
Chapter 4 

Graphs in Chemical Kinetics 

1. General description and main concepts 

1.1 SIMPLE EXAMPLE 

Graph theory has found extensive application in chemical kinetics. It is 
this subject that is the goal of this chapter. 

Let us take а simple example to illustrate the application of graph theory 
to derive а steady-state kinetic equation for а complex reaction. It is а 
typical problem for the kinetics of complex reactions. As usual it is solved 
as follows. Let а mechanism Ье given for а complex reaction involving the 
participation of observed substances, i.e. initial reactants and products as 
well as intermediates. In accordance with the mechanism based оп а fun­
damental law of chemical kinetics, the law of mass action, we obtain а set 
of differential equations accounting for the kinetics of variable inter­
mediates. Assuming that the known principle of quasi-steady-state con­
centrations is valid, we go from the above set of differential to that of 
algebraic equations whose solution provides steady-state concentrations for 
intermediates. Knowing these values, we сап readily obtain а general ех­
pression for а steady-state reaction rate as а function of the substance 
concentrations and temperature. The most cumbersome step in this se­
quence of operations is the solution of the set of algebraic equations. The 
application of graph theory not only facilitates this solution (of course, only 
in the linear case), but also provides the possibility of drawing some general 
conclusions. 

Let us consider а model catalytic isomerization reaction with the detailed 
mechanism 

(1) А + Z <=± AZ 1 

(2) AZ <=± BZ 1 
(1) 

(3) BZ <=± B+Z 1 

А = В 

The equation А = В corresponds to the stoichiometric (brutto) reaction. 
Here Z, AZ and BZ are the three intermediates through which а complex 
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catalytic reaction proceeds; the substance Z (the active catalytic centre) is 
also treated as ап intermediate. 

Intermediates are related Ьу the law of conservation [Z] + [AZ] + 
[BZ] = 1, since the catalyst quantity in the system is constant. ([Z], [AZ], 
[BZ] are the dimensionless concentrations of the intermediates.) 

Due to the fulfilment of this law of conservation, the number of linearly 
independent intermediates is not three but опе fewer, i.e. it amounts to two. 
То the right of mechanism (1) we gave а column of numerals. Steps of the 
detailed mechanism must Ье multiplied Ьу these numerals so that, after the 
subsequent addition of the equations, а stoichiometric equation for а сот­
plex reaction (а brutto equation) is obtained that contains по intermediates. 
The Japanese physical chemist Horiuti suggested that these numerals 
should Ье caHed "stoichiometric" numerals. W е believe this term is not too 
suitable, since it is often confused with stoichiometric coefficients, indicat­
ing the number of reactant molecules taking part in the reaction. In our 
opinion it would Ье more correct to саН them Horiuti numerals. For our 
simplest mechanism, eqn. (1), these numerals amount to unity. 

Let us рау attention to the reactions represented in mechanism (1). Here 
there are monomolecular reactions: direct in the cases of steps (2) and (3) and 
reverse in the cases of steps (1) and (2). But there are also bimolecular 
reactions involving the participation of two substances, namely gas and 
catalyst. These are the direct reaction of step (1) (adsorption of substance А) 
and the reverse reaction of step (3) (adsorption of substance В). Strictly 
speaking, mechanisms ofheterogeneous catalytic reactions are never топо­
molecular. They always include, for example, adsorption steps involving at 
least two initial substances, i.e. gas and catalyst. But if we consider the 
conversions of only intermediates at а constant composition ofthe gas phase 
(note that in heterogeneous catalysis most kinetic experiments are carried 
out in just this way), а catalytic reaction mechanism сап Ье treated as 
monomolecular. Every elementary reaction here will involve the par­
ticipation of по more than опе molecule of the intermediate. Temkin called 
these mechanisms linear since their reaction rates are linearly dependent оп 
the intermediate concentrations. The class of linear mechanisms is par­
ticularly wide. It includes practically the whole of the enzyme reaction 

. mechanisms. It is for these reactions that King and Altman used, for the first 
time, graph theory methods [1]. If some mechanism has steps in which two 
or more molecules of ап intermediate react, it is а linear mechanism. Ме­
chanism (1) is linear. The corresponding graph is represented in Fig. 1. The 
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Fig. 1. Graph of а catalytic isomerization mechanism. 
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nodes of this graph are intermediates and its edges are reactions. The 
directions of the reactions are indicated Ьу arrows given for the edges. 

