Data analysis with arbitrary error measures
approximated by piece-wise quadratic PQSQ
functions
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Abstract—Defining an error function (a measure of deviation
of a model prediction from the data) is a critical step in any
optimization-based data analysis method, including regression,
clustering and dimension reduction. Usual quadratic error func-
tion in case of real-life high-dimensional and noisy data suffers
from non-robustness to presence of outliers. Therefore, using
non-quadratic error functions in data analysis and machine
learning (such as L1 norm-based) is an active field of modern
research but the majority of methods suggested are either slow
or imprecise (use arbitrary heuristics). We suggest a flexible and
highly performant approach to generalize most of existing data
analysis methods to an arbitrary error function of subquadratic
growth. For this purpose, we exploit PQSQ functions (piece-
wise quadratic of subquadratic growth), which can be minimized
by a simple and fast splitting-based iterative algorithm. The
theoretical basis of the PQSQ approach is an application of min-
plus (idempotent) algebra to data approximation. We introduce
the general idea of the approach and illustrate it on four stan-
dard tools of machine learning: simple regression, regularized
regression, k-mean clustering and principal component analysis.
In all cases, PQSQ-based methods achieve better robustness with
respect to the presence of strong noise in the data compared to
the standard methods.

Index Terms—piece-wise quadratic error, k-means, principal
component analysis, regression

I. INTRODUCTION

Artificial intelligence methods based on machine learning
are able to deal with large amounts of data converting it
to predictive statistical models. One of the most essential
ingredient of any machine learning method is the definition of
error function, i.e., the measure of deviation of the model from
the data. Most of the existing machine learning algorithms are
based on minimizing the mean squared error, which can be
explained by tractable properties of normal distribution and
existence of computationally efficient methods for quadratic
optimization. However, most of the real-life datasets are char-
acterized by strong noise, long-tailed distributions, presence of
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contaminating factors, large dimensions. Using quadratic error
can be compromised by all these circumstances: therefore, a
lot of practical and theoretical efforts have been made in order
to exploit the properties of non-quadratic error functions which
can be more appropriate in certain contexts. For example,
methods of regularized regression such as lasso and elastic net
based on the properties of L1-metric [1], [2] found numerous
applications in bioinformatics [3], and L1 norm-based methods
of dimension reduction are used in automated image analysis
[4]. Not surprisingly, these approaches comes with drastically
increased computational cost, for example, connected with
applying linear programming optimization techniques which
are substantially more expensive compared to mean squared
error-based methods.

In practical applications of machine learning, it would
be very attractive to be able to deal with arbitrary error
functions, including those based on L1 or fractional norm, in
a computationally efficient and scalable way.

Recently, we have suggested a universal framework able to
deal with a large family of error functions [5]. We exploited the
fact that finding a minimum of a piece-wise quadratic function,
or, in other words, a function which is the minorant of a set of
quadratic functions, is not much more computationally costly
as minimizing the standard quadratic error. Therefore, if a
given arbitrary error (such as Ll-based or fractional norm-
based) can be approximated by a piece-wise quadratic func-
tion, this should lead to efficient and simple optimization al-
gorithms. We introduced a rich family of piece-wise quadratic
error functions of subquadratic growth (PQSQ-functions), and
proved convergence of a simple iterative algorithm in the most
general case.

In this paper we report on further development of the
PQSQ-based approach to machine learning. We start with
reviewing the basic notions of PQSQ framework. We extend
the previously described coordinate-wise framework with its
rotation-invariant version, which might be advantageous in
practical applications (so called PQSQR error functions). We
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show how the PQSQ formalism is applied in case of four
classical data analysis methods: regularized regression and
Principal Component Analysis (PCA) (as it was described
before in [5]), multivariate regression and k-means clustering
(new in this paper). We give few synthetic examples of how
introducing PQSQ-based error function leads to improving
method robustness to the presence of noise and artefacts.

