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Chapter 5 

Simplest Non-linear Mechanisms of Catalytic 
Reactions Producing Critical РЬепоmепа 

1. Critical phenomena in heterogeneous catalytic reactions 
(experiment, models) 

ТЬе discovery ofisothermal critical effects in heterogeneous catalysis has 
radically changed the situation there. In recent years several surveys [1-20] 
have Ьееп devoted to these effects in various catalytic reactions and models 
used for their treatment. ТЬе possibility of the existence of а multiplicity of 
steady states in reactions carried out over catalytic fibres has Ьееп known 
for more than 70 years. It was Liljenroth [21] who first established this 
рЬепоmепоп in NНз oxidation over Pt and analyzed its stability. Later, 
Татmап [22], Davies [23], Frank-Kamenetskii [24], and Buben [25] performed 
experimental and theoretical studies of the jumpwise increase in the oxida­
tion rate of hydrogen, carbon monoxide, and hydrocarbons оп Group VIII 
metals. In the 1950s, when studying hydrogen oxidation over nickel, pal­
ladium, and platinum, Boreskov et al. [26, 27] found that, in а certain range 
of reaction parameters, the same gas phase composition is associated with 
sharply differing values ofthe steady-state reaction rate. It is this effect that 
is called а multiplicity of steady states in а catalytic reaction. Later, similar 
effects along with self-oscillations of the reaction rate were observed in 
various catalytic reactions, e.g. СО hydrogenation [28], hydrogen oxidation 
[29-41], oxidation of ammonia [42-45] and ethylene [46-48], and others [49-
62]. 

Critical effects in СО oxidation over Pt catalysts were obtained [33, 34, 
63-85] in various catalytic systems: over wires, foils and gauzes, оп single 
pellets and fixed beds, in isothermal and adiabatic reactors (differential and 
integral). ТЬе literature also reported the oscillating behaviour of the Ьот­
ogeneous oxidation of СО [86, 87]. 

W е must emphasize опе essential peculiarity: until recently practically 
the whole of the critical effects in СО oxidation (and in the other catalytic 
oxidation reactions) were obtained at normal (~ 760 torr) or almost normal 
pressures. In ultrahigh-vacuum experiments, these effects have Ьееп оЪ­
served*, and have induced scepticism. Over the last several years the situa-

* Self-oscillations of the rate in high-vacuum experiments have Ьееп found only for the plati­
num-catalyzed reactions (NO + СО) [61] and (СО + О,) [88]. 
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tion has changed since some data were obtained at р ~ 10-8 to 10-7 torr 
[89-92], which сап Ье interpreted as а multiplicity of steady states or at least 
а high parametric sensitivity of the reaction rate. For example, Tataurov 
and Ivanov [89] found а hysteresis of the reaction rate оп increasing and 
decreasing the temperature with а 5 min exposure at every temperature 
value (РО2!РСО = 6). But оп increasing the time exposure (up to 30-60 min), 
this hysteresis appeared to Ье "false". They observed а prolonged (аЬоуе 50 
min) time for the achievement of the steady state with а low reaction rate. 
This is ascribed [89] to both the slQW formation of а surface oxide and the 
total retardation of the reaction rate with decreasing temperature. А quan­
titative analysis of these data will Ье carried out in what follows. 

Taylor et al. [90], when studying the oxidation of СО over Ir (110), also 
found hysteresis оп decreasing and increasing the temperature. This hys­
teresis is ascribed primarily to the non-linear kinetic dependences of the 
conversions of surface substances [90]. However, in our opinion, this hys­
teresis is also most likely to Ье "false" since temperature variations of 
catalyst were sufficiently high (~ 1.25 К s -1) and the steady state could 
hardly Ье achieved. 

It is interesting that, in the experiments Ьу Taylor et al. [90] after the 
repetition of the same standard experimental run (increase and then de­
crease of temperature), the hysteresis peculiarities of kinetic curves were 
preserved but not reproduced quantitatively. Apparently, this is also asso­
ciated with the fact that the time to achieve а steady state was insufficient. 
It could also Ье due to the slow mass transfer processes between surface and 
bulk. 

Some data concerning sharp jumps in the dependence of the steady-state 
rate оп the temperature and partial pressures of СО and 02 are reported in 
refs. 91 and 92. The latter study is of interest since the authors obtained а 
region for the multiplicity of steady-state rates; every value ofthe parameter 
(in their case it was the partial pressure of СО) was maintained for а long 
time (up to an hour). W е believe it is only in this study that the "real" 
hysteresis has been established. The long time to go from а metastable state 
with а high reaction rate to а steady state with а low reaction rate is 
ascribed Ьу the authors [92] to the formation of well-ordered structures of СО 
adsorbed оп the Pt surface. 

Most of the critical effects in oxidation reactions over Pt metals were 
observed under isothermal conditions. Hence the complex dynamic beha­
viour сап Ье directly due to the structure of the detailed catalytic reaction 
mechanism, specifically to the laws of physico-chemical processes in the 
"reaction medium-catalyst" systems. The types and properties of mathema­
tical models to describe critical effects are naturally dependent оп those 
physico-chemical prerequisites оп which these models are often based [4,9]. 
Let us describe the most important factors used in the literature to interpret 
critical effects. 

(а) The presence of the step for the interaction between various inter-
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mediates in the detailed catalytic reaction mechanisms, the competition of 
adsorption and interaction steps and the reversible change in the number of 
active surface centres in the course of the reaction [93-111]. 

(Ь) Variations in the rate constants under the influence of the surface 
coverages or the concentration in а thin subsurface layer of catalyst [3, 4, 15, 
28-32, 112-121]. 

(с) Superheating in the thin surface layer of catalyst [66, 67, 122-125]. 
(d) Branching chain processes оп the catalyst surface [5,17,35,36,41-44, 

126--130]. 
(е) Homogeneous continuation of the heterogeneous catalytic reaction 

(reaction outcome in the gas volume) [86, 131-135]. 
(f) Phase transformations оп the catalyst surface [136, 137], including the 

formation and decomposition of surface and subsurface oxides during the 
reaction [37, 47-49, 85, 118]; structural transformations of the catalyst sur­
[асе and its reconstruction ав а result of the reaction [138-145]. 

(g) Interaction of kinetic and diffusional processes [71, 145-151]. 
(h) The effect of heat- and mass-transfer processes [6--8, 11, 12, 33, 63, 65, 

76-80, 118, 119, 148-161]. 
It was Wicke and co-workers [33, 34] who were the first to observe critical 

effects in СО oxidation over Рt/АI2 Оз and Pt wires. (Approximately at the 
вате time, similar results were obtained Ьу Hugo and Jakubith [64].) When 
the reaction is carried out at а gas temperature Т = 453 К in ап air + 1 % 
СО mixture, self-oscillations in the formation rate of С02 and the catalyst 
temperature (with а 2-3 К oscillation amplitude) and also hysteresis beha­
viour of the steady-state rate with varying СО concentration and gas-phase 
temperature are observed. Ап important conclusion drawn Ьу Wicke and 
co-workers [33, 34] is that the reason for this dynamic behaviour of the 
reaction consists in the complex chemical mechanism ofthe processes оп the 
catalyst surface. Neither external nor internal diffusion and thermal proces­
вев сап Ье responsible for the critical phenomena [34]. The authors [34] 
believe that the non-linear rates of intermediate formation and decom­
position оп the catalyst surface сап lead to the multiplicity of steady states. 
But Wicke did not саггу out а systematic analysis ofthe models correspond­
ing to his concepts. The model investigated in ref. 34 was simplified but not 
substantiated. It was based оп the adsorption mechanism including а step of 
oxygen dissociative adsorption оп а doubled centre, molecular adsorption of 
СО, and ап interaction step between these adsorbed substances. It was 
suggested that oxygen adsorption is in equilibrium and at the вате time the 
concentration of 02ZZ is negligible. If these suggestions are valid, the 
formation rate of С02 is described Ьу 

WC02 = kP02 [ZCO](l - [ZCO])2 

It must Ье noted that the assumptions concerning the equilibrium adsorp­
tion of 02 and the low concentration of 02ZZ hold only at sufficiently high 
temperatures. But in the region of critical effects, oxygen adsorption is 
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practically irreversible and its surface concentration сап Ье sufficiently high 
[37, 66, 85]. In addition, Wicke did not in practice give а mechanism as а 
combination of steps. То reconstruct this combination using the kinetic 
dependence of WC02 given in ref. 34 is difficult. 

Wicke's line was continued Ьу Eigenberger [7, 105-107] who applied the 
вате concepts. His first publication оп this subject [105] appeared in 1976. 
Не formulated а mechanism of СО oxidation over Pt metals 

(1) 02 + 2 Z <=± ZZ02 

(2) СО + Z <=± ZCO 

(3) ZZ02 + 2 ZCO --> 2 С02 + 4 Z 

Using the assumption about the equilibrium adsorption of oxygen, Eigenber­
ger represented this mechanism Ьу the still simpler autocatalytic всЬете 

(1) СО + Z <=± ZCO 

(2) 2 ZCO + 02 + 2 Z --> 2 С02 + 4 Z 

Ттв всЬете interpreting the multiplicity of steady states is practically 
identical to various autocatalytic systems used Ьу Prigogine and тв school 
СЪrussеlаtоr", "oregonator") to interpret critical effects in homogeneous 
reactions. An important contribution of Eigenberger is that Ье used а 'Ъuf­
fer step" to describe self-oscillations in the catalytic reaction rate. То modify 
the Wicke всЬете, Ье added reversible formation steps of unreactive forms 
of oxygen [105-107]. It is these steps acting as "feedbacks" (binding-releas­
ing of unoccupied sites) that permitted Eigenberger to describe quantitative­
ly the rate self-oscillations obtained in Hugo and Jakubith's experiments 
[64]. It is interesting that the latter suggested а reversible slow transition 
between two forms (bridged and linear) of adsorbed СО, which сап Ье treated 
as а buffer step. 

Later, а comprehensive qualitative and numerical study of the аЬоуе 
mechanism was performed but without Eigenberger's simplifying sugges­
tions about the equilibrium adsorption of oxygen and low concentrations of 
02ZZ (these suggestions were necessary to reduce the complete system of 
three ordinary differential equations to а set of two equations) [162]. ТЬе 
analysis and comparison of the results calculated according to the complete 
[162] and "simplified" models [107] show that this simplification is not al­
ways correct and сап essentially change the system dynamics ир to the 
change of the number and stability type of steady states. 

Studies ofCO oxidation over Рt/А120з [72-74] showed that oscillations are 
observed only in the presence of admixed hydrocarbons or water. If the 
reaction mixture is thoroughly purified, self-oscillations vanish. ТЬеве data 
are evidently an argument in favour of the fact that reversible formation 
steps of non-reactive species play а special role in the,.appearance of self­
oscillations. In accordance with the assertions of Marshneva et al. [163, 164], 
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these steps сап also Ье the steps of the reversible adsorption of reaction 
products since the removal of СО2 from the gas phase always leads to the 
stopping of self-oscillation processes. But воте special experiments (e.g. 
refs. 85 and 165) show that self-oscillations also exist when the reaction 
mixture has Ьееп thoroughly purified. Apparently, at present we cannot 
make а final conclusion. 

The Wicke and Eigenberger models are models for ап ideal adsorption 
layer. They have Ьееп examined at the Institute of Catalysis, Siberian 
Branch ofthe U.s.S.R. Academy ofSciences [93-104, 108, 109] independently 
ofWicke and Eigenberger (the first publications refer to 1974). It was shown 
[93-96] that, for the detailed mechanisms of catalytic reactions either with 
the steps that are linear with respect to intermediates or with non-linear 
steps (but containing по interactions between various intermediates), the 
steady state of the reaction is unique and stable (autocatalytic steps are 
assumed to Ье absent). Thus the necessary condition for the multiplicity of 
steady states is the presence of steps for the interaction between various 
intermediates in the detailed reaction mechanism [93-100]. Special attention 
in these studies was paid to the adsorption mechanism of the general type 
permitting the multiplicity of steady states [102-104] 

Аn + nZ р nAZ 

Вт + mZ <=' mBZ (1) 

pAZ + qBZ --+ ApBq + (р + q)Z 

Various modifications of this mechanism are often used to describe cat­
alytic oxidation reactions. The simplest version ofthis mechanism providing 
the multiplicity of steady states is that with n = 2, т = р = q = 1 (the 
simplest catalytic trigger). Studies of its dynamic properties assuming that 
the adsorption steps are irreversible, were made Ьу Yablonskii et al. [97, 98, 
166]. The dynamic behaviour of the mathematical models corresponding to 
these mechanisms is studied comprehensively in this chapter. Catalytic 
mechanisms with various buffer steps but without Eigenberger's simplifying 
assumptions have been studied in detail [108, 109]. Sufficient conditions 
under the fulfilment of which simple kinetic models constructed in accord­
ance with the law of acting surfaces have self-oscillational solutions were. 
obtained. The Ivanova general algorithm [167, 168] has been applied [109] 
which allowed the authors, according to the type of chemical reaction 
mechanisms, to judge which mechanism сап Ье used to interpret the ех­
perimental critical effects found. 