Let us determine some notations that are essential for the further repre­
sentation. 

Our graph has а cycle that is а finite sequence of graph edges, whose 
beginning and end coincide. This cycle corresponds to the cyclic conversion 
of the intermediates. In our саБе the cycle is unique. 
А tree is апу sequence of graph edges containing по cycles. It corresponds 

to а certain combination of intermediate conversions. А spanning tree (а 
maximum tree) is а sequence of graph edges containing по cycles and joining 
аН nodes of the initial graph. It suffices to add опе more edge to obtain а 
cycle. Spanning trees are treated as those ofthe graph node ifthey enter this 
node. А spanning tree corresponds to the path of conversions through which 
а given intermediate is formed from the combination of the rest. Spanning 
trees of graph nodes corresponding to mechanism (1) are represented in Fig. 
2. 

When the reaction has опе cycle, its graph has n nodes and n steps. It сап 
easily Ье shown that every node comprises n spanning trees and their total 
number will Ье n2

• For mechanism (1), n = 3 and hence the number of 
spanning trees will Ье n2 = 9. 

Edge weights are obtained if the reaction (both direct and reverse) rates 
corresponding to the graph edges are divided Ьу the concentrations of the 
reacting intermediates 

ш: 
Ь,+ = [хn (2) 

у .. А ~ .. 
2 -2 

Spanning trees of node Z 

1\ ~ L -' -2 -2 

Spanning trees of node AZ 

~ L А ... 
2 2 

Spanning trees of node BZ 

Fig. 2. Spanning trees for the graph of an isomerizatiorcmechanism. 
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ь- = s (3) 

where ь: and bs- are the edge weights for the direct and reverse reactions 
and [Xi+] and [Xi-] are the concentrations of intermediates reacting in direct 
and reverse reactions, respectively. Edge weight is the rate of an elementary 
reaction at а unit concentration of the reacting intermediate. In the litera­
ture this characteristic is also called а "reaction frequency" (Schwab), а 
"kinetic coefficient" (Balandin),.and also а probability. Edge (reaction) 
weight amounts to the rate constant of а reaction or its product Ьу the 
substance (gas or substrate) concentration. 

Let us write reaction rates for mechanism (1) in accordance with the law 
ofmass action (for surface reactions this law is known as "the law of surface 
action") 

k; [А] [Z] 

ki[AZ] 

k; [BZ] ш;; 

kj(AZ] 

k:; [BZ] 

k;; [В] [Z] 

(4) 

Here k; , k1 , k; , k:; , k; and k;; are the rate constants for the elementary 
reactions, [А] and [В] the concentrations ofthe gaseous substances, and [Z], 
[AZ], and [BZ] the concentrations of the intermediates. 

Reaction weights for the isomerization mechanism will Ье 

ь; 

ь; 

ь; 

k1 

k:; 

k;; [В] 

(5) 

The spanning tree weight is а value amounting to the product of the 
weights of its constituent edges. 