II. BASIC NOTIONS OF PQSQ FORMALISM
A. PQSQ function: minorant of a set of quadratic functions

Let us consider a finite set of functions @ = {qx(z)},k =
1...s and a function f(x) which grows not faster than any of
them. Let us approximate f(z) by the minorant function of Q

f(w) ~ Uqy,q2,...,q5 ('T) = Inin{ql(x)vlh(x)v ...,qs(m)}. (D

This is a definition of the minorant function g, ¢, 4.(T)
in the general case. A special case important for applications is
when @ is a set of centered parabolas @ = {qx(z) = arx? +
bk}, k = 1...s. In this case we will call u(x) "PQSQ function”
(piece-wise quadratic function of subquadratic growth). In this
case, in order to achieve u(x) ~ f(z) in the interval [0; R], we
need to define parameters ay, bi, k = 1...s. Let us split all non-
negative numbers z € R>q into p+1 non-intersecting intervals
Ro = [0;71), R1 = [r1572), s Rk = [TkiThi1)y o0 By =
[rp;00), for a set of thresholds r1 < 79 < ... < 7,. For
convenience, let us denote 79 = 0, 7,41 = co. Then u(z) is a
piece-wise quadratic function (see Figure 1A):

u(x) = by, + ap2?,if rp < |z < rpg1,k=0..p,  (2)
i) — frg
ak:f( k2) fQ( k+1)’ 3)
e = Tht1
2 2
by, = f(Tk-H);‘k f(Tk)Tk+1 (4)

Tk — Tl%+1
where f(z) is a function to be approximated (imitated) by
u(z) from below. For example, in the simplest case f(z) can
be a linear function: f(z) = =, in this case, >, u(z*) will
approximate the L1 norm. Note that accordingly to (3,4), by =
0, b, = f(rp). Also, in the case of a, = 0, the choice of r,
can naturally create a “trimmed” version of the function u(x)
such that it becomes a constant at infinity.

B. Minimizing minorant function in the general case

It is convenient to introduce an multiindex Iy, 4, . 4.(2)
indicating which particular function(s) g; correspond(s) to the
value of u(x), i.e.

1402, 4 (z) = {i|uq1,QQ,--»,qs () = qi(z)}. Q)

Using this notation, it is easy to explain how a minorant
function (1) can be rapidly minimized (see Figure 1B). For this
purpose, it is sufficient to iterate, until the index Iy, g, . q4.(T)
does not change, the following operations

1) For a given z, find I, ¢, . 4.(2),

2) For each i € Iy, 4,,.. . (2) identify (local) minimum of
q;, denoted min g;

3) Find j € I g, .. (x) such that ming; =
miljer, oo, (x) MINGs,

4) If there are several such js then select the smallest j (the
first in the list),

5) @ < arg min, ¢; ().

If each ¢;(z) is a quadratic function, its (global) minimum
can be found by an explicit linear formula. Finding I(x)
requires determining a set of minimum value(s) between s
numbers. This simplicity makes minimization of a PQSQ
function very fast.

1,925

ITI. LINEAR PQSQ REGRESSION

Let us consider a regression problem with a set of vec-
tors {z1,...,2,} and the corresponding responses y =
(y1,-.-,yn). Here the subscript index indicates the sample
number. Standard linear regression equation for evaluating ¢
of the response value for the given input data vector x is

9= 5o+ 2B, (©6)

where [ is a vector of regression coefficients and Sy is an
intercept (a single value). In the classical Ordinary Least
Squares (OLS) formulation, we minimize the sum of squared
regression residuals:

n

FOLS = Z(yz — [))0 — w?ﬂ)Q — min.

i=1

@)

In order to improve robustness to the presence of outliers,
Least Absolute Deviation (LAD) [6] has been suggested

n
Frap =Y _ lyi — Bo — x B| = min. (®)
i=1

However, LAD is computationally expensive and the algo-
rithm can suffer from computational instabilities.

Here we introduce PQSQ regression, which is the method
of regression coefficient estimation which uses PQSQ function
instead of (7):

n

FPQS’Q = Zu(y, — ,30 — I?,B) — min,
=1

C))

where u(z) is a PQSQ function. Various functions f(x)
allow imitating different norms or pseudo-norms. For example,
f(x) = |z| can imitate LAD and usage of f(z) = 22 is
cquivalent to OLS (with an option of trimming).