Comprehensive experimental and theoretical investigations of self-oscil­
lations in oxidation reactions were begun in the 1970в Ьу Slinko and со­
workers (hydrogen oxidation оп Ni and Pt). Their experimental methods are 
the optimal combination of electrothermography (ЕТМ) with continuous 
measurements of the contact potential difference (CPD) between the cat­
alyst and а reference electrode. It permitted them to observe simultaneously 
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the reaction rate and variations in the adsorbed layer composition оп cat­
alyst surfaces [29-32]. The specificity ofthe mathematical models elaborated 
Ьу Slinko et al. to describe the dynamic behaviour of reactions [4, 30, 32, 
112-115, 117] is taking into account the contribution of the substances 
adsorbed and dissolved in the subsurface layer to the catalytic properties of 
metals. Оп the опе hand, it takes into account the dependence of activation 
energies for the reactions of the detailed mechanism оп the adsorbed layer 
composition. ТЬе existence ofthis dependence Ьав Ьееп confirmed Ьу а large 
number of recent experimental data (вее ref. 169). Оп the other hand, in 
several савев [32, 112] slow exchange processes between the catalyst surface 
and the bulk and also the dependence of reaction activation energies оп the 
substance concentrations in the subsurface layer [115] have Ьееп taken into 
consideration. Models accounting for the latter dependence provide сот­
plex chaotic self-oscillations observed in experiments [4, 32]. ТЬе methods 
and the models elaborated Ьу Slinko et al. have Ьееп extended to the other 
reactions, in particular that of СО oxidation. It is for this reaction that 
Pikios and Luss [116] and Ali and Hugo [120] later used the dependence of 
activation energies оп the surface composition. 

In 1973, Dauchot and Van Cakenberghe [66], when studying СО oxidation, 
established self-oscillations in the temperature of а Pt wire and in the 
photocurrent оп а Si electrode covered with а Pt Ыт. ТЬе authors [66] 
ascribed the photocurrent oscillations to oscillations in the composition of 
the adsorbed layer оп the Pt Ыт. ТЬеу have proved experimentally that, in 
the region where the reaction rate is proportional to Рсо/Ро" the surface is 
covered Ьу chemisorbed oxygen, whereas at high values of Рсо/Ро, the 
surface contains largely chemisorbed СО inhibiting the reaction. ТЬеу inter­
preted self-oscillations in terms of the adsorption mechanism, according to 
which heat released during the reaction leads to а drastic increase in the 
surface coverage Ьу oxygen. When the surface is almost completely covered 
Ьу oxygen the reaction stops and the surface slowly cools. In this саве the 
conditions for the simultaneous adsorption of СО and 02 are опсе again 
created. Mathematical models corresponding to this thermokinetic hypothe­
sis for the generation of self-oscillations have Ьееп studied [122-125]. ТЬе 
variables in these models are the concentrations of adsorbed oxygen and СО 
and the temperature of catalyst surface; the gas temperature is assumed to 
Ье constant. Though the calculated oscillations [122] of oxygen coverage 
have periods close to those for the oscillations of photocurrent [66], the 
amplitudes for the temperature oscillations of the catalyst surface obtained 
Ьу using this model are too high (200-300 К) to speak about the fairly good 
agreement between calculation and experiment. Besides, it is likely that this 
model cannot describe oscillations with long periods (tens of minutes). Ттв 
fact Ьав caused воте criticism [170]. 

Barelko et al. [5, 35,42-44, 69, 70, 126, 127] investigated isothermal critical 
effects in several reactions of complete oxidation оп Pt using а сотрепва-
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tion electrothermograph developed Ьу the group [171] which permitted 
them to eliminate the effect of а thermal factor. 

То interpret critical effects, а phenomenological model of the branched 
reaction was suggested. The essence of this model consists in the fact that 
the reaction оп the active catalyst centre is accompanied Ьу energy release 
leading to the formation of new active centres. Active centres are the 
adsorbed atoms from the metal crystallattice or the vacancies formed ав а 
result of this transformation adsorption. ТЬеу сап Ье destroyed due to the 
return of adatoms into the lattice, its sublimation, etc. [35]. Оп the basis of 
this model, Barelko et al. interpreted the dynamics of reaction ignition and 
extinction, memorizing effects, different temperatures for the ignition and 
extinction, and inhibiting effects. А direct proof for the validity of this 
hypothesis would Ье а measurement of the super-equilibrium concentration 
for adsorbed metal atoms when catalytic reactions take place оп the metal 
surface. Later, this hypothesis concerning the change in the number of 
active centres during the reaction was used in воте theoretical studies [130, 
172]. The Barelko hypothesis confirms the phenomenon of catalytic cor­
rosion [128] that had been given special attention Ьу Jensen and Ray [138, 
139]. These authors believe that the reason for self-oscillations in various 
catalytic systems is of а physical rather than of а chemical nature. The 
suggested model of "fuzzy wire" was based оп several experimental data, in 
particular the fact that the preliminary thermal treatment of а Pt fibre leads 
to the formation of rough porous protrusions оп the surface оп which а 
catalytic process takes place. Large temperature fluctuations arise оп the 
surface of these formations. Every such formation is suggested to Ье an 
independent oscillator. А mathematical model corresponding to this hyp­
othesis is а complex system of integrodifferential equations. The model 
provides а good qualitative (and partly quantitative) agreement between the 
calculated and experimental complex oscillations in the oxidation reactions 
of butane and cyclohexane. It is useful to describe chaotic non-isothermal 
oscillations, but it сап hardly Ье used (ав the authors themselves claim [138]) 
to interpret isothermal oscillations with long periods (oxidation of СО, Н2 , 
etc.). (The periods of isothermal self-oscillations of the rate сап differ con­
siderably: they сап amount to minutes [33, 34, 75, 85] or seconds [63, 73, 81, 
85].) 

In several recent studies an assumption is made concerning the 
homogeneous-heterogeneous mechanisms of oxidation reactions аБ а reason 
for critical effects, in particular in the oxidation of cyclohexane over zeolites 
[131] and of СО over Pd [132-134] and V [135] catalysts. Berman and Elinek 
[131] have established in their experiments that cyclohexane oxidation over 
zeolites follows а mixed homogeneous-heterogeneous mechanism. Studies of 
the mathematical reaction model written down in accordance with the law 
of тавв action showed that the system сап have from one to three steady 
states. When the steady state is unique, there exists а region of parameters 
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in which this state is unstable. In this case, limit cycles arise. The model 
describes qualitatively fluctuations in the amplitude and period of reaction 
rate osci1Iations with varying cyclohexane concentration. Calculated val­
ues for the period and average rate are close to experimental data. It is 
interesting that, in the case of multiplicity, the lower steady state (with а 
low reaction rate) is characterized Ьу а very low concentration of radicals 
in the gas phase whereas, in the upper steady state (with а high reaction 
rate), the surface concentration of intermediates is low. It indicates that 
homogeneous-heterogeneous processes are unstable. Stable performance is 
observed only for either heterogeneous or homogeneous oxidation [131]. 
Unstable behaviour, when the reaction extends into gas volume, was also 
observed in СО oxidation [132-135]. However, so far по models that would 
Ье similar to that suggested Ьу Berman and Elinek to describe cyclohexane 
oxidation over zeolites [131] have Ьееп constructed. The main difficulty here 
is the lack of information about the formation steps of radicals. 

Berman and Krylov [136, 137] showed that phase transformations over 
catalyst surfaces сап account for the existence of several steady states in the 
kinetic regions. Two-dimensional phases оп а catalyst surface сап form 
either during the adsorption of опе reactant or under the competing adsorp­
tion oftwo reactants. Wicke et al. [10,83,84] ascribe the critical effect in the 
isothermal oxidation of СО over Pt to the reversible formation of its two­
dimensional clusters оп the Pt surface. The reaction is assumed to follow ап 
adsorption mechanism. In this саве СО сап adsorb оп two types of Pt active 
centre (IX and {3) whereas oxygen сап Ье adsorbed only оп {3. The number of 
{3 reactive centres is approximately 1/4 of the total number. The unstable 
behaviour of the reaction rate is due to the competition between СО adsorp­
tion promoting the growth of clusters and desorption and interaction of 
adsorbed substances. The latter processes are also enhanced Ьу the growth 
of СО clusters. However, models accounting for the organization and growth 
of surface clusters have во far Ьееп insufficiently developed. 

Riekert in his theoretical investigation [173] showed that, in oxidation 
reactions over metals, critical effects сап arise if, under reaction conditions, 
the existence of both а pure metal surface and а subsurface oxide that сап 
contact with the reactants is thermodynamically possible. 

The process of catalyst oxidation and reduction сап Ье treated ав а rever­
sible phase transition [136]. It is to this process that the authors of recent 
investigations [37, 47-49, 85] ascribe critical effects. When studying kinetic 
self-oscillations in the oxidation of hydrogen over nickel [37] and measuring 
CPD, the authors established that the reaction performance oscillates Ье­
tween the states in which oxygen is adsorbed either оп the reduced or оп the 
oxidized nickel surface. Vayenas et al. [47-49], Ьу using direct measurements 
ofthe electrochemical activity of 02 adsorbed оп Pt, showed that the isother­
mal self-oscillations of the ethylene oxidation rate over Pt are due to the 
periodic formation and decomposition of subsurface Pt oxides. А mathemati-
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cal model for this reaction is based оп the mechanism which includes the 
steps of oxygen adsorption, subsurface oxide formation, and impact interac­
tion between gaseous ethylene and oxygen in the adsorbed and dissolved 
states [48]. The parameters of this model were determined from independent 
measurements. It appeared that this model сап describe fairly well аН the 
experimental characteristics of the oscillation and steady-state performance 
of this reaction [48]. 

The properties of the rate oscillations in the oxidation of СО over Pt, Pd, 
and Ir were examined comprehensively in experiments Ьу Turner et al. [85] 
who suggested that the reaction follows an adsorption mechanism. Studies 
of the reaction model written in accordance with the law of acting surfaces 
show the existence ofregions ofmultiplicity for the curves WC02 (Т) at а fixed 
ratio ofreactant partial pressures РСО/РО2 and WC02(PCO/P02) at а fixed tem­
perature Т, which was already known [166, 174-176]. Experimental data 
indicate that self-oscillations take place between two stable branches of the 
kinetic curves in the region of hysteresis [85]. 

Thus the adsorption mechanism has given boundaries for the reaction 
rate within which self-oscillations take place. But this mechanism Ьу itself 
does not account for the existence of self-oscillations (it will Ье discussed in 
detail in what follows). The analysis of their experimental data led Turner 
et al. [85] to the conclusion that the fiuctuations in the catalyst temperature 
and СО partial pressure cannot cause self-oscillations. They ascribe these 
self-oscillations to the slow process of the formation and removal of subsur­
[асе oxygen due to which the surface catalytic activity changes [85]. This 
effect is accounted for Ьу the suggestion concerning the blocking of chemi­
sorption sites for 02 and СО Ьу the oxide formed. These active sites are 
released owing to the slow interaction of subsurface oxygen with chemi­
sorbed СО. Slow oxidation and reduction of the surface metal Ют induces 
transitions between two stable branches of the kinetic curves in the region 
of multiplicity. These assumptions permitted Turner et al. [85] to remain in 
the framework ofthe validity for the hypothesis of an ideal adsorption layer. 

Qualitative studies of this dynamic model with three variables, i.e. sur­
face concentrations of СО and the two forms of oxygen (surface and subsur­
face), showed [170] the possibility of interpreting self-oscillations in this 
catalytic system. Recently а comprehensive analysis of this model [170] has 
been carried out [177]. Sales et al. [178, 179] determined experimentally the 
parameters for the oxidation and reduction of the Pt subsurface layer. The 
application of these parameters and those for the СО oxidation over Pt that 
are close to the values measured in high-vacuum experiments, made it 
possible to perform the quantitative reproduction, Ьу using the model [180], 
of almost the whole of the experimentally observed characteristics for the 
self-oscillations in the reaction rate of СО oxidation over Pt. 