Spanning trees entering into node Z wil1 have the weights 

BZ,1 = ь; ь; , B Z.2 = ь; Ь 1 , Вz,з = ь:; Ь1 

The weights for spanning trees of the node AZ will Ье 

BAZ,1 = ь; ь; , B AZ,2 = ь; ь:; , ВАZ,З = ь;; ь:; 

Finally, for the node BZ we will have 

BBZ,1 = ь; ь; , BBZ,2 = ь; ь;; , Ввz,з = Ь1 ь;; 

The total weight of node spanning trees will Ье 

Z: B z = ь; ь; + ь; b1- + ь:; Ь1 

AZ: B AZ ь; ь; + ь; ь:; + ь;; ь:; 

BZ: BBZ ь; ь; + ь; ьз- + Ь1 ь; 

The total weight of graph spanning trees amounts to 

(6) 

(7) 

(8) 

(9) 
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в = Bz + В AZ + BBZ (10) 

Let us write а formula whose application will give us а possibility to 
simplify essentially the derivation of kinetic equations for complex reac­
tions following а linear mechanism 

Вх 
х = -с 

в 
(11) 

Here х is the concentration of the intermediate, ВХ the total weight of node 
spanning trees corresponding to а given substance, С the total number of 
intermediates per unit surface of catalyst (after normalizing, the concentra­
tion is usually taken as С = 1), and 

Relationship (11) was first reported Ьу King and Altman [1]. They ехат­
ined а linear set of quasi-steady-state equations for the intermediates of the 
complex enzyme reaction following а linear mechanism. For its derivation 
the authors applied the well-known Kramer rule. 
Оп the other hand, Vol'kenstein and Gol'dshtein actively applied graph 

theory methods in а series of the studies in the 1960s [2-4] and introduced 
this relationship Ьу analogy with the known Mason rule from electrical 
engineering. 
А strict substantiation for this analogy and derivation of this relationship 

in terms ofthe Mason rule [5] сап Ье found in refs. 6 and 7. In our monograph 
[7] we also give proofs for the fact that the terms of eqn. (11) obtained using 
the Kramer rule are spanning tree weights of various nodes. А brief substan­
tiation for eqn. (11) will Ье given below. 

From the known concentrations ofintermediates we сап easily determine 
а rate for апу reaction step. For our reaction with ап unique cycle the 
steady-state rate of апу step is equal either to that for the consumption of 
substance А or to that of the formation of substance В (route rate). 

For example 

w = knAZ] - ki [BZ] 

Since k; = ь; and k:; = ь2-, eqn. (12) сап Ье written as 

w = ь; [AZ] - ь:; [BZ] 

and then 

w = 
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Most factors in the numerator of eqn. (14) cancel out and we obtain the 
expression 

w = 
Ь+Ь+ + Ь+Ь+ + Ь+Ь+ + b~b~ + b~b~ + b~b~ + b+b~ + b+b~ + b+b~ 

1 2 2 3 1 3 1 2 3 2 3 1 1 2 2 3 3 1 

(15) 

After substituting reaction weights from eqn. (5) into eqn. (15), we have 

ш = 
k; k; ~; [А] - k; k; k; [в] 

(16) 

Let us analyze the structure of eqn. (16). Its numerator сап Ье written ав 
К+ [А] - K~ [В], where К+ = k; k; k; and K~ = k; k; k; . In this form it 
accounts for the stoichiometric equation А = В obtained Ьу adding аН the 
steps of the detailed mechanism multiplied Ьу unit stoichiometric numbers. 
It is interesting that the numerator is absolutely independent ofthe mechan­
ism "details". Irrespective of the number of steps in our mechanism (а 
thousand, а million), the numerator of а steady-state kinetic equation al­
ways corresponds to the kinetic law ofthe brutto reaction ав ifit were simple 
and оЬеув the law of mавв action. The denominator characterizes а "non­
elementary" character accounting for the rate of the catalytic reaction 
inhibition Ьу the initial substances and products. 

If аН steps are irreversible (k; = k; = k; = О), eqn. (16) is simplified 
considerably to 

w = (17) 
k; [A](k; + k;) + k; k; 

Thus this simple example has illustrated the efficiency of graph methods in 
chemical kinetics. 

1.2 TWO FORMALISMS. FORMALISM OF ENZYME КINETICS AND OF STEADY· 
SТАТЕ-RЕАСТЮN THEORY 

Ав has already been shown, graph theory methods were first used in 
chemical kinetics Ьу King and Altman who applied them to linear enzyme 
mechanisms [1]* to derive steady-state kinetic equations. Vol'kenshtein and 
Gol'dshtein in their studies during the 1960в [2--4] also elaborated а new 
formalism for the derivation of steady-state kinetic equations based оп 
graph theory methods ("Mason's rule", etc.). 