For the ith observation, let us determine to which interval
from (2) the regression residuals belong, and denote them as
Si.

rei—1 < |yi — Bo — alB| < rs,. (10)

Then, the minimization problem (9) is reduced to solving a
system of linear equations:
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Fig. 1. A) Trimmed piecewise quadratic error of subquadratic growth u(z) (solid blue line) defined for the function f(x) (red dashed line) and several
thresholds 7. Dotted lines show the parabolas which fragments are used to construct w(z). The last parabola is flat (ap = 0) which corresponds to trimmed
error function. B) Optimization of a one-dimensional minorant function wu(z), defined by three functions qi(z), g2(z), g3(z) each of which has a local
minimum. Each optimization step consists in determining which ¢ I<I>(x) = u(z) and making a step into the local minimum of ¢ I(x)

n m n n
Boy as, +Y B aswl =) agy (D)
i=1 j=1 =1 i=1
n m n n
k / Ik ook
Bo Z as,x; + Z B; Z as,x]x; = Z s, Yi ] (12)
i=1 j=1 =1 i=1

The systems of equations (11), (12) can be written in a
matrix form as
z'Qzp = 2" Qy, (13)
where Z is an extended data matrix Z = {f, T1,...,xn} (e,
it contains an additional row of 1s), vector 3’ contains the
intercept value 3 as the first element and other elements of
0 starting from the second element. Q is diagonal matrix

ag O ... 0
0 ag, ... O
0 0 aq,,

Formula (13) is equivalent to Weighted Least Square (WLS)
with weights defined by PQSQ coefficients.

The problem (9) can be solved iteratively. One starts with
some initial guess for 8. Then one identifies the vector of
indices {s;} and solve (13). This process is iterated until
the vector of indices {s;} for two consecutive operations is
the same. We stress here that this stopping criterion does
not require to specify any parameter for defining the usual
“tolerance level”.

IV. LINEAR REGRESSION REGULARIZED BY PQSQ
FUNCTION

One of the major application of non-Euclidean norm prop-
erties in machine learning is using non-quadratic terms for
penalizing large absolute values of regression coefficients [1],
[2]. Depending on the chosen penalization term, it is possible
to achieve various effects such as sparsity or grouping coeffi-
cients for redundant variables. In a general form, regularized
regression solves the following optimization problem

N m 2

1 )

~ E yi — E BExE ) +Af(B) — min,  (14)
=1 k=1

where N is the number of observations, m is the num-
ber of independent variables in the matrix {2z}, {y;} are
dependent variables, A is an internal parameter controlling
the strength of regularization (penalty on the amplitude of
regression coefficients (3), and f(z) is the regularizer function,
which is f(z) = |2]|3, for Tikhonov regularization also
known as ridge regression, f(z) = ||z]|r1 for lasso and
f(z) = (1 — a)||z]|35 + alz||z1 for the elastic net methods
correspondingly.

Here we suggest to imitate f(z) with a PQSQ function,
i.e. instead of (14) to solve the following problem

2

+AD u(BF) > min, (15

k=1

m

1 XN
N Z Yi — Z 5k33§
i=1 k

=1

where w(z) is a PQSQ function imitating arbitrary sub-
quadratic regression regularization penalty.
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Fig. 2. Comparison of PQSQ-based regressions with the standard OLS (Ordinary Least Squares), denoted “L-2”, and LAD (Least Absolute Deviation),
denoted ”L-1”, regressions. A) The example contains a certain number of points located close to a regression line and accompanied by 5% of clear outliers.
B) Estimating the computational performance of the algorithms. C) Estimating the angular accuracy of the regression estimation. Three PQSQ functions used
to produce these examples (PQSQ L-2, PQSQ L-1 and PQSQ L-0.5) correspond to three choices of the error function approximated by the minorant function
from below and give similar results. In all plots, "Pure’ means true regression line. For the details of how the example is constructed, read the ’Testing PQSQ

regression’ section of the paper.

Solving (15) is equivalent to iteratively solving a system of
linear equations

1 m N , .
N 28wl 4+ darenp
k=1 i=1
N .
= Zyzxg7jz 17"'7m7
i=1

where args) constant is computed accordingly to the defini-
tion of u(z) function (see (3)) and I index is defined from
rp < BIo< rr+1, given the estimation of [3’“ regression
coefficients at the current iteration. In practice, iterating (16)
converges in a few iterations, therefore, the algorithm can work
very fast and outperform the widely used least angle regression
and coordinate descend method for solving (14) in case of Ly
penalties.