During the last decade, the models have been extensively applied, ас­
counting for the biographical inhomogeneity of catalyst surfaces and the 
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formation of spatio-temporal waves and dissipative structures due to the 
catalytic reaction [181, 182]. Chang [183] represented а catalyst surface ав а 
set of uniform domains. His model сап describe fJ.uctuations in the catalyst 
activity ав а resuIt of the biographical inhomogeneity, non-uniformity of 
transfer coefficients, and local oscillations in the substance fJ.ow. А macro­
scopically measured value (e.g. steady-state reaction rate) is the result of 
averaging over various domains. The theory [183] interprets the existence of 
"soft" hysteresis for the observed values. The author gives their simple 
classification and predicts new types of hysteresis. Chang's results [183] 
were used to interpret the experimental data of Barelko [43] for NНз oxida­
tion over Pt. In ref. 184, spatially inhomogeneous states of the catalyst are 
modelled through its representation ав а system of separate particles-micro­
reactors opened for heat and тавв transfer and mutual interactions. 

The studies of Ertl and co-workers showed that the reason for self-oscilla­
tions [142, 145, 185-187] and hysteresis effects [143] in СО oxidation over 
Pt(100) in high vacuum (~ 10-4 Torr) is the existence of spatio-temporal 
waves of the reversible surface phase transition hex ...... (1 х 1). The math­
ematical model [188] suggests that in each of the phases ап adsorption 
mechanism with various paraтeters of СО and 02 adsorption/desorption and 
their interaction is realized, and the phase transition is modelled Ьу а 
semi-empirical method via the introduction of discontinuous non-linearity. 
Later, ап imitation model based оп the stochastic automat was used [189] to 
study the qualitative characteristics for the dynamic behaviour of the sur­
face. 
у eates et al. [190] made ап attempt to generalize the Ertl resuIts for 

polycrystalline Pt and the other Pt single crystal planes at almost atmo­
spheric pressures. The results [190] indicate that the oscillational perfor­
тапсе of СО oxidation сап Ье due to at least two different mechanisms. At 
low pressures (~ 10-4 Torr), for Pt(100) the self-oscillations of the reaction 
rate result from the reversible phase transition hex ...... (1 х 1) [142] but at 
higher pressures and for Pt single crystals differing from Pt(100) ав well ав 
for polycrystalline Pt, the authors [190] believe that а more probable model 
is similar to that suggested elsewhere [170]. The model was modified [190] Ьу 
the introduction of ап empirical temperature dependence of the reaction 
rate. Later, Aluko and Chang [191] added the heat balance equation and 
could describe temperature oscillations ofthe catalyst. This approach makes 
it possible to eliminate the disadvantage of thermokinetic models [170]: due 
to the slow process of surface oxidation/reduction the model [191] describes 
oscillations with sufficiently long (~ 10 min) periods. The conclusions [190] 
were confirmed in ап experiment Ьу Lindstrom and Tsotsis [192]. It must Ье 
noted, however, that Kaul and Wolf [193] observed wave propagation over 
supported Pt and Pd catalysts under non-isothermal self-oscillational СО 
oxidation at atmospheric pressure. 

Note that ап interesting tendency has recently Ьееп observed: the litera­
ture reports studies of the dynamics for the models of ап ideal adsorption 
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layer [107, 170, 178, 194-200]*. In particular, simp!e models of heterogeneous 
cata!ytic reactions inc!uding auto-cata!ytic steps were examined [197, 198]. 
The appearance of these studies is symptomatic: "idea!" models compared 
with comp!icated "real" mode!s provide а more reliable basis for the qua!ita­
tative interpretation of complex dynamics. They have not yet exhausted аН 
their possibilities. 

W е have used СО oxidation оп Pt to illustrate the evo!ution of models 
applied to interpret critical effects in catalytic oxidation reactions. АН the 
above models иэе concepts concerning the complex detailed mechanism. 
But, as has Ьееп shown previous!y, critica! effects in oxidation reactions 
were studied ав early ав the 19308. For their interpretation primary attention 
is paid to the interaction of kinetic dependences with the heat-and-mass 
transfer law [146]. It is likely that in these cases there is 8till more variety 
in dynamic behaviour than when we deal with purely kinetic factors. А 
theory for the non-isotherma! continuous stirred tank reactor for first-order 
reactions was suggested in refs. 152-155. The dynamics of СО oxidation in 
non-isotherma!, in particu!ar adiabatic, reactors has Ьееп studied [77-80, 
155]. А 8ufficient!y complex dynamic behaviour is also observed in isother­
та! reactors for СО oxidation Ьу taking into account the diffusion both in 
pores [71, 147-149] and оп the surfaces of cata!yst [201, 202]. The simplest 
model accounting for the combination of kinetic and transport processes is 
ап isothermal continuously stirred tank reactor (CSTR). It was Matsuura 
and Kato [157] who first showed that if the kinetic curve has а maximum 
peak (this curve is also obtained for СО oxidation [158]), then the isothermal 
CSTR сап have several steady states (see also ref. 203). Recently several 
authors [3, 76, 118, 156, 159, 160] have applied CSTR mode!s corresponding 
to the detailed mechanism of catalytic reactions. 

In а recent survey [19] it was noted that а realistic model for catalytic 
oxidation reactions must include equations describing the evolution of at 
least two concentrations of surface substances and account for the slow 
variation in the properties ofthe catalyst surface (e.g. oxidation-reduction). 
For the synchronization of the dynamic behaviour for various surface do­
mains, it is necessary to take into consideration changes in the concentra­
tions of gas-phase substances and the temperature of the cata!yst surface. It 
is evident that, in the hierarchy of modeHing levels, such models must Ье 
constructed and tested immediate!y after kinetic models. Оп the опе hand, 
the appearance of such models is associated with the experimental data оп 
self-оsсiНаtiопs in reactors with noticeable concentration variations of the 
initial substances and products (e.g. ref. 74); оп the other hand, there was а 
gap between the comprehensively examined non-isothermal mode!s with 
simp!e kinetics and those for the complex heterogeneous catalytic reactions 

* Ав а rule, the authors of the above studies did not know of the results of such investigations 
performed in the U.S.S.R., particularly our results. Consequently, "rediscoveries" appeared, 
primarily in analyzing the models of adsorption and impact mechanisms [195, 196]. 
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in which the concentrations of the initial substances and products were 
suggested to Ье unchanged. А theoretical analysis of the model for the 
isothermal C8TR in the case of the Langmuir-Hinshelwood mechanism has 
been carried out [159, 160]. It appeared that algebraic non-linearities of 
mechanism (1) and the mass exchange with the environment are sufficient 
for the appearance ofthe multiplicity of steady states and periodic solutions. 
The analysis of the data for typical conditions of catalytic oxidation reac­
tions [160, 204] showed that the C8TR model contains а атаll parameter 
е = Lr/rs (т:, and 'r are the characteristic times ofmass exchange and reaction, 
respectively) at derivatives of the concentrations of surface substances. 
Hence relaxation consists of the regions of rapid motion determined Ьу the 
surface dynamics and slow motion when the surface is quasi-stationary with 
respect to the gas phase. 8ince mechanism (1) provides а multiplicity of 
steady states [102-104] in the kinetic region, the manifold slow motions has 
topological peculiarities (folds); under certain conditions it leads to relaxa­
tional oscillations [159, 160]. А possibility of complex isothermal multipeak 
oscillations in C8TR for mechanism (1) supplemented Ьу а buffer step has 
been reported [160]. These oscillations appear to Ье due to the superposition 
of slow oscillations in the buffer intermediate and of fast "reactor" oscilla­
tions. An algorithm to search for complex oscillations consisting in the 
analysis of quasi-steady-state algebraic equations for slow subsystems has 
been reported Ьу Chang and Aluko [205]. Theoretical and experimental 
studies of the C8TR dynamics and self-oscillations in the (02 + СО + 1-
С4 Нв ) system over Рt/АI2 Оз have been carried out [206-210]. Morton and 
Goodman [206] repeated the result of Chang and Aluko [160]. It was shown 
that self-oscillations are possible in the system without а buffer step. The 
Hopf bifurcation leading to the appearance of self-oscillations for mechan­
ism (1) is possible at т i= n, n < р or т > q. These conditions correspond 
to the previously obtained [102, 103] necessary conditions for the multiplic­
ity of steady states in the kinetic region. Taking into account the interaction 
of1-butene with active sites ofthe catalyst permitted Mukesh et al. [208, 209] 
to obtain multipeak self-oscillations. А theoretical analysis for the model of 
the catalytic oxidation of Н2 in C8TR was performed Ьу Ivanova et al. [211, 
212]. Polizopoulos and Takoudis [213] obtained criteria for the multiplicity 
of steady states for а two-step reaction in C8TR (with desorption according 
to the law kd 8 ехр { - а8}). 

It is the necessity to interpret critical effects observed in experiment that 
is а stimulus for the elaboration of а totality of various models accounting 
for various stepsof complex catalytic processes. 80 far research workers 
havenot соте to а unified viewpoint about the factors causing critical 
effects, but most ofthem ascribe the complex dynamic behaviour ofreactions 
Ьу the kinetic peculiarities of their mechanism. In principle, а "complete" 
model of catalytic reactions сап Ье suggested that would include the follow­
ing principal characteristics: (1) а detailed reaction mechanism; а hypothe­
sis about an ideal adsorbed layer; (2) biographical inhomogeneity of the cat-
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alyst surface; (3) induced catalyst inhomogeneity; the dependence of rate 
constants оп the adsorbed layer composition; (4) the existence of diffusion 
processes for reactants into catalyst bulk; the dependence of rate constants 
оп the bulk concentration of reactants; (5) the existence of diffusion proces­
ses for adsorbed substances over the catalyst surface; (6) phase and struc­
tural transformations; (7) а possibility for the reaction to extend into а gas 
phase; (8) the existence of non-isothermal conditions оп the surface; (9) 
surface-to-bulk energy transfer, and (10) taking into account the hydrody­
namic picture in CSTR and the heat transfer parameters. It is evident that 
such а complete model would Ье extremely complicated for studying its 
properties. It is most natural to investigate the properties of а system of some 
particular models accounting for various properties of complex catalytic 
processes. 

It сап Ье stated that, at the very beginning of the construction of models 
for heterogeneous-catalytic reactions, а 'Ъifurсаtiоn" took place: models 
were separated into "real" (most of аН) and "ideal". These models cannot, 
however, Ье opposed; they must supplement еасЬ other. We cannot ignore 
the essential dependences ofreaction parameters оп the surface composition 
and state of the catalyst (see ref. 169) even if the significance of these 
dependences has not yet been clarified. This demand is satisfied Ьу the model 
suggested Ьу Creighton et al. [199] to describe the critical effects obtained in 
deep уасииm. ТЬе authors [199] applied а semi-empirical dependence of the 
СО sticking coefficients оп the surface composition and temperature. 
Оп the other hand, we cannot refuse simple models ofthe ideallayer. ТЬе 

knowledge of the dynamic properties of this layer is а basis for the qualita­
tive interpretation of complicated real situations. 

ТЬе aim of the present chapter is а comprehensive investigation of the 
kinetic characteristics ofvarious non-linear catalytic reaction mechanisms. 
ТЬе objects under examination will Ье typical non-linear mechanisms оп the 
one hand and, оп the other, detailed mechanisms for catalytic oxidation 
reactions, primarily СО oxidation over metals (see СЬар. 6). 

2. The "parallel" adsorption mechanism 

ТЬе general results in СЬар. 3 permit us to claim that critical effects сап 
Ье interpreted qualitatively in terms of the ideal adsorbed layer model. 
Detailed mechanisms applied to interpret these phenomena must necessarily 
include а step of interaction between various intermediates (naturaHy, in 
the absence of the auto-catalytic steps). 

It 1В evident that висЬ steps are not involved in linear mechanisms, 
including the two-step mechanism 

Z + А] :;::t ZI + В1 
(2) 
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studied comprehensively Ьу Temkin [214] and then Boudart [215]. Nor are 
they contained in the impact mechanism 

Аn + nZ <=! nAZ 

т AZ + В <=! Ат В + т Z 
(3) 

In kinetic models corresponding to всЬетев (2) and (3), the steady state is 
unique and stable. ТЬеве mechanisms involve the participation oftwo inter­
mediates. 

Let ив consider а more complex саве, i.e. mechanisms with three inter­
mediates. 