Owing to the classical King-Altman and Vol'kenshtein-Gol'dshtein stu-

* In ref. 1, а сотр!ех mechanism was represented ав an open graphica! sequence: еуету graph 
edge (step) jointed nodes (substances). It is !ike!y that it was TemkiIi who was the first to suggest 
the representation of cata!ytic conversions Ьу а сус!е оп the graph. 
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dies, graph theory has Ьесоте а traditional working instrument for enzyme 
kinetics (refer, for example, to refs. 8-10). It is the apparatus that was used 
in the аЬоуе example in Sect. 1.1. 

Here, а graph for the complex reaction mechanism is determined ав 
follows. Eyery substance х, participating in the reaction is giyen а node У, 
ofthe graph G(V, Е). Eyery elementary reaction between the substances х, 
and Xj is represented Ьу the edge (Yi' Yj)' The edge и = (Yi' Yj) corresponds 
to а certain yalue Ь(u) that is the reaction weight. Reaction weight was 
determined аЬоуе as the rate atunit concentration of the reacting inter­
mediate. The directed graph (i.e. the graph with а giyen direction) deter­
mined in this way is called а graph of the reaction. Apparently, it is the 
graph for а linear mechanism. This graph сап Ье ascribed to the models 
usually called natural. They haye по differences from the conyersion 
schemes accepted for chemistry. 

Apart from enzyme kinetics, this new trend had also appeared in the 
kinetics of heterogeneous catalysis. In the 1950в, Horiuti formulated а 
theory of steady-state reactions [11, 12], тапу of the concepts of which 
correspond to the graph theory. Independent intermediates, а reaction 
route, ап independent reaction route, аН these concepts were introduced Ьу 
Horiuti. 

This сап also Ье said about the Horiuti number (or, as Horiuti called it 
himself, the stoichiometric number) discussed preYiously. The Horiuti num­
bers are the numbers chosen such that, after multiplying the chemical 
equation for eyery step Ьу the appropriate Horiuti number and subsequent 
adding, аН intermediates are cancelled. The equation thus obtained is the 
stoichiometric (brutto) equation. Each set of stoichiometric numbers lead­
ing to the elimination of intermediates is called а reaction route. In the 
general case, the Horiuti numbers form а matrix and its yector columns are 
the routes. 

Horiuti stoichiometric rule. This rule is applied to find the number of 
linearly independent routes. Stoichiometric numbers must satisfy the equa­
tion 

(18) 

Here vT is the transposed matrix of the Horiuti numbers (stoichiometric 
numbers) and г\п' the matrix of the intermediate stoichiometric coefficients. 
The size for the matrices vT and f in, is (Р х 8) and (8 х 1'0')' respectiyely, 
where 8 is the number of steps, 1tot the total number of independent inter­
mediates, and Р the number of routes. Due to the existence of а conservation 
law (at least опе), the catalyst quantity and the number oflinearly indepen­
dent intermediates will Ье 

(19) 

The multiplication of the matrices vT(P х 8) and f in,(8 Х 1'0') giyes the 
matrix vТГiп, whose size is (Р х 1'0')' The yector column ofthe matrix for the 
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Horiuti numbers v (8 х Р) is the route of а complex reaction. The rank of 
the matrix "fint cannot Ье higher than (8 - Р) since, according to eqn. (19) 
there are Р linearly independent rows of "fint , As usual, we have 

rgfint = 8-Р (20) 

Оп the other hand, when the law of catalyst conservation is unique, we have 

rgfint = 1 = 1tot -1 

After substituting eqn. (21) in eqn: (20), we obtain 

Р = 8 -1tot + 1 

(21) 

This relationship for the determination of the number for the linearly in­
dependent routes is caHed the Horiuti stoichiometric rule. Let us apply it. 