Examples of application of PQSQ-regularized regression to
real-life data was shown in our previous work [5].

(16)

V. K-MEANS CLUSTERING WITH PQSQ FUNCTION

Fréchet mean vector Zp for a set of vectors X = {x;},
i=1,...,N,in R™ and an error function f(x) can be defined
as a vector minimizing the sum of deviations from Zp to all
points in X.

—) min .

2.2 e

For Euclidean metric Ly (f(z) =
arithmetic mean. For L; metric (f(z) =

an

22) it is the usual
|z]), (17) leads to

the implicit equation #(z¥ > zF) = #(2¥ < z*), where
# stands for the number of points, which corresponds to the
definition of median. This equation can have a non-unique
solution in case of even number of points or when some
data point coordinates coincide. More generally, any non-
quadradic f(z) (17) might lead to a non-unique definition of
the Fréchet mean. For PQSQ functional (2), the mean value
is defined through solving the optimization problem (17) by
a simple iterative algorithm (Algorithm 1). In general case,
the suggested algorithm converges to a local minimum which
depends on the initial point.

Algorithm 1 Computing PQSQ mean value

1: define intervals r’s", s=0,...
2: compute coefficients a®

3: initialize Tpgsq

eg., by arithmetic mean
repeat till convergence of Tpgsq:
5. for each coordinate k

6: define sets of indices

p,k=1,...,m

e

k(oL k k -k k
R ={i:rs <|ai — Thosol < Tsy1l}s
s=0,...,p

7. compute new appmximation for TpQsq:
Demi, . p @ Z. RE @y
af‘IRf‘l

. gk

8 Thosg ¢
9: end for
10: goto repeat till convergence

Based on the PQSQ approximation measure and the algo-
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rithm for computing the PQSQ mean value (Algorithm 1), we
can construct the PQSQ-based k-means clustering procedure
in the usual way (Algorithm 2).

Algorithm 2 PQSQ k-means clustering
1: define k
2: initialize centroids c;,i = 1...k
3: repeat till convergence
4: partition the data into k disjoint sets K;,i = 1...k,
such that if ¥ € K; then ¢; = argmin; Y, u(z! — cé)
for each set K;,i = 1...k compute PQSQ mean value
and assign ¢; = PQSQ_Mean_value(K;)
6: goto repeat till convergence

4

VI. PRINCIPAL COMPONENT ANALYSIS WITH
PQSQ-BASED ERROR FUNCTION

Accordingly to the classical definition of the first principal
component, it is a line best fit to the data set X [7]. Let us
define a line in the parametric form ¢ = Vv+36, where v € R!
is the parameter.

The first principal component is defined by vectors v, 5
satisfying

(18)

ZZu(a:f — V*1y; — 6%) = min,
ik

where

v; = arg mmz ks —o"). (19)

The usual first principal component (PC1) corresponds to
u(z) = 2% when the vectors V4 can be found by a simple
iterative splitting algorithm for Singular Value Decomposition
(SVD). If X does not contain missing values then ¢ is the
vector of arithmetic mean values. By contrast, computing L-
based principal components (u(z) = |z|) represents a much
more challenging optimization problem [8]—[12].

Computing PCA based on PQSQ approximation error is
only slightly more complicated than computing the standard
Ls PCA by SVD. A pseudo-code (Algorithm 3) has guaran-
teed convergence as it was proven in [5].

It is sufficient to define the first principal component: higher
order components can be computed by the standard deflation
approach. Figure 4 shows an example of how application of
PQSQ-based error function improves the robustness properties
of Principal Component Analysis.

VII. PQSQR ERROR FUNCTION: CONSTRUCTING
UNIVERSAL ROTATIONALLY INVARIANT DATA
APPROXIMATORS

The definition of the mean value (17) in the case of non-
quadratic function f(x) might be inconvenient in applications
in two aspects: it can be non-rotationally invariant and it can
be non-unique. From the other hand, using non-quadratic func-
tions might drastically improve robustness of the clustering (as
it can be seen in examples shown in this article).