ТЬе simplest detailed mechanism having а step of interaction between 
various intermediates includes three steps* 

К, 

(1)Аn + nZ, 'nAZ 
K. l 

к• 
(2) Вт + mZ ====* mBZ 

К. о 
(4) 

This is аn adsorption mechanism (we саП it а "рагаПеl" adsorption тесЬаn­
ism, since the adsorption of reactants fоПоws two independent routes; in 
what follows we will consider оnе more adsorption mechanism that is 
"consecutive"). 
ТЬе unsteady-state kinetic model corresponding to mechanism (4) аввит­

ing constant concentrations of the initial substances and products Аn , Вт, 

Ар ВЧ is of the form 

(5) 

х + у + z = С, 

where х = [AZ], у = [BZ], z = [Z] are the concentrations of substances оп 
the catalyst surface, k j = Kj[A n ], k2 = К2 [Вт ], kз = Кз , k_ j = K_ j , 
k_ 2 = К_ 2 , k_ з = К_з[АрВq ], K±i, i = 1,2,3 are the rate constants for the 
direct and reverse reactions in mechanism (4), n, т, Р, q ~ 1 are the stoich­
iometric coefficients, and С, is the total number of active centres per unit 
surface of catalyst. 

System (5) is аn autonomous set of two non-linear differential equations. 

* Hypothetically, it is possible that а two-step mechanism exists involving the participation of 
three intermediates: (1) АВ + 2Z --> AZ + BZ; (2) AZ + BZ --> С + 2Z. This scheme (а dis­
proportion mechanism) is extremely rare. In addition, it satisfies the principle of complex 
balancing [216--218]. Hence the steady state here is unique and stable. 
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ТЬе reasons for non-linearity here are first, the step of interaction between 
intermediates AZ and BZ, and second, the step of adsorption-desorption of 
the initial substances Аn and Вт. 

Studies [96, 98, 102] of the number of steady-state points in eqns. (5) 
belonging to the reaction polyhedron (simplex) S 

s = {(х, у):х ~ О, у ~ О, х + у ~ Gz } 

showed that а sufficient condition for the uniqueness of the internal steady 
state (i.e. of the state in which nbne of the concentrations х, у, z is equal to 
zero) is the relationship 

n = т ~ р, q (6) 

When this condition is not satisfied, а multiplicity of steady states (ТаЫе 1) 

ТАБLЕ 1 

Steady states of the adsorption mechanism 

Reversibility 
of adsorption 
steps 

Тwо Ьoundary steady states 

Оnе Ьoundary steady state 

k_, "" о 
k_ 2 = О 

(or k_, = О, 

k_ 2 "" О, but it 
must Ье redesig­
nated: 
n+--+m, 

р +-> q, 
k,..-. k,) 

No Ьoundary steady states 
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Кinetic order of steps 

n=m 

At qk, "" pk" internal 
steady states are 
absent, and at 
qk, = pk, there is а 
singular !ine of 
steady states. 

At pk, ~ qk" inter­
па! steady states are 
absent, and at 
pk, < q k, the existence 
of опе (n ~ р) and 
two (n < р) interna! 
steady states is ров­
sible. 

If n = т ~ р, q, there 
,в а unique interna! 
steady state; mu!ti­
plicity of steady 
states сап arise when 
this condition is not 
satisfied. 

n""m 

Two interna! steady 
states сап exist. 

There сап Ье two 
(n > т), опе or 
three (n < т, т ~ р), 
two or four (n < т, 

т < р) interna! 
steady states. 

There сап Ье severa! 
internal steady 
states. 
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in the catalytic reaction corresponding to mechanism (4) is possible. For its 
realization, the following conditions are necessary: (а) the kinetic orders of 
the steps must Ье in а definite ratio and (Ь) the parameters ofthe model must 
satisfy definite inequalities. 

The reversibility of the adsorption steps in mechanism (4) affects the total 
number of steady states. АБ сап Ье seen from ТаЫе 1, if two adsorption steps 
are reversible, boundary steady-state points are absent. Irreversibility of one 
adsorption step leads to the appearance of one boundary steady-state point 
in which the concentration oftheyeversibly adsorbing substance is equal to 
zero and the irreversibly adsorbing substance occupies аН active sites of the 
catalyst surface. In the саБе where both adsorption steps are irreversible, 
there exist two boundary steady-state points: (х = о, у = С.) and (х = С., 

у = о). In the latter саБе, at equal kinetic orders of the adsorption steps 
(n = т) а multiplicity of steady-state solutions is possible, i.e. at pk2 = qk1 

(non-rough саБе) there exists а singular line of steady states connecting two 
boundary steady-state points. It сап manifest itself in the unreproducibility 
of experimental data in а certain range of the parameters. 

Thus the presence of steps for the interaction between various inter­
mediates in the detailed mechanisms is only а necessary condition for the 
multiplicity of steady states in catalytic reactions. А qualitative analysis of 
the dynamic system (5) for mechanism (4) showed that the existence of 
several stable steady states with а non-zero reaction rate needs the following 
additional conditions: (а) the stoichiometric coeffi.cients of intermediates 
must fit definite relationships ensuring the kinetic competition of these 
substances [violation of conditions (6)]; (Ь) the system parameters must 
satisfy definite inequalities. 

We believe that it is not necessary to consider the overall kinetic order of 
steps аЬоуе three in mechanism (4). We have analyzed comprehensively [97, 
102, 103] аН the possible versions for mechanism (4) assuming that the stoi­
chiometric coefficients n, т, р, and q сап amount to 1 or 2, р + q :( 3, and 
k_ з = о. The principal results ofthis analysis are listed in ТаЫе 2. Ву using 
the method of general analysis and the Sturm and Descartes theorem соп­
cerning the number of positive roots in the algebraic polynomial (ref. 219, 
рр. 248 and 255), we could show that there exist four detailed mechanisms 
providing the possibility of obtaining three steady states with а non-zero 
catalytic reaction 

1. (1) А + Z <=± AZ 

(2) В + Z <=± BZ 

(3) 2AZ + BZ -> А2В + 3Z 

п. (1) А2 + 2Z <=± 2AZ 

(2) В + Z <=± BZ 

(3) AZ + BZ -> АВ + 2 Z 
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TABLE 2 

Necessary conditions for the existence and the number of surface steady states of the cata!yst 
depending оп the kinetic orders and reversibi!ity of steps in mechanism (4) 

Parameters 

Кinetic I Н III IV 
orders (k_ i = О, (k_ 1 # k_ 2 (k_ 2 # k_ 1 (k_ 1 # О, 

of i = 1,2,3) = k -3 = О) = k_ з = О) i = 1,2) 
steps 

Two Ьоиn- Оnе boundary Оnе boundary Оnе inter-
n = dary steady- and at k 1 > k2 and at k2 > k1 па! В.р. 

m= state оnе interna! оnе interna! and по 
р = 1 points В.р. В.р. boundary В.р. 
q = 1 (в.р.); at 

k 1 = k2 there 
exists а уа-
riety of В.р. 

2 Refer to Refer to Н. 1, Refer to H1.l Refer to 
n = 2 1.1 but with but with IV.1 
m= 2 k 1 > k2 k2 > k1 

Р = 1 
q = 1 

3 Refer to Refer to Н.1 Refer to H1.1 Refer to 
n = 2 I.1 but but with but with 1V.1 
т = 2 with k1 > 2k2 2k2 > k1 

Р = 2 k1 = 2k2 

q = 1 
4 Refer to Оnе boundary Оnе boundary Оnе or 

n = 1 I.3 and at k! > 2k2 and at 2k2 > k 1 three in-
m=1 two interna! оnе interna! terna! 
р = 2 В.р. В.р. В.р. and 
q = 1 по boundary 

В.р. 

5 Two Ьоиn- Оnе boundary Оnе boundary Refer to 
n = 2 daries and at and at 2k1 > k2 and at 2k1 > k2 IV.4 
m= 1 2k1 > k2 two two interna! оnе or three 
р = 1 interna! в. р. are ров- interna! В.р. 
q = 1 В.р. are sible 

possible 
6 Refer to Refer to Н.5 Refer to 1II.5 Refer to 

n = 2 I.5 but but with but with IV.4 
т = 1 with k 1 > k2 k! > k 2 

Р = 2 k 1 > k2 

q = 1 
7 Refer to Refer to Н.б Refer to IH.5 Refer to 

n = 2 I.5 but but with but with IV.4 
m=1 4k1 > k2 4k! > k 2 4k1 > k 2 

Р = 1 
q = 2 
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Ш. (1) А2 + 2Z <=z 2AZ 

(2) В + Z <=Z BZ 

(3) 2AZ + BZ --+ А2В + 3Z 

IV. (1) А2 + 2Z <=Z 2AZ 

(2) В + Z <=Z BZ 

(3) AZ + 2 BZ --+ АВ2 +. 3 Z 

(7) 

Thus if the multiplicity of steady states for the catalyst surface manifesting 
itself in the multiplicity of steady-state catalytic reaction rates has Ьееп 
found experimentally and for its interpretation а three-step adsorption те­
chanism oftype (4) and а hypothesis about the ideal adsorbed layer are used, 
the number of concrete admissible models is limited (there are four). It сап 
Ье claimed that воте types of adsorption mechanism have "feedbacks", but 
for the appearance of the multiplicity of steady states these "feedbacks" 
must роввевв sufficient "strength". The analysis of these савев (mechanisms 
4-7 in ТаЫе 2) shows that, to achieve multiplicity, the reaction conditions 
must ''help'' the non-linear step. 

Hence we have managed to obtain the simplest detailed mechanisms 
providing а possibility to achieve several (in this саве three) steady-states of 
the catalyst surface. ТЬеве are three-step adsorption mechanisms (7) whose 
parameters satisfy definite inequalities. Using the radiophysical terminol­
ogy, these mechanisms сап Ье called the simplest catalytic triggers. It is 
these mechanisms that must Ье used to interpret experiments in which 
critical effects are observed. 
А special study must Ье carried out for the dynamic properties of model 

(5) and primarily for the stability ofits steady states. Stability "in-the-small" 
is determined Ьу the signs of the eigenvalues А for the characteristic equa­
tion of the system matrix linearized near the steady state. It was shown [103] 
for system (5) that the steady states are either stable nodes (А! < О, А2 < О) 

or the saddle points (e.g. А! < О, А2 > О). Near the stable steady state, the 
system behaviour in time is known to Ье of the exponential character 
(~ L ехр {А; t}). Saddle points are unstable since the trajectories of the 
motion from апу point of the saddle neighbourhood move away иот it. 
There are only two trajectories entering the saddle: they are separatrices 
accounting for А; ~ О (i = 1 or 2). W е have also proved [103] the following 
properties: (а) the trajectories of system (5) beginning at the reaction sim­
plex S do not leave it; (Ь) system (5) Ьав по foci and unstable nodes; (с) the 
limit cycles and closed curves consisting of the traj ectories of system (5) are 
absent; (d) the attraction regions of stable nodes are separated Ьу the curves 
consisting of separatrices and saddle points; опе separatrix always starts 
from the boundary ofthe simplex х + у = Cz and the other goes from either 
the boundary х = О or у = О; (е) if at х = О (у = О) there are по steady-state 
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points, then the steady-state point of system (5) with the minimum value of 
х (or у) is stable. 

These properties characterize both the type and the stability of steady­
state points in system (5). If the steady-state point is unique, it is stable. If 
there are several steady states, then at least one of them is unstable. Stable 
and unstable steady states alternate. 

The most important conclusion resulting from the properties (Ь) and (с) is 
that system (5) has по oscillation (either damping or non-damping). Thus if 
experiments have revealed these phenomena, for their interpretation one 
must use models that are more complicated than system (5). It is necessary 
to use models with more than two intermediates or to utilize models in which 
the rate constants ofthe elementary reactions depend оп the concentrations 
of the intermediates. 

3. Steady-state characteristics of the simplest mechanism 
permitting multiplicity of catalyst steady states 

Let us carry out а comprehensive analysis of steady-state kinetic depen-
dences for catalytic reactions following the adsorption mechanism 

(1) А2 + 2 Z ;::z 2 AZ 

(2) В + Z ;::z BZ (8) 

(3) AZ + BZ -> АВ + 2 Z 

This is the only mechanism from mechanisms (7) in which the total kinetic 
order with respect to intermediates for every step is по greater than two. 
Scheme (8) enters as а component into the detailed mechanisms of oxidation 
reactions over metals. In particular, many researchers describe СО oxida­
tion over platinum metals Ьу the type (8) mechanism. 

