals (4), (7), (9) “cut”-off their corresponding spherical

caps from this sphere. Consider
<i,£> >1 —s} o an
[l

ple)=(1-(1-2)%
Note that p(¢) is the radius of the ball containing the spherical
cup C,. Lemma 1 estimates volumes of spherical caps Cy, (&)
relative to relevant n-balls of radius p(e).
Lemma I: Let Cy(e) be a spherical cap defined as in (11),
¢ € (0,1). Then

ple)™* F FE+1D ] _ V(G _ pe)"

Cn(e) = Ba(1) N {5 eR"

Let

2 T (5+3)| VB~ 2

Note that [26] V(B,(r)) = V(B,(1)) for all n € N
r > 0. Hence the estimate of V(C),(g)) from above is:

V(Ca(2) < ZVBAD)IE)" (12

Let us calculate the estimate of V(C,,(¢)) from below. It is
clear that

V(Co(e)) = V(B (1) /

1—¢

1
n—1

(1-4%)3

dx

The integral in the right-hand side of the above expression can
be estimated from below as

1 R 1
/ (1—2?)"7 dz > /
1 1—¢

(1 —1‘2)%13:(136

71 1 ntl 1 1
:—.n (1_(1_5)2)T:—n .p(g)""'l
2 543 2 543
_ _z% . — 2T
Recall that B, (1) = REnk I(z+ 1) = 2'(x). Hence
—1
1 T2 1
Bn_l(l) n = n n
5+3 T(E+3)5+3
ﬂ-n;l
r (n;rl + 1) ’
and
1 n
n1 1 1 T(5+1)
(1—2%)7= do > SV(Ba(1)p(e)"™ | 5 73
/1_5 2 n3 (3 +3)
O

Corollary 1: Let Cy,(¢) be a spherical cap defined as in (11),
e € (0,1), and B, (kp(¢)) be an n-ball with radius kp(e),
k € Rsp. Then

V(Bulkp(e)) _ anL [r (&4 1)}—1

V(Cn(e)) p(e) |T (% + %)
Remark 3: Using Stirling’s approximation we observe that
I'(2+1 1
—(2 3) =0 (n_i) .
T (5+3)
V(B (e n 1/2
Thus ﬁ% < k"H(n,e) where H(n,e) = O (% ).

According to Corollary 1 the volumes of B,,(g), B, (kp(¢)),
% € (0,1) decay exponentially with dimension n relative to
that of Cy,(¢). This implies that distance-based detectors are
extremely localized, and in comparison with simple percep-
trons, the proportion of points to which they respond positively
is negligibly small. On the other hand, filtering properties of
simple perceptrons are extreme in high dimension (Theorems
2-4). This combination of properties makes perceptrons and
their ensembles particularly attractive for fine-tuning of exist-
ing Al systems.

V. EXAMPLES

In this section we illustrate our theoretical results with two
numerical examples: 1) a synthetic test in an n-hypercube
illustrating how linear separability changes with dimension-
ality of n (Theorem 2), and 2) recognition of gestures from
American Sign Language.

A. Example 1. A synthetic test in a hypercube

In this example, we generated sets of M = 10% random
vectors in [—1,1]™ for various values of n. We randomly
picked a point in each sample and constructed separation
hyperplanes h in accordance with (4). This was followed by
the assessment of whether the sign of i(x) for all remaining
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Fig. 2. The probability (frequency) that an element of the set M (formed by
random i.i.d. vectors drawn from the n-cube [—1,1]™) is linearly separable
from the rest as a function of n. M = |M| = 10%. Triangles indicate
minimum/maximum values in each trial, stars show sample means.

elements x in the sample is negative. The procedure was
repeated 200 times for each n, and the frequency of successful
separations recorded. The results are summarized in Figure
2. As one can see from this figure, the probability estimate
(frequency) rapidly approaches 1 when n ~ 20 and stays close
to 1 for larger values of n, as expected.

B. Example 2. An Algorithm For Distinguishing The Ten
Digits In American Sign Language

1) Shallow corrector algorithm: The algorithm is a six-step
process where the inputs are the sets S and ) (cf. [27], [28]).
The set S contains states a; for all images that have been
assessed. The states x; are the vectors containing the values
of pre-softmax layer bottlenecks of size n for however many
neurons are in the penultimate layer. Elements of this set that
gave incorrect readings are noted and copied into the set ).