Algorithm 3 Computing PQSQ PCA

I: define intervals 7% s =0,....p, k=1,...,m
2: compute coefficients a®

3: 5(— XPQS’Q

4 eg., by Lo-based PCI

5 by

: initialize V' :
. initialize {v;} : eg.,
S V(i —6Y)

Zk‘(vk')Q .
repeat till convergence_ of V:
normalize V : V + ”“j”
for each coordinate k

define sets of indices

RS ={i:r§ <|af

Vv, =

o L 3D

—Vky, —5k| < r§+1},
8207"'7p

10: end for

11: for each data point i and coordinate k
12: find all s; 1, such that i € ng, .

13: if all ok =0 then v} < 0 else

I/( — Zk Si kvk(
’ Zk Si, k(Vk)

)

15: end for
16: for each coordinate k

Zs 's Z’LERk (T )

k
T A e )

17: end for

18: for each 7 :

19: vy 4 V)

20: end for

21: goto repeat till convergence

In order to enjoy the good robustness properties but reducing
the impact of inconvenient properties, any PQSQ-based data
approximator can be reformulated such that the PQSQ error
function would be defined not coordinate-wise, but to the
usual Euclidean distance ||7 — ¢/l = />, (2! — y%)? (which
is rotationally invariant). We will systematically denote such
method formulations using "PQSQR” prefix.

Let us define the PQSQR error function (pseudo-distance
between two data vectors & and %) as

dpqsqr(T,¥) = u(||Z — ¥ll2), 20)

where u(z) is a one-dimensional PQSQ function (1).
One can define the PQSQR-mean value X as a solution to
the following optimization problem:

> (]| — X||2) — min.

%

2y

Quite similarly, PQSQR projection on a line § = Vv +34,
where v € R, is a solution of the following problem:

2018 International Joint Conference on Neural Networks (IJCNN)
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Fig. 3. Testing the PQSQ k-means against the standard k-means MATLAB implementation. A) Example with two (known) clusters accompanied by noisy
points. An example of correct clustering produced by 2-means algorithm is shown by color. B) Ability of the algorithm to produce correct clustering vs
number of noisy points. For the details of how the example is constructed, read the Testing PQSQ k-means’ section of the paper.

i p— " 1 ’,ﬂ— k —_— k
v; alngmZu(sz V%s —0%]2), (22)

k

and the first PQSQR principal component is defined by vectors
V', d satisfying

S5 u(ak — VEy, — 6]|2) — min.
i k

Therefore, the generalizations of Algorithm 1, Algorithm 2
and Algorithm 3 for the PQSQR error function are straight-
forward. The exact pseudo-code will be published elsewhere.
Quite similarly, it is straightforward to implement the linear
regression with PQSQR-based regularization.

The definitions (21) and (22) do not guarantee uniqueness
of the mean point by themselves. However, under certain
assumptions (convexity of the f(z) function and no trimming)
the number of local minima should be smaller and their
distribution should form more compact sets compared to
coordinate-wise PQSQ function. The later statement requires
more careful study.

It is also expected that PQSQR implementations of data
approximation algorithms are faster than the corresponding
PQSQ implementations, due to the smaller number of indi-
vidual PQSQ-based function minimizations.

(23)

VIII. SYNTHETIC EXAMPLES SHOWING ROBUST
PROPERTIES OF PQSQ-BASED ERROR FUNCTION

In order to benchmark the advantage of using PQSQ error
function for the classical data analysis methods (regression,
k-means, PCA), we created several simulated numerical ex-
amples.

A. Testing POSQ regression

We considered how well PQSQ approach performs for
estimating a well-defined regression line, in the situa-
tion when there exists 5% of clear outliers (Figure 2A).

We compared the PQSQ-based regression with the func-
tion f(x) = |z| against the standard OLS regression
and an existing implementation of LAD regression from
http://matlabdatamining.blogspot.fr/2007/10/1- 1-linear-regression.html  (LL1-
based, applying re-weightening [6]). The computational time
shown in Figure 2B is measured using an ordinary laptop.
Angular error (Figure 2C) means angular distance between the
true regression line and the line estimated by an algorithm.