Let us start our investigation with the case when the adsorption steps in 
mechanism (8) are irreversible [166]. The unsteady-state kinetic model is 
then of the form 

(9) 

у k 2 PB(1 - х - у) - kзху 

where х, у, and (1 - х - у) are the dimensionless concentrations of the 
substances AZ, BZ, and Z, respectively, РА2 and Рв are the partial pressures 
of observed substances assumed to Ье constant, and k i are the rate coeffi­
cients. The steady state of the surface is determined Ьу the solution for а 
system of algebraic equations corresponding to (9) 

2k j PA2 (l - х - у)2 - kзху = О 

k 2PB (1 - х - у) - kзху = О 
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Here there always exist two boundary steady states (х = 1, у = О) and 
(х = О, У = 1). The former corresponds to the complete surface coverage 
with substance Az and the latter Ьу substance В. In both cases the steady­
state reaction rate W = kзху = О. But besides boundary steady states, there 
сап also exist internal steady states. After subtracting eqn. (10Ь) from eqn. 
(10а), we obtain 

1 - х - у 
kZPB 

2k1PA, 
(11) 

The expression (11) makes physical sense if 2k1 PA2 > k 2PB • In the steady 
state the reaction rate takes the form 

hence 

ху 
k~P~ 

2k1 РА2 kз 

Оп the other hand 

ху = х (1 - х 

The quadratic equation 

2k~~:kз = х (1 - х - ~21~,) 
has two positive solutions at 

(12) 

kз (2k1 РА2 - k 2 PB )Z ~ 8klPA2k~P~ (13) 

In the region where 2k1 PA2 > kZPB , condition (13) will Ье written as 

2k1PA 
: > kZPB (14) 

1 + 2 ~2k1РА2 /kз 

It is interesting that Ьу taking into account eqn. (11), the inequality (13) 
сап Ье written as (х - у? > О, where х and у are the concentrations of AZ 
and BZ in the interhal steady-state points. This condition 8eems to Ье trivial, 
but it gives possibilities for the following statement. If the catalytic reaction 
mechanism is of type (8) with irreversible adsorption steps and the ех­
perimental data have revealed one steady state with а non-zero reaction 
rate, i.e. w"ds = kзху and, hence, х =1= О, у =1= О, and х ~ у (or vice versa) then 
already from this one fact it follows that (а) there exist two boundary steady 
states (х = 1, У = О) and (у = 1, х = О) with а zero reaction rate and one 
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of these states is stable; and (Ь) there is опе more internal but unstable 
steady state in which the reaction rate is equal to that in the stable internal 
steady state. Ттв sufficiently obvious fact has not Ьееп noted Ьу the several 
authors who have studied the reaction model of СО oxidation [194, 195]. 

In the plane of the parameters (РА" Рв) the inequality (14) specifies the 
region in which there exists а multiplicity of steady states. For example, it 
is satisfied Ьу the set of parameters k1 РА2 = k2 рв = 1, k s = 10. It сап Ье 
shown that, independently ofthe ratio k2PB/klPA2' the boundary steady state 
(х = О, У = 1) is stable whereas (х' = 1, у = О) is unstable. Among two 
internal steady states located symmetrically with respect to the line х = У, 

stable will Ье the state with а higher value of х and х ~ у. 
А steady-state reaction rate сап Ье represented as 

if (14) is satisfied and the initia! 

W.d' = 2k1 РА, 

{ 

ЧРi 
conditions for the dynamic system (9) !ies in the 
attraction region of the interna! stable steady states 

О in аll other cases 

The dependences W(P
A

) and W(P
B

) of the steady-state rate for the reac" 
tions following the adsorption mechanism (8) are represented in Fig. l(а) and 
(Ь). At а fixed Рв' the curve и-:,dS(РА ) has two branches (zero and non-zero) 
corresponding to the reaction rates in the boundary and the internal steady­
state points. In the range РА = О to (k2/2k1)PB, the catalyst surface is 
completely covered Ьу BZ and' W

d 
= О. Оп further increasing Р ,а jump-

а s 1#, 
wise rise in the reaction rate ир to the value of W; is possible. Tnis value 
then decreases in inverse proportion to РА . In the ~~se in which Р is fixed, 
the rate rises quadratically with increasi:hg Рв and then "drops" Аап to the 
branch of zero rates that exists at апу Рв value. 

W е сап write down relationships to determine critical values for the 
parameters at which а transition from опе branch of the curve for the 
dependence of the steady-state reaction rate to the other becomes possible. 
For example, at fixed ks and РА ' the critical value of Рв is determined Ьу the 
equation ' 

р = 2k1 Р [1 + (8k1 PA2)1/2J-l 
В k2 А, kз 

(15) 

ТЬе critical rate value corresponding to eqn. (15) will Ье 

W+ = 2k Р 1 + ~ 
[ (

8k Р )1/2J-2 
ads 1 А2 kз 

(16) 

Also fulfilled are the simple relationships 

k s 
"4 lim тах и-:,;s 

РВ""'СО РА2 

(17) 
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W (а) W (Ь) 

k 2 PB 
В 

2k,PA
2 

в 

Wcr 
k2 Р 
2" в 

3 Wcr 

~P 
2 А2 

з 

РА2 

Fig. 1. Dependence of steady-state reaction rate оп partial pressures РА, (а) and Рв (Ь). 1, 
W,~,(non-zero branch); 2, W,d,(zero branch); 3, щт; А" = critical point of drop in steady-state 
reaction rate; В = limit value of А". 

lim тах И:;s 
kз-со РЛ2 (18) 
lim тах И:;s = 2k

j 
РЛZ 

kз-+CJJ рв 

Figure 1 also represents W (Рл ) and W (Рв ) for the reaction that follows 
1т 2 1т 

the impact mechanism 

(1) А2 + 2Z --> 2AZ 

(2) В + AZ -> АВ + Z 
(19) 

А simple analysis of the kinetic model corresponding to mechanism (19) 
shows that, in this саве, the steady state ofthe surface is always unique and 
W;m(Рлz ) and Wim(PB ) are of monotonic character 

Щm = k2PB (1 - z*) 

where 

kZPB [( 
8k Р }f2 1] z* = 4kj Рл, 1 +~ k2 PB 

lim 
l1J- W 

W;m(Рлz , РВ) 2kj Рлz 

lim 
РА2 --ioоо 

W;m(Рлz,Рв ) k 2PB 

Figure 2 represents three-dimensional kinetic dependences in the 
"W х Рлz х Рв " coordinates for the impact (а) and adsorption (Ь) mechan­
isms. In our opinion, ап analogy between the surface peculiarities in Fig. 
2(Ь) with those examined and classified in catastrophe theory [220, 221] сап 
Ье claimed. 
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(Ь) 

Fig. 2. Kinetic dependence of W(PA
2

' Рв) for (а) impact and (Ь) adsorption mechanisms. 

Regions of different kinetic behaviour сап Ье vividly represented Ьу the 
diagrams of steady states that are constructed in the "~ х Ij" and 
"~ х Т" coordinates. We will apply these diagrams in what follows when 
studying СО oxidation over Pt. 

The effect of step reversibility. А suggestion about the reversibility of 
adsorption steps for А2 in the impact mechanism (19) does not lead to апу 
essentially new results. Kinetic curves Иjm (РА2 ) and Иjm (Рв ) have the вате 
type ав those with saturation. 

The саве will Ье different for the adsorption mechanism. ТЬе kinetic 
model corresponding to mechanism (8) with reversible adsorption steps is 
represented ав [222] 

From Q(x, у) = О we have 

(k_ 2 + kз х)(l - х) 
1-х-у = 

k2PB + k_ 2 + kзх 

Q(x, у) 

After substituting eqns. (21) into Р(х, у) = О, we obtain 

2k j PA2 (k_ 2 + kз х)2(1 - х)2 = x(k2PB + k_ 2 + kзх) 

. [k2 Рв kз (1 - х) + 2k_ j x(kzPB + k_ 2 + kзх)] 

(20) 

(21) 

(22) 

Let ив write eqn. (22) ав f(x) = g(x), where f(x) and g(x) are the formation 
and consumption rates of AZ, respectively (Fig. 3). The steady-state соп­
centrations х are the points of interception of f(x) and g(x). Оп the section 
[О, 1] these functions have at least опе intercept, since f(O) > О, g(O) = О and 
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х 

Fig. 3. Qualitative shape offormation [(х) and consumption g(x) of AZ functions. F(x) ~ [(х) -
g(x). 

f(l) = о, g(l) > о. Hence there exists at least one steady state, but it is also 
possible that there will Ье three steady states. А necessary and sufficient 
condition for their appearance will Ье (see Fig. 3) 

f(x) = g(x) 

df(x) I > dg(x) I 
dx dx 

X st Xst 

(23) 

The inequality from eqns. (23) will simultaneously Ье the condition of 
instability of the middle steady state. Its physical sense is evident: а deriva­
tive of the formation rate for AZ must Ье higher than that of the derivative 
of the consumption rate for the вате substance. 

The analysis of the characteristic roots for the linearized system shows 
that if the steady state is unique, it is stable; but if there are three steady 
states (хl, х2 , хз) the outer ones (х1 , ХЗ> are stable, whereas the middle one 
(Х2) is unstable. 

The equation f(x) = g(x) is а fourth-order algebraic equation, hence to 
write down the conditions (23) in the explicit form for the general case is 
difficult. An explicit form ofthe multiplicity criterion for eqns. (23) solutions 
сап Ье obtained, e.g. from the simple demand for eqns. (23) to account for the 
inflexion point х* for the f(x) function. Then from f;;(x*) О we obtain 

х* = 1 [31/2 - 1 _ k~2 (31/2 + 1)] 
2 х з1/2 kз 

(24) 

It is evident that х* > о. Then 

k~2 31/2 - 1 
~ 112 ~ 0.227 

kз 3 + 1 
(25) 
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The inequality (25), implying а demand for the sufficiently weak reversibility 
of the adsorption step of В, is а necessary condition for the multiplicity of 
steady-state solutions. То а necessary and sufficient condition for multiplic­
ity, we must substitute eqn. (24) into the inequality from (23), but the 
expression obtained will Ье extremely cumbersome. 

The conditions determining а region for the existence of several steady 
states сап Ье obtained Ьу different methods and сап Ье of different forms. 
Thus for the тоге simple case k_ 1 = О, ап inequality сап Ье obtained from 
eqns. (23) determining а boundary for the multiplicity of internal steady 
states 

:;~ (a~ - 3a1 a2 ) ~ (Ьо - ~ Ь 1 ::У 
where 

а1 2klPA2k~2 + kzРвkз(k2РВ + k_ z) - 4klРА2k_2kз 

а2 4klРА2k_2kз - k~(2klPA2 - k 2PB ) 

аз 2klPA2k~ 

ао - 2klPA2k~2 

2 2a~ 
3" а1 9аз 

a1a2 

9аз 

(26) 

With the fulfilment of condition (26), the system (20) has three internal 
steady states. For the case under consideration (k_ 1 = О) there also exists а 
boundary steady state (х = 1, У = О). The analysis of condition (26) shows 
that the multiplicity of steady states will Ье realized with other conditions 
being constant at relatively low temperatures (the desorption rate is low) 
and low values of рв, high РА2 , and also at sufficiently high kз . 

Steady-state kinetic curves W(PB )* for the adsorption mechanism (8), 
taking into account the reversibility of adsorption steps, аге illustrated in 
Fig. 4(а), (Ь). At а given value of k_ 1 with increasing k_ 2 [Fig. 4(а)], the region 
of multiplicity for steady states diminishes and at some value of k_ 2 it 
vanishes completely. With increasing k_ 2 , the kinetic curve сап achieve а 
maximum and Бпаllу take the form of that with saturation. А similar effect 
is observed with the reversibility ofthe first step at а given value of k_ z [Fig. 
4(Ь)]. But the parametric sensitivity here is lower than in the former case. 

* For the calculations [222], the fixed parameters were k! = k 2 = 1, kз = 10, whereas the values 
of РА2 'РВ' k_! and k_ 2 were varied over а wide range. 
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(а) (Ы 

0·6 0'6 

3:: 0-4 3:: 0·4 

0·2 0-2 

О 0·5 1·0 1·5 2·0 2·5 О 0·1 0·3 0'5 0·7 0'9 

Рв Р в 

Fig. 4. Dependence of steady-state reaction rate оп partia! pressure Рв · РА, ~ 1. Dashes here 
and hereafter are the corresponding уа!иев in unstable steady state. (а) k_ 1 ~ 0.01. 1, 
k_

2 
~ 0.01; 2, k_ 2 ~ 0.1; 3, k_ 2 ~ 1.0; 4, k_ 2 ~ 7.0. (Ь) k_ 2 ~ 0.01.1, k_ 1 ~ 0.05; 2, k_ 1 ~ 3.0; 3, 

k_ 1 ~ 200.0. 