1) Centering. First the current data available is centered.
The centered sets are denoted as S, and ), and are
formed by subtracting the means Z(S), ()) from the
elements of S and ), respectively:

S.={zeR"z=¢(—T(S), £ €S}

Ve={z eR"|x =€ -Z(S), £ € V}.

2) Regularization. The covariance matrix of S is calculated
along with the corresponding eigenvalues and eigenvec-
tors. The mean eigenvalue is then calculated and new
regularized sets S, ), are produced as follows. All
eigenvectors that correspond to the eigenvalues which
are above the given mean are combined into a single
matrix H. The transpose of this new matrix is multiplied
by the original values of x; € S, creating regularised
data of smaller dimension (Kaiser-Guttman test [29]):

S, ={xeRe=H"¢ ¢S}

YV, ={xecR"x=H'¢ cc).}.

3) Whitening. The two sets then undergo a whitening
coordinate transformation ensuring that the covariance
matrix of the transformed data is the identity matrix:

Sy ={x € R"w=Cov(S,) 26, £€S,}
Vo = {m € R™|x = Cov(S,)2¢, £ €V, ).

4) Training: Clustering. The set ), (the set of errors) is
then partitioned into p clusters VYV 1,...,Vwp that’s
elements are pairwise positively correlated.

5) Training: Shallow aggregation. For each Y, ;, ¢ =
1,...,p and its complement S, \ V. ; we construct
the following separating hyperplanes:

hl(il?) :gl(df) — G,
Wi . Wy
0= (=)~ 2 (g ©)

w; =(Cov(Sy \ Vi) + Cov(Ves)) tx
(@(Vwi) = Z(Sw \ Vuwi))-

6) Deployment stage. At the deployment stage, any x that
is generated by the original Deep Learning Al is put
through the ensemble h;(x), and then if for some & any
of the values of h;(x) > 0 then the corresponding x is
reported accordingly and can be swapped, or reported
as error or deleted from the set if necessary.

In addition to the sequence of steps outlined above we have
also experimented with a slightly modified procedure in which
an optional projection step, step 3*), is introduced after the
whitening transformation:

3*) Optional: projection onto the unit sphere. Project the
whitened data onto the unit sphere by replacing the
elements of S, ), With their corresponding normalized
values:  — x/||z||.

Note that individual components of the data vectors may no
longer satisfy the independence assumption. Nevertheless, if
the data is reasonably equidistributed, stochastic separation
theorems [21], [25], [28], [27] may apply to this case too.

2) Setup and Datasets: In this example we run Inception
algorithm! on ten sets of images that correspond to the
American Sign Language pictures for 0-9 (see Fig. 3). The

aaiho b b
ek ol ol ok

Fig. 3. Examples of the sort of images that appear in the current model’s
data set of the American Sign Language single hand positions for O (top left)
to 9 (bottom right)

o

original set of flower pictures that Inception provided by

Uhttps://www.tensorflow.org/tutorials/image_retraining
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Histogram of the maximal scores of the images corresponding to

TABLE I
ERRORS PER GESTURE (MISCLASSIFICATIONS). TOP ROW CORRESPONDS
TO THE GESTURE NUMBER, THE BOTTOM ROW INDICATES THE NUMBER
OF ERRORS FOR EACH GESTURE.

0 1 2 3 4 5 6 7 8 9
235 | 62 | 410 | 80 | 269 | 327 | 207 | 108

default were switched with a series of 1000 images we took
for each of the ten gestures. These sets contained profile shots
of the person’s hand, along with 3/4 profiles and looking from
above and below.

3) Experiments and results: Once the network was trained,
additional 10000 images of the same ratio were evaluated
using the trained system. The result was an 82.4% success
rate for the adapted algorithm. For these experiments the
classification decision rule was to return a gesture number
that corresponds to the network output with the highest score
(winner-takes-all). Ties are broken arbitrarily at random. The
observed performance was comparable/similar to that reported
in e.g. [30] (see also references therein).