B. Testing PQSQ kmeans

We demonstrate the advantage of using PQSQ-based k-
means clustering algorithm by constructing a simple example
of data distribution consisting of a dense two-cluster com-
ponent superimposed with a sparse contaminating component
with relatively large variance whose co-variance does not
coincide with the dense signal. We modeled two clusters as
two 100-point samples S1 and S2 from normal distribution
centered in points [—1;0] and [1;0] with isotropic variance
with the standard deviation 0.1. The sparse noise distribution
was modeled as a k-point sample from the product of two
Laplace distributions of zero means with the standard devia-
tions 2 along abscissa and 4 along ordinate (Figure 3A).

We study the ability of PQSQ k-means to produce correct
separation of two clusters from the dense component, without
knowing the cluster labels. For both standard k-means and
PQSQ k-means (L1-like PQSQ error function), the clustering
is applied 5 times from random centroid initializations, and
then the optimal clustering is selected. In order to select the
optimal clustering in the case of PQSQ k-means, we did
the following test. For each point z; we select the nearest
centroid ¢(z;) as centroid with minimal PQSQ norm of vector
x;—c(x;). We select the clustering with minimal sum of PQSQ
norm of vectors x; — ¢(z;). In other words, for selecting the
best clustering we use the PQSQ-based approximation error.
In the case of standard k-means, we used the internal to
MATLAB implementation clustering optimality criterion.

2018 International Joint Conference on Neural Networks (IJCNN)
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Fig. 4. Comparing L2- and PQSQ PCA using example of two-cluster distribution (100 black circles and 100 squares) contaminated by sparse noise (red
crosses). A) Dense two cluster distribution contaminated by sparse distribution (20 points) of large variance. In the presence of noise, the abscissa coordinate
x of PC1 vector is slightly less than 1. B) Same as A) but in the case of strong contamination (60 points). The value of x is much smaller in this case. C)
Average absolute value of the abscissa coordinate of PC1 |z| (thick lines) shown with standard interval (thin lines) for 100 samples of k contaminating points.
D) Projection of the data distribution on the first two principal components computed with the standard Ly PCA algorithm. The number of contaminating
points is 40. The cluster structure of the dense part of the distribution is completely hidden as shown in the zoom window. E) Same as in D) but computed
with PQSQ Lq-based algorithm. The cluster structure is perfectly separable. F) The value of ¢-test computed based on the known cluster labels of the dense
part of the distribution, in the projections onto the first two principal components of the global distribution. As in C), the mean values of 100 contamination
samples together with confidence intervals are shown. For the details of how the example is constructed, read the "Testing PQSQ PCA’ section of the paper.

This procedure was then repeated 100 times, for which we
recorded how many times the correct clustering was produced.
For estimating ’correct’ clustering, we took into account only
the points from the dense data component. Clustering is
considered as correct if at least 95% of points of the set S1
belong to one discovered cluster and at least 95% of points
of set S2 belong to another discovered cluster (Figure 3B).
Example shown in Figure 3 can be reproduced by launch-
ing benchmarkPQSQKmeans.m script in https://github.com/auranic/
PQSQ-DataApproximators/tree/master/test_data/kmeans_test folder.

C. Testing POQSQ PCA

Using the same example data distribution as in the previous
section, we study the ability of PQSQ PCA to withstand
certain level of sparse contamination and compare it with the
standard Lj-based PCA. In this example, without noise the
first principal component coincides with the vector connecting
the two cluster centers: hence, it perfectly separates them in
the projected distribution. Noise interferes with the ability of
the first principal component to separate the clusters to the
degree when the first principal component starts to match the
principal variance direction of the contaminating distribution
(Figure 4A,B). In higher dimensions, not only the first but also
the first two principal components are not able to distinguish
two clusters, which can hide an important data structure when
applying the standard data visualization tools.

The intervals for computing the PQSQ functional were
defined by thresholds R = {0,0.01,0.1,0.5,1} for each
coordinate. Increasing the number of points in the contaminat-
ing distribution diminishes the average value of the abscissa
coordinate of PC1, because the PC1 starts to be attracted by
the contaminating distribution (Figure 4C). However, it is clear
that on average PQSQ L;-based PCA is able to withstand
much larger amplitude of the contaminating signal (very robust
up to 20-30 points, i.e. 10-20% of strong noise contamination)
compared to the standard Ly-based PCA (which is robust to
2-3% of contamination).