The same situation is also observed in the kinetic curves W(PA,) [Fig. 5(а), 
(Ь)]. Note that the types ofhysteresis for W(PA2 ) and W(PB ) differ. The former 
hysteresis is characterized Ьу а "counterclockwise" direction and the direc­
tion of the latter is "clockwise". Typical temperature dependences for the 
adsorption mechanism constructed at various values of ko. l and activation 
energies Е! = Е2 = О; Е_ ! = 60, Е_ 2 = 30 and Ез = 10 kcal mol- l ате те­
presented in Fig. 6. Kinetic curves W(PA2 , РВ) in the three-dimensional space 
ате given in Fig. 7 which also represent the projection of а steady-state rate 
"сивр"* to the plane of the РА2 and РВ parameters. It is this projection that 
is the аЬоуе diagram of steady states_ Thus we have isolated а region for the 
multiplicity of steady states_ In а similar way, three-dimensional plots 
W(PA2 , Т) and W(PB , Т) сап Ье constructed_ 

(а) (Ы 

0'6 0·6 
3 

3:: 
0-4 0-4 3:: 2 

0·2 0·2 

О 2 4 6 8 О 3 6 9 12 15 18 
РД2 РД2 

Fig. 5. Dependence ofsteady-state reaction rate оп partia! pressure РА2 ' Рв ~ 1. (а) k_ 1 ~ 0.01. 
1, k_, ~ 0.05; 2, k_ 2 ~ 0.1; 3, k_ 2 ~ 1.0. (Ь) k_ 2 ~ 0.01. 1, k_ 1 ~ 0.05; 2, k_ 1 ~ 5.0; 3, 
k_ 1 ~ 200.0. 

* This concept has been borrowed from the "catastrophe theory". Nowadays this theory has 
been extensive!y deve!oped [220]. Strictly speaking, it is thetheory of the peculiarities of 
differentiable mappings [221]. 
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400 ~ 
3·0 ~2 \ 

\ \ 
~ 2·0 

\ \ \ 
1·0 

О 

460 480 500 
Т(К) 

Fig. 6. Temperature dependence of steady-state reaction rate. РА2 = Рв = 1. k' l = 0.01. 1, 
k' 2 = 0.1; 2, k' 2 = 0.5. 

w 

Fig. 7. Steady-state reaction rate 8urface at Т = const. 

4. Relaxation characteristics of the "parallel" adsorption 
mechanism 

Let ив now examine the behaviour of the solutions for the dynamic system 
(20) in time and analyze the system trajectories in the phase pattern. This 
analysis permits ив to characterize peculiarities ofthe unsteady-state behav­
iour (in particular to establish whether the steady state is stable or ип­
stable), to determine its type (focus, node, saddle, etc.) and to find attraction 
regions for stable steady states, singular lines, etc. 

For numerical studies [223] of system (20) corresponding to the three-step 
mechanism (8) its parameters were taken to Ье k 1 = k 2 = 1, kз = 10, 
k. 1 = 0.01, and k' 2 = 0.1. Values of РЛ2 and Рв were varied over а wide 
range. А вечиепсе of phase portraits for reaction (8) with опе or three steady 
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0'8 (а) 0·8 

0·6 0·6 

" N 
n:J 
'-' ОА ОА 

0·2 0·2 

О 0·2 ОА 0·6 0·8 О 0·2 ОА 0'6 0'8 

[AZ] [AZ] 

0·8 (с) 0'8 

" 
0·6 ,, 0 '6 
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!11 CD 
'-' '-' 

ОА 0·4 

0-2 0-2 

О 0-2 ОА 0-6 0-8 О 0-2 0-4 0-6 0'8 

[AZ] [AZ] 

Fig. 8. РЬаве patterns of system (20) at various values of Рв . РА2 = 1. k, = k, = 1, kз = 10, 
k_ 1 = 0.01, k_ 2 = 0.1 (в-1). (а) Рв = 0.7; (Ь) Рв = 0.8; (е) Рв = 1.1; (d) Рв = 1_2_ 

states depending оп the parameter Рв (РА2 = 1) is represented in Fig. 8(a)-(d)_ 
At low Рв , the steady state is unique [Fig. 8(а)]. From аll initial surface 
compositions we соте to this state which is characterized Ьу practically 
complete AZ coverage (х ~ 1, У ~ О) and а low reaction rate. With increas­
ing рв, there arise two more steady states [Fig. 8(Ь)]. One is stable (III) and 
the other is unstable (П). Now the phase portrait has two attraction regions 
corresponding to two stable steady states. The trajectory сотев into one or 
another steady state depending оп the region in which the initial conditions 
are set. These regions are separated Ьу the separatrices entering into saddle 
П. With increasing рв, the attraction region for the steady state IП grows 
and stable and unstable steady states I and П converge [Fig. 8(с)]. Finally, 
at Боте bifurcational value of рв, they merge. But at high Рв there exists 
once again only one steady state ПI [Fig. 8(d)]. In this state the surface is 
covered with BZ (х ~ О, У ~ 1) and the reaction rate is low. 

Similar alterations in the phase portrait also take place with increasing 
РА2 ' The only difference is that at low РА2 the unique steady state is charac-
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terized Ьу practically comp1ete BZ surface coverage, whereas at high РА2 the 
dominating substance оп the surface is AZ. At mean Р А2 there are two stable 
steady states (with their characteristic attraction regions) and one unstable 
steady state in the middle of them. 

Transient characteristics x(t) and y(t) demonstrate various time scales. 
The trajectories are often characterized Ьу the fast initia1 region and the 
slow motion in the neighbourhood of some genera1 trajectory C'main­
stream") towards а steady state. In the саБе when the phase portrait is 
characterized Ьу severa1 steady states, the trajectory сап rapid1y enter into 
the neighbourhood of the unstable steady state and then it slowly relaxes 
towards one ofthe stable states. The genera1 trajectory ("mainstream") near 
which а slow motion takes p1ace lies in the region between two null c1ines, 
х = О and у = О. It is evident that, in this region, the re1axation of system 
(20) towards the steady state that is an intercept of the null clines will Ье 
slower the narrower this region Ьесотев with variation of the parameter. 
When the variable parameter is c10se to the bifurcation va1ue, the narrowing 
of the region will Ье particu1arly distinct. 

То interpret various time sca1es found in numerica1 experiments, it is 
necessary first of аН to determine the difference in the eigenva1ues of the 
system matrix 1inearized in the steady-state neghbourhood. Figure 9 pre­
sents .11 (Рв ) and Л2(РВ ) which сап easily Ье calculated as solutions of the 
quadratic equation. (In the general саБе л is а complex function ofthe mode1 
parameters.) Different л va1ues сап Ье the reason for the time separation. 
Indeed, .11 and .12 differ but their difference is по more than an order of 
magnitude. But there is another саБе that is 1ess trivia1. In the region of 
critica1 effects in which the parameter achieves its bifurcation va1ue, one of 
the roots becomes positive (after passing through zero) [Fig. 9(с)]. It is in this 
region of the parameters that the time to achieve а steady-state Тг sharp1y 
increases when going from one branch of the steady-state kinetic curve to 
the other (Fig. 10). But far from steady state in the genera1 саБе, we cannot 
judge the character ofre1axation according to the Лj values since here it сап 
Ье affected Ьу the non-1inear properties of the system. 

In several experiments, in particular the study Ьу Temkin and co-workers 
[224] ofthe kinetics in ethy1ene oxidation, slow relaxations, i.e. the extreme-
1y slow achievement of а steady-state reaction rate, were found. As а ru1e, 
the existence of such slow relaxations is ascribed to воте "side" reasons 
rather than to the purely kinetic ("proper") factors. The terms "proper" and 
"side" were first introduced Ьу Temkin [225]. As usual, we classify аБ slow 
"side" processes variations in the chemical or phase composition of the 
surface under the effect of reaction media, cata1yst deactivation, substance 
diffusion into its bulk, etc. These processes are usually considered to require 
significantly longer times to achieve а steady state compared with those 
characterizing the performance of chemical reactions. The аЬоуе numerical 
experiment, however, shows that, when the system parameters attain their 
bifurcation va1ues, the time to achieve а steady state, Тп sharply increases. 
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Fig. 9. (а) Steady-state reaction rate W(PB ); (Ь) surface concentration of substances х(Рв ), у(Рв ); 

(с) eigenvalues л, (РВ ) and л2 (Рв ) of characteristic equation of system (20). For the values of the 
parameters, вее Fig. 8. 

This increase cannot Ье ascribed to the "side" reasons that have not been 
included into the reaction model. Similar increases of т,, namely long induc­
tion periods for the "ignition" and "quenching" ofthe reaction, were оЬ­
served Ьу Barelko et al. [5, 42~44, 46, 69] in the oxidation of simple molecules 
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Fig. 10. Variations of time to achieve steady states, т" with consecutive stepwise variations of 
Рв . The re!axation time, т" was determined from the condition for the fina! entry of system (20) 
trajectory into the 5% neighbourhood of stable steady state. 

(СО, Н2 , NНз , С2 Н4 ) over Pt. For details refer to the description of СО 
oxidation given below. 

The results of the numerical experiment for system (20) necessitated а 
general mathematical investigation of slow relaxations in chemical kinetic 
equations. This study was performed Ьу Gorban' et al. [226-228] who оЬ­
tained several theorems permitting them to associate the existence of slow 
relaxations in а system of chemical kinetic equations (and, in general, in 
dynamic systems) with the qualitative changes in the phase portrait with its 
parameters (вее Chap. 7). 

Let ив consider the concept of "relaxation" in more detail since по 
accurate definition for it has Ьееп given previously. The term "relaxation" 
is often used for the process Ьу which either ап equilibrium or а steady state 
is achieved in the system, and the relaxation time is treated ав the time to 
achieve complete or partial thermodynamic equilibrium. It is evident that, 
in this context, the difference between "equilibrium" and "steady state" is 
insignificant. The concept of "relaxation time" is often used for the time 
during which а certain function characterizing the deviation from the equi­
librium or the steady state diminishes Ьу е (~ 2.718) times compared with its 
initial value. It is evident, however, that this definition is only correct for 
one-dimensional linear systems. For multi-dimensional linear systems, а 
spectrum ofrelaxation times must Ье used. For non-linear systems, the appli­
cation ofthese definitions is correct only in the neighbourhood of а singular 
point. 

Classification of various relaxation times and their strong definitions 
have been reported [227, 228]. 

Let the phase portrait of the system Ье characterized Ьу воте set of cv-limit 
points. The concepts of ап "cv-limit point" and ап "cv-limit set" have Ьееп 
extensively used in the theory of dynamic systems. The thing is that the 
trajectory does not necessarily enter into а steady state. In the general саве 
(ав wel1 ав in the case of chemical kinetic equations), the existence of limit 
cycles is possible. The letter cv is а вутЬоl for the region of the phase space 
into which at t-HXJ the trajectory tends ("from С( to ш"). Let Ха Ье а vector 
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of the initia1 compositions and k Ье а set of rate constants. W е сап then 
introduce ,) (хо , k, В) which is the time from t = О to the first entry of the 
trajectory x(t) into the 6 neighbourhood of the w-1imit set, and 'З(Хо , k, 6) 
which is the time unti1 the final entry of the trajectory into the above 
neighbourhood. 

We will also have '2(ХО ' k, 8), which is the time ofx(t) residence outside 
this neighbourhood. In particular савев, '), '2 and '3 coincide (Fig. 11). 

The concept of slow relaxation refers to the саве in which, for а given 
8 > О and arbitrary t > О, there exist such хо and k values (lying in а given 
region having physical significance) as 'ЦЗ) (хо , k, В) > t. It was established 
[226-228] that this type of slow relaxation is observed when, and only when, 
the phase portrait undergoes bifurcations. 

Slow relaxations сап Ье exemplified Ьу the system behaviour correspond­
ing to the adsorption mechanism (8) when the parameters k are close to their 
bifurcation values. 

Qualitative peculiarities for the dependence ofthe re1axation time оп the 
system parameter are represented in Fig. 12. The most pecu1iar is the "criti­
cal slowing down" in the neighbourhood ofbifurcation parameters. Here the 
relaxation rate is considerably lower than that of the s10west reaction and, 
in princip1e, it сап Ье infinitesimal. А numerica1 experiment provides simi1ar 
results (Fig. 13). 