The system was forced to make a decision regardless of the
value of the maximal score. In terms of conventional ROC
curves, the setup corresponds to the rightmost top point on
the curve (the value of the threshold is 0). The histogram of
maximal scores corresponding to errors is shown in Fig. 4, and
numbers of errors per each gesture in the trained system are
shown in Table I. The variance of errors is mostly consistent
among the ten classes with very few errors for the “0” gesture,
likely due to its unique shape among the classes.

Once the errors were isolated, shallow single-element error
correction perceptrons (as described in Section V-B1) have
been created to improve the original Al For simplicity, we
focused on the task of building an Al corrector capable of
separating the original AD’s (i.e. trained Inception) correct
responses from the ones that have been labelled as errors. In
this task, the deployment step (step 6) in the shallow corrector
algorithm) was as follows:

If3ie{l,...,p}: hy(x) >0 = report x as error, (13)

TABLE II
ERROR TYPES IN THE SYSTEM WITH CORRECTOR.

Inception’s | Corrector’s Error
behaviour response Type
Error >0 True Positive
<0 False Negative
Correct >0 False Positi_ve
<0 True Negative

Index of the error feature vector

Index of the error feature vector

Fig. 5. Values of the normalized inner products (a; /||x;||, z; /||z;||) (color-
coded) for the data points labelled as errors.

where p is the number of clusters used in the algorithm.

To train the shallow correctors, the testing data set of 10000
images that has been used to assess performance of Inception
was split into two non-overlapping subsets. The first subset,
comprised of 6592 records of data points corresponding to
correct responses and 1408 records corresponding to errors,
was used to train the correctors. This subset was the corrector’s
training set, and it accounted for 80% of the data. The second
subset, the corrector’s testing set, combining 1648 data points
of correct responses and 352 elements labelled as errors was
used to test the corrector.

To quantify and assess performance of the corrector in both
training and testing phases we used the definitions of True
Positives, True Negatives, False Positives, and False Negatives
as specified in Table II.

The shallow corrector algorithm was run on the first subset,
the corrector’s training set. For this dataset the regularization
step, step 2), returned 174 principal components reducing
the original dimensionality more than 10 times. After the
whitening transformation, step 3), we assessed the values of
(xi/||z: ||, z;/]|z;]|) (shown in Fig. 5). According to Fig 5,
data points labelled as errors are largely orthogonal to each
other apart from few modestly-sized groups.

The number of clusters, parameter p in step 4), was varied
from 2 to 1408 in regular increments. As a clustering algorithm
we used standard k-means routine (k-means ++) supplied with
MATLAB 2016a. For each value of p, we run the k-means
algorithm 10 times. For each clustering pass we constructed
the corresponding separating hyperplanes h; as prescribed
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in step 5), and combined them into a single corrector in
accordance with (13). Performance of the corrector is shown
in Fig. 6. Note that as the number of clusters increases, the
True Negative rate approaches 1 for both versions of the
algorithm (with and without step 3*). This is consistent with
theoretical predictions stemming from Theorem 2. We also
observed that performance drops rapidly with the average
number of elements assigned to a cluster. In view of our earlier
observation that vectors labelled as “errors” appear to be nearly
orthogonal to each other, this drop is consistent with the bound
provided in Theorem 3.

Next we assessed performance of the corrector on the
corrector’s testing set. Results are shown in Fig. 7. As before,
the behavior is consistent with theoretical bounds provided in
Theorem 2—4. Notably, both versions of the algorithm removed
larger relative percentages of errors than they introduced.

VI. CONCLUSION

In this work we presented a novel technology for computa-
tionally cheap and non-iterative improvements of sophisticated
Multilayer and Deep Learning neural networks and Artificial
Intelligence (AI) systems by shallow cascades. These improve-
ments can be employed for both learning new skills as well
as for “learning errors away” in the existing architectures.
Theoretical results are not limited to the realm of Artificial
Intelligence. Similar to [31], the results can be employed
to explain extreme selectivity of neurons and reveal simple
mechanisms of learning in stratified brain structures.

The proposed concept builds on our previous work [13] and
explicitly extends to Deep Learning architectures and extends
to product measure distributions. In contrast to [14], and when
the clustering structure is fixed, the method is inherently one-
shot and non-iterative. This makes the proposal particularly
suitable for large-scale multi-agent and distributed systems.
Developing the technology further to suit this specific class of
applications appears to be a natural way forward.
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