In the second test we study the ability of the first two
principal components to separate two clusters, in R0 (Fig-
ure 4D-F). As in the first test, we modeled two clusters as
two 100-point samples from normal distribution centered in
points [—1,0,...,0] and [1,0,...,0] with isotropic variance
with the standard deviation 0.1 in all 100 dimensions. The
sparse noise distribution is modeled as a k-point sample from
the product of 100 Laplace distributions of zero means with
the standard deviations 1 along each coordinate besides the
third coordinate (standard deviation of noise is 2) and the
forth coordinate (standard deviation of noise is 4). Therefore,
the first two principal component in the absence of noise are
attracted by the dimensions 1 and 2, while in the presence
of strong noise they are be attracted by dimensions 3 and 4,
hiding the cluster structure of the dense part of the distribution.
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The definitions of the intervals were taken as in the first test.
We measured the ability of the first two principal components
to separate clusters by computing the t-test between the
two clusters projected in the 2D-space spanned by the first
principal components of the global distribution (Figure 4D-
F). As one can see, the average ability of the first principal
components to separate clusters is significantly stronger in the
case of PQSQ L;-based PCA which is able to separate robustly
the clusters even in the presence of strong noise contamination
(up to 80 noise points, i.c. 40% contamination).

IX. IMPLEMENTATION

We provide highly efficient MATLAB implementations
of PQSQ-based data analysis methods. PQSQ regression is
available  at  https://github.com/Mirkes/PQSQ-regression.
PQSQ-regularized  regression can be  found  at
https://github.com/Mirkes/PQSQ-regularized-regression.

The data approximation methods, including
PQSQ and PQSQR k-means, PQSQ and PQSQR
Principal Component Analysis can be found at

https://github.com/auranic/PQSQ-DataApproximators. The
usage of the PQSQ-based MATLAB functions is analogous
to the usage of the corresponding standard functions in
MATLAB. All the numerical tests in this article were made
using MATLAB R2013a. The code of the tests is provided as
a part of the package distributions.

X. CONCLUSION

In this paper we developed a new machine learning frame-
work allowing one to deal with arbitrary error function of not-
faster than quadratic growth, imitated by piece-wise quadratic
function of subquadratic growth (PQSQ function).

We developed methods for constructing the standard data
approximators (mean value, k-means clustering, regression,
principal components) for arbitrary non-quadratic approxi-
mation error with subquadratic growth, PQSQ-based regres-
sion and regularized linear regression with arbitrary sub-
quadratic penalty by using a piecewise-quadratic error func-
tional (PQSQ-based error function). These problems could be
solved by applying quasi-quadratic optimization procedures,
which are organized as solutions of sequences of linear prob-
lems by standard and computationally efficient algorithms.

In addition, we suggested two formulations of the PQSQ-
based optimization problems.

First one is coordinate-wise, where each coordinate is
treated by an independent PQSQ function, which can be
different for each coordinate. Coordinate-wise formulation is
not invariant with respect to rotating the dataset in multi-
dimensional space (orthonormal transformation), just as L1-
based PCA. Second formulation is rotational-invariant which
is achieved by applying the PQSQ-based error function to the
standard Euclidean distance function (PQSQR). In the second
case, the optimization result remains the same even if the
dataset is orthonormally transformed.

The rotational invariant approach to PCA suggested in this
article is conceptually close to [13]: however, PQSQR error

functions can be applied to much more general case than only
imitating L1-metric and they enjoy very fast algorithms for
optimization. PQSQR approach to k-means can be considered
as a significant generalization of both k-medoids clustering and
trimmed k-means methods [14]. In case of PQSQR k-means
it is possible to avoid introducing a hard trimming threshold:
instead, one can gradually reduce the impact of distant points
onto the definition of the k-means centroids.

Interestingly, the theory of PQSQ functions is based on the
notion of the cone of minorant functions, and represents a
natural approximation formalism based on the application of
min-plus algebra [5].

PQSQ-based error function can be easily introduced literally
in any machine learning method based on quadratic error
optimization. This is expected to lead to the improvement
in the computational cost/accuracy trade-off, since PQSQ-
based machine learning methods achieve orders of magnitude
faster computational performance than the corresponding state-
of-the-art methods, having similar or better approximation
accuracy.
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