For the simplest three-step adsorption mechanism (4) at n = 2, т = 1 and 
р = q = 1, а retardation in the relaxation rate is observed in the region 
(''1о1е'') between two null clines 

о (27) 

(28) 

In this case adsorption steps are assumed to Ье irreversible. These isoclines 
are the second-order curves with а common axis of symmetry х = у. Ifthere 

о 

Fig. 11. Relaxation times '1' '2 and '3' 
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Fig. 12. Qualitative peculiarities for the dependences ofrelaxation times '1 and" оп Рв. (а) (хо ' 
Уо) EV1; (Ь) (хо ' Yo )EV2; (с) (Xo'Yo)EV,. V1, V2, and V, are the attraction regions determined Ьу 
separatrices of sadd!e·node points of various steady states. 

(а) (ь) 
I 1·0 100 
I 0-8 80 I '" "' " 

0·6 60 I <'1 

0-4 ... 
I 40 

0·2 20 ~ 
О О 2 4 6 8 10 

1(5) kз (5-1) 

Fig. 13. Achievement of steady state for system (9) when re!axing from the initia! state (хо = 0.5, 
Уо = О) at k, = 7.9 (а) and dependence ,,(k,) at s = 0.05. k1 P

A2 
= 1, k2PB = 1 (S-I). 

are по internal steady states, the isocline у = о over the whole of its length 
in the reaction simplex S is localized closer to the boundary х + у = 1 
compared with х = о [Fig. 14(а)]. Unrough internal steady state is generated 
оп the line of equal concentrations х = у [Fig. 14(Ь)]. It is in this region of 
surface coverages that, when the parameters Ьесоmе close to their bifurca­
tion values, the time of relaxation towards steady state 1 from the initial 
conditions belonging to the attraction region formed under bifurcations of 
а two-fold equilibrium state IП-IV type "saddle node", grows infinitely (Fig. 
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Fig. 14. Possible савев for mutua! disposa! of the пиll c!ines for system (9) in reaction simp!ex 
S. 

13). This is due to the fact that the relaxation rate at а narrow place, i.e. the 
region of "condensing trajectories" [229], tends to zero more rapidly than the 
length of the trajectory where the relaxation is retarded. These properties, 
which сап easily Ье obtained from the analysis of eqns. (27) and (28), make 
it possible to obtain the inequality [230] 

maxzly~o ~ maxzlx~o 

This inequality is the necessary and sufficient condition for the multiplicity 
of steady states for the proper kinetic model. In addition, from the form of 
х 1 y~O (z) and у I x~o (z) we сап also obtain sufficient conditions for the multi­
plicity of steady states [Fig. 14(Ь)] 

. kZPB 
maxzly~o ~ ~ 

lРА2 



тах zl 
х=О 
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In this саве it is necessary to fulfil the condition k2PB /(2k1PA
2

) < 1. If these 
conditions are expressed through the reaction parameters and are combined, 
we obtain 

(29) 

where о: = 2k 1РА2 /kз and j3 = k2рв/kз are the criteria characterizing the 
competition between the adsorption steps, оп the one hand, and the interac­
tion step оп the other. Adsorption steps lead to the binding of unoccupied 
surface centres of the catalyst whereas the interaction step promotes their 
release. If the latter step is sufficiently strong and the adsorption steps of 
different substances are characterized Ьу different kinetic laws, the system 
сап have critical effects. 
А bifurcation diagram оп the plane of (о:, jЗ) criteria is represented in Fig. 

15. An equation for the solid curve corresponds to the equality in eqn. (29). 
We have already mentioned the sharp difference in the relaxation times 

outside the region between the null clines (~ 1 в) and inside it (аБ high as 
hundreds of seconds). The motion outside this region depends оп the "fast­
est" reaction. Inside this region the relaxation rate is dependent оп the 
complicated complex of rate constants, and in the general саве we cannot 
suggest that the reaction rate is limited Ьу воте reaction. The common 
trajectory near which the relaxation is retarded is по more than а specific 
trajectory that is а separatrix going from the unstable into the stable steady 

80 
CQ/a 

Two boundaryand 
1,,1/ 

,:::.. 
60 two internal ",1'\1'>' 

steady states cvO' 
-...; 

~~I м " ,,'" 
~ .>с"" 40 '\-)( 

(\j ,-<q 
11 /CV <j 

20 
cv<q ,/ 

')(, / 

" ~o boundary 
_ steady states 

О 2 3 4 
k 2 PB 

f3=~ 

Fig. 15. Bifurcationa! diagram of system (9). In the region between the so!id and broken curves, 
an effect of "critica! s!owing down" is possibJe. 
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state. These effects are also observed when the unstable steady state lies 
outside the physical region for the system determination [231]. 

Let us consider the kinetic model corresponding to the mechanism (8) at 
k_ 1 #- о and k_ 2 = О 

х 2k1PA
2
(1 - х - у)2 - 2k_ 1 X

2 - kзху 

у k2PB(1 - х - у) - kзху 

Let us take k 1PA, = k2PB = 1в- 1 , kз = О.5в- 1 and k_ 1 #- О. Besides the 
boundary steady state (х = О, У .;" 1), there always exists а real-valued 
steady state lying outside the physical region of determination (at 
О < k_ 1 < 1; its coordinates will Ье х > 1, У < О). 

Localization of this steady state ав а point of intercept for the null clines 
х = О and у = О ав а function of the k_ 1 value is shown in Fig. 16. At low 
k_ 1 this point is localized sufficiently close to the region of probable initial 
conditions (at k_ 1 = О it Ьесотеа а boundary steady state). It is the proxim­
ity of the initial conditions to the steady state outside the reaction polyhed­
ron that accounts for the slow transition regime. Note that, besides two 
real-valued steady states, the system also has two complex-valued steady 
states. At bifurcation values of the parameters, the latter Ьесоте real and 
appear in the reaction simplex ав an unrough internal steady state. The 
proximity of complex-valued roots ofthe system to the reaction simplex also 
accounts for the generation of slow relaxations. 

г\ 
N 
[() 

'-' 

Similar results сап also Ье obtained for the more simple mechanism 

(1) А + Z <=' AZ 

(2) В + Z <=' BZ 

(3) AZ + BZ .... АВ + 2 Z 

\ 

Fig. 16. Steady 8tate8 and null cline8 for 8Y8tem (20) with varying k_ , (k , PA2 = k,PB = 18·1, 
k_

2 
= О, kз = 0.58-1).1, [ЛZ] = О; 1', k_

1 
= 10-38-'; 1", k. , = 10-28·1; 1''', k_

1 
= 10-18·1; 2, 

[BZ] = О. 
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Thus the effect of slow relaxations сап also Ье noticeable in the case when 
the steady state inside the reaction polyhedron is unique and stable as а 
whole (all positive solutions tend to it at t -> оо). For this purpose it suffices 
that the "external" (non-physical) steady state is close to the polyhedron 
boundary and the initial conditions localize оп the opposite side of the 
boundary (inside the polyhedron). 

W е believe this fact to Ье of general importance. As а rule, chemical 
kinetic equations are non-linear and must have several steady-state solu­
tions, not all of which have physic-al meaning (negative and complex-valued 
steady-state solutions тау arise). But as we have shown, slow transition 
regimes сап also Ье observed in the case where the steady-state solutions 
having по physical meaning are localized close to the reaction polyhedron. 
It is evident that the same situation сап also arise in closed systems where 
the point of detailed equilibrium is always unique. Thus to interpret the 
dynamics of chemical reactions (in particular the reasons for the occurrence 
of induction periods) in the physically determined region of compositions, 
we сап obtain the necessary information from the localization of аН steady 
states in the system, including non-physical ones. 

In conclusion, let us emphasize that our investigation has revealed а 
great variety of relaxation effects caused Ьу the complex reaction kinetics, 
i.e. the effects are of purely kinetic origin. 

Even for the linear mechanisms with а sufficiently large number of reac­
tions, the relaxation time сап Ье considerably higher than the characteristic 
time ofthe reaction [100]. This is possible when the eigenvalue ofthe system 
that is minimum with respect to its modulus has а non-zero imaginary part, 
i.e. it is necessary that the slowest relaxation process is of damping oscilla­
tion character. As far as the non-linear mechanisms are concerned, such а 
situation already arises in а small number of reactions. If the system has 
bifurcations (critical effects), there arise slow relaxations of the kinetic 
origin with the strict significance specified previously. These relaxations 
сап take place infinitely slower than those of the slowest reactions taken 
separately. The kinetic model of the three-step adsorption mechanism is the 
simplest case demonstrating slow relaxations of the kinetic origin. 

5. Analysis of "consecutive" adsorption mechanisms 

Let us examine опе more simple three-step mechanism whose steady-state 
characteristics are also of the hysteresis type. In what follows we will show 
that their type differs considerably from the previous опе. It is the mechan­
ism including steps of "consecutive" adsorption: опе gas-phase substance is 
adsorbed оп unoccupied sites and is then joined Ьу а second gaseous sub­
stance, whereupon the two intermediates interact. In the general form this 
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mechanism сап Ье represented Ьу [232] 

Аm + mZ (:± mAZ 

Вn + nAZ (:± nABZ 

pAZ + qABZ ---> (р + q)Z + Ap+qBq 

(30) 

This mechanism is а constituent of the mechanisms for various catalytic 
reactions, e.g. for NНз oxidation [233]. 
А kinetic model of mechanism.(30) for the subsystem of the intermediates 

AZ, ABZ, and Z, assuming constant concentrations of the observed виЬ­
stances Аm , Вn , and Ар + q Bq, is 

_ Р(х, у) 

(31) 

Q(x, у) 

Here х, у, and (1 - х - у) are the concentrations of the surface substances 
AZ, ABZ, and Z, respectively, k i are the rate constants (partial pressures Аm 
and Вn enter ав cofactors), т, n, р, and q are the stoichiometric coefficients, 
and the functions Р(х, у) and Q(x, у) are determined, ав ивиаНу, in the 
reaction simplex S = {(х, у): х ;;:, о, у ;;:, о, х + у ~ 1}. The initial con­
ditions хо = х(о), Уо = у(О) are set in В. Ву analogy with the аЬоуе, we сап 
show that аН the trajectories x(t) and уи) starting in S do not leave it. The 
latter provides the existence of at least one steady state for eqns. (31). 

The simplest mechanism type (30) admitting а multiplicity of steady states 
is represented ав [223, 232] 

(1) А + Z (:± AZ 

(2) В + AZ (:± ABZ (32) 

(3) 2AZ + ABZ ---> 3Z + А2В 

i.e. т = n = q = 1 andp = 2. Steady states are determined from eqns. (31): 
Р(х, у) = о and Q(x, у) = о. From the second equation of (31) we obtain 

k2 x 
у 

Then the first equation of (31) сап Ье transformed into the form 

F(x) = хз - ах2 + Ьх - с = О 

where а = kjkз/k, Ь = (k jk2 + k jk_ 2 + k_ jk_ 2 )/k, с = k jk_ 2/k, and 
k = kз(kj + k_ 1 + 3k2 ). А necessary and sufficient condition for the exist­
ence of three solutions сап Ье obtained if we demand that, at the points of 
extremum x(j) and х(2) of the functions F(x), the condition F(X(l» < о, 
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Fig. 17. Steady-state reaction rate ав а function of(a) k j and (Ь) k 2 • The broken lines аге unstable 
steady states. 

F(x(Z» > о is fulfilled. This condition is of the form 

4(а2 - зЬ)(Ь 2 - 3ас) > (аЬ - 9с)2 (33) 

In the simplest case, when k_ 1 = k- z = О, the fulfilment of(33) is necessary 
and sufficient for the fact that, along with а boundary steady state, the 
system has two internal steady states with а non-zero reaction rate 
W = kз х2у. Finally, we obtain the simple expression 

kз > 4k( 1 + 3~) (34) 

The qualitative character of dependences W(k 1 ) and W(kz) is shown in 
Fig. 17. Hysteresis for W(k 1 ) is characterized Ьу the existence of such а 
critical value of k 1,c", ав at аН k 1 > k 1,c", the steady-state rate has three 
essentially different values. W е сап write down in the explicit form the limit 
values of W at k 1 ...... oo [Wm:, Wm:n in Fig. 17(а)] and also Иi;,г corresponding to 
k 1,cr' For W(kz) [Fig. 17(Ь)] we сап also calculate kz,cr and Иi;,г. An illustrative 
example of the qualitative character of the functional dependence W(k1 , kz) 
in three-dimensional space is given in Fig. 18. The bottom part of Fig. 18 
shows the projection of the steady-state rates "fold" to the plane of the 
parameters at which the system has several steady states. 

When the steps in mechanism (32) are reversible (k_ 1 , k_ z > О), it сап 
easily Ье shown that the qualitative character of W(k 1 ) and W(kz) [Fig. 17(а), 
(Ь)] is preserved. Unlike the above catalytic trigger, in this case the multi­
plicity of steady states сап also Ье observed at k 1 ...... 00 ([А] ...... (0)' i.e. the 
region of parameters in which there are three steady states is infinite. 

Dynamic studies сап Ье performed as previously. We will only note that, 
like eqns. (5), the system (31) has по limit cycles. In addition, the unique 
steady state is always stable. If there are three steady states (Х 1 < X z < хз), 

two are stable (Х1 and хз) and one (the middle steady state Xz) is unstable. 
А comparative analysis of steady-state characteristics for "consecutive" 

and "parallel" three-step adsorption mechanisms with two independent 
intermediates shows that, to interpret the multiplicity of steady states, the 
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w 

Fig. 18. Three·dimensiona! kinetic dependence [or the "consecutive" adsorption mechanism. 

former needs stronger non-linearity of the kinetic model. In the саве under 
consideration, for the appearance of several steady states the step of interac­
tion between the adsorbed substances must Ье three-molecular. For the 
parallel adsorption mechanism it сап Ье obtained in terms of bimolecular 
reactions. If we restrict ourselves only to these reactions, the consecutive 
adsorption mechanism cannot Ье applied to interpret critical effects. Оп the 
other hand, if the experimental data are characterized Ьу а practically 
infinite hysteresis of the steady-state rate [Fig. 17(а)], the detailed тесЬап­
ism must involve а totality of steps of type (3О). But neither "parallel" nor 
"consecutive" adsorption mechanisms with two independent intermediates 
сап describe self-oscillations. For this purpose а more complicated model 
must Ье used. 

6. Models of kinetic self-oscillations in heterogeneous 
catalytic reactions 

In terms of the law of acting surfaces and without апу additional assump­
tions, we will consider а simple kinetic model characterized Ьу rate self­
oscillations. 

Let us complicate mechanism (4). It is known that тапу gases сап Ье 
adsorbed оп the catalyst surface in several (at least two) forms, опе ofwhich 
is unreactive. This case is observed, for example, in СО adsorption over Pt. 
Ву analogy with ref. 105, let us complete mechanism (8) Ьу а buffer step 

(4) В + Z -+ (BZ) 

where (BZ) is ап intermediate that does not participate in the main reaction. 
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This completed mechanism is accounted for Ьу the kinetic model [108] 

(35а) 

(35Ь) 

(35с) 

where z, х, у, and q are the surface concentrations of Z, AZ, BZ, and (BZ) оп 
the catalyst, respectively, and parti-al pressures of gaseous А2 and В enter ав 
factors in the corresponding constants. The steady-state points for eqns. (35) 
are determined ав а solution of the system of algebraic equations 

Р(х, у, q) = Q(x, у, q) = Щх, у, q) = о (36) 

Let ив suggest that the first two equations Р = Q = о in eqn. (36) set in the 
implicit form х = x(q), у = y(q), and z = z(q). Then in accordance with eqn. 
(36) the equation R = О сап Ье represented ав 

(37) 

Hence the steady-state points for eqns. (35) correspond to the points of 
intersection in the (z, q) plane of the curve z = z(q) and the straight line 
z = rxq in eqn. (37). These points depend only оп the ratio k4 to k_ 4 , rather 
than their absolute value. It will Ье shown in what follows that the latter 
accounts for the dynamic characteristics of eqns. (35). The curve z(q) is 
plotted in accordance with the solutions of the equations Р(х, у, q) = Q(x, 
у, q) = о with respect to х and у, where q is ranging within О :;:;: q :;:;: 1 
according to the formula z(q) = 1 - x(q) - y(q) - q. These values of x(q) 
and y(q) are the steady-state points of the system corresponding to mechan­
ism (8). We have selected above а region of the parameters for this mechan­
ism in which there exist three steady states. In this region, the curve z(q) сап 
Ье of а typical S-shaped form (Fig. 19). Thus the concentration of unoccupied 
centres сап change jumpwise at а certain concentration of the unreactive 
substance. (Note that similar results сап Ье obtained when studying dynam­
ic properties of the adsorption mechanism complicated Ьу the catalyst 
deactivation.) The analysis for the stability of the steady-state point in the 
reduced system (35а)-(35Ь) where q acts ав а parameter, indicates (вее Sect. 
3) that the unique steady state is stable_ If the number of steady states 
amounts to three (Zj < Z2 < zз) the two outer (Zj and zз) are stable and the 
middle (Z2) is unstable. Studies of the stability character for the steady state 
of the complete system (35) show that this property of instability сап Ье 
preserved at sufficiently low values of k4 and k_ 4 • In this саве system (35) сап 
also have an unique steady state. Ав usual, the solution of (35) was con­
sidered in the reaction simplex. 
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Fig. 19. The shape of the z(q) curve. 

S = {(х, у, q): х ;::, О, у ;::, О, q ;::, О, х + у + q ~ 1} 

Let (х*, у*, q*) = (*) Ье а steady-state solution for eqns. (35). The analysis 
of stability for (*) provides the characteristic equation 

АЗ + О"А2 + дА + д = О 

where о" = - trA, д = A l1 + А22 + Азз , д = - detA, А = Ilaijll (i, j = 1,2, 
3) is the matrix of the corresponding linearized system at the point (*), and 
Aii(i = 1, 2, 3) are the principal minors of А. In our саве, matrix А is 
non-positive [aij < О, (*) Е 5]. Неnсе it has а non-positive eigenvalue, i.8. а 
real-valued eigenvalue, А) ~ о. The character of the other two, i.e. А2 and Аз, 
is determined Ьу the relationship between 0", д, and д, moreover о" > о. It сап 
Ье shown that 

dz(q) д 
-- - С( 

dq Азз 

where Азз reduces to zero at the points С) and С2 in the curve z(q) (Fig. 19), 
is negative between these points and positive outside the С), С2 section. This 
relationship suggests that, for the саве represented in Fig. 19, the value of 
д is sign-constant, namely д > о. Неnсе а necessary and sufficient condition 
for the instability of (*) is the inequality д < о. At д < О, (*) is stable, at 
д = О it corresponds to bifurcation values of the parameters (the transition 
of the real part of eigenvalues А2 and Аз through zero). From д < О for the 
fixed С( we сап obtain the inequality k4 < k~ for k4 • Similarly, from д < О for 
а fixed k 4 we сап obtain the limitations се < с( < С(+ for С( (Fig. 19). Thus 
when k), k_), k2 , k_ 2 , and kз are properly chosen, in the врасе ofthe k4 and 
k_ 4 parameters а region with the unique unstable steady state for (35) сап Ье 
found. 

Calculations were carried out at k) = 2.5, k2 = 1.0, kз = 10, k_ 2 = 0.1, 
k4 = 0.0675, and k_ 4 = 0.022 в-), ensuring the uniqueness and instability of 
(*). Fragments of the projection ofthe phase врасе (х, у, q) to the respective 
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Fig. 20. Limit cyc!es оп (х, Z, q) phase space projections. 

phase planes are represented in Fig. 20. А comparison with Fig. 19 shows 
that the oscillations are observed in the regions of phase coordinates close 
to the hysteresis in the curve z(q). The shape of the limit cycles in Fig. 20 is 
considerably dependent оп k4 and k_ 4 • The lower k4 and k_ 4 , the closer the 
shape of the limit cycle to the hysteresis in the z(q) curve. Self-oscillations 
of the reaction rate W = kзху with time are shown in Fig. 21. The broken 
line marks the W value in the unstable steady state (*) corresponding to this 
self-oscillation performance. Varying k4 at а fixed ratio of а shows that, with 
increasing k4 ир to the limit values of k~ , the frequency of oscillation grows 
at аn almost constant amplitude. At k4 > k~, the oscillations vanish "jump­
wise" and the system stabilizes to the steady state (*) 

Thus the mechanism formed Ьу steps (1)-(4) сап Ье called the simplest 
catalytic oscillator. [Detailed parametric analysis of model (35) was recently 
provided Ьу Khibnik et al. [234]. The two-parametric plane (k 2 , k_ 4/k4 ) was 
divided into 23 regions which correspond to various types of phase por­
traits.] Its structure consists of the simplest catalytic trigger (8) and linear 
'Ъuffеr", step (4). The latter permits us to obtain in the three-dimensional 
phase space oscillations between two stable branches ofthe S-shaped kinetic 
characteristics z(q) for the adsorption mechanism (1)-(3). The reversible 
reaction (4) сап Ье interpreted as а slow reversible poisoning (blocking) of 

0·2 
'", 

;,: 0·1 

100 ЗОО 

1(5) 

500 

Fig. 21. Se!f-oscillations of reaction rate according to mode! (35). 
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the active catalyst surface. In the model examined, the self-oscillations of 
the reaction rate take place as а combination of the "fast" system of steps 
(1)-(3) (а typical adsorption mechanism) leading to а sharp change in the 
number of unoccupied sites of the surface, and the "slow" reversible step (4), 
ensuring self-oscillations of their concentrations. "Buffer" step (4) сап also 
Ье represented Ьу the other (but not every) reversible step with а hanging 
vertex. This step сап also Ье non-linear. It is of importance that only k4 and 
k_ 4 are sufficiently low and, Ьу analogy with Fig. 19, the model parameters 
provide а unique intersection of the proper S-shaped curve at the point of 
its middle unstable branch С1 С2 • 

At the beginning ofthis chapter, we mentioned that Ivanova [167, 168], Ьу 
using the Clark algorithm [235], had recently found sufficiently general 
conditions to ensure steady state uniqueness. AdditionaHy, she formulated 
the instability conditions for this steady state. 

Let us apply her method to study kinetic models for several adsorption 
mechanisms having buffer steps [109, 236]. For example, let us take the 
mechanism 

(1) А2 + 2Z -.:± 2AZ 

(2) В + Z -.:± BZ 

(3) AZ + BZ ---> 2 Z + АВ 

(4)D + 2Z -.:± DZ2 

The rank ofthe matrix of stoichiometric coefficients amounts to 3; the system 
has опе law of conservation С1 + С2 + Сз + 2 С4 = С, where C1 , С2 , Сз , and 
С4 are the concentrations of Z, AZ, BZ, and DZ2 , respectively. Оп the 
tetrahedron boundary С1 ;;:, О, С2 ;;:, О, Сз ;;:, О, С1 + С2 + Сз :;:; С, there is 
only one steady-state point (О, С, О) that is unstable. АН the trajectories for 
the respective system of differential equations enter into the interior of this 
tetrahedron. The coefficients а2 and аз of the characteristic polynomial Р(Л) 
at the steady-state point (С1 , С2 , Сз ) are of the form 

{ Wз+ Wз- [Wз+ ] 
а2 = С1 С2 Сз щ_ (С2 - Сз ) + С1 + С2 + Сз 

where W/'- are the rates of the individual reactions. 
It follows from the steady-state equation for С1 that k 4 С; = k_ 4 С4 • Conse-
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quently, if the inequality 2k4 k_ 2 > k_ 4 k1 is fulfilled, then аз < О at every 
steady-state point, hence it is unique. If, in this саве, the parameters are 
chosen во that СЗ > С2 and Щ+ ;щ- > о and ~+ is sufficiently low, then 
а2 < О. 

The calculations show that, at values of the parameters fitting the above 
conditions, the system will have self-oscillations. If in the mechanism ехаm­
ined, step (4) is substituted Ьу AZ <=± DZ, then coefficients а2 and аз take the 
form 

Here we сап also find а region of the parameters providing self-oscillations 
of the reaction rate. 
АН the above mechanisms сап Ье called the simplest catalytic oscillators. 

In аН these mechanisms self-oscillations of the reaction rate are realized due 
to the combination of the fast system of steps (adsorption mechanism) lead­
ing to the sharp change in the number of unoccupied surface sites and of the 
"slow" reversible step ensuring self-oscillations of their concentration. If 
the parameters of the 'Ъuff'еr" step are sufficiently вmаН compared with 
those of the main mechanism, аН these oscillations will Ье typically relaxa­
tional. 

Let ив state the conclusions ofthis section. We have shown that, in terms 
of the law of acting surfaces (without аnу additional assumptions), it is 
possible to construct sufficiently simple kinetic models for the qualitative 
interpretation of self-oscillations in the rates of heterogeneous catalytic 
reactions. 
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