For the isomerization reaction (1) we have 8 = 3 and 1 = 3, hence Р = 1. 
This reaction is one-route and аН the Horiuti numbers are equal to unity. 

For two-step mechanisms ofthe type (1) А + Z += AZ and (2) В + AZ += Z 
+ АВ (the Temkin-Boudart mechanism) we have 8 = 2 and 1 = 2. Hence 
Р = 1 and аН the Horiuti numbers are unity. 

The vinyl chloride synthesis reaction has the detailed mechanism 

(1) С2Н2 + Z += ZC2 H2 

(2) HCl + ZC2 H2 -+ Z + С2Нз Сl 

(3) HCl + Z += ZHCl 

(4) С2Н2 + ZHCl -+ Z + С2Нз Сl 

where Z is the active centre, 1tot = 3 and the number of steps 8 = 4. Hence 
the number of linearly independent routes amounts to 

Р 8-1tot +1 

4-3+1=2 

Thus, here we have two independent routes. For а linear mechanism of 
ammonia synthesis оп an iron catalyst we will have 

(1) Z + N2 += ZN2 1 

(2) ZN2 + Н2 += ZN2 H2 1 

(3) ZN2 H2 + Z += 2ZNH 1 (22) 

(4) ZNH + Н2 += Z + NНз 2 

N2 + 3Н2 = 2NНз 

Here 1tot = 4 and 8 = 4. Hence Р = 4 - 4 + 1 = 1. The reaction mechan­
ism wiH Ье one-route. This mechanism contains а non-linear step, а third 
step, where intermediates react between themselves. Unlike the cases con-
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sidered above, not аН the non-zero Horiuti numbers are equal. Temkin in а 
series of studies during the 1960s [13-16] popularized the results of the 
Horiuti theory. Later he used graph theory methods for the representation 
of complex reaction mechanisms and for the derivation of steady-state kinet­
ic equations. Не represented а route of а complex reaction as а graph cycle 
and the number of linearly independent cycles ав the number of routes. 

Let us give some examples for the graphs of linear mechanisms. The 
simplest mechanism of an enzyme catalytic reaction is the Michaelis­
Menten scheme 

(1) Е + S <=± ES 

(2) ES ---+ Р + S 

where S and Р are the substrate and product, respectively, and Е and ES the 
various forms ofthe enzyme. А graph for the conversion ofthe intermediates 
in this mechanism is given in Fig. 3(а). 

Graphs of the two-step one-route mechanisms (the Temkin-Boudart 
mechanisms) for the steam conversion of СО and liquid-phase hydrogena­
tion are illustrated in Fig. 3(Ь) and (с) 

(1) Z + Н2О <=± ZO + Н2 
(2) ZO + СО <=± Z + С02 

СО + Н2 О = COz + Н2 

(d) 
МСК 

(1) Z + H2,soJ <=± ZHz 

(2) ZHz + Ао] <=± АН2 + Z (23) 
А + Hz = АН2 

~7+ttT~ 
К. • IK. НК 
~ 8++9 2+ 1+ IJ 

1-+5+6 
(f) 

Fig. 3. Graphs oflinear catalytic reaction mechanisms. (а), (Ь), (с), One·route; (d), (е) two-route; 
(!) multi·route mechanisms. 
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А detailed mechanism for the synthesis of vinyl chloride оп the "mercuric 
chloride + medical charcoal" catalyst сап Ье represented Ьу the sequence 
of steps [17] 

1 П 

(1) Z + CzHz <= ZCzHz 1 О 

(2) ZCzHz + HCl -> Z + СzНзСl 1 О (24) 

(3) Z + HCl <= ZHCl О 1 

(4) ZHCl + CzHz -> Z + СzНзСl О 1 

CzHz + HCl = СzНзСl 

Here Z is the active site of (HgClz' HCl). Vector-columns of the stoi­
chiometric numbers are given to the right ofthe equations ofthe steps. This 
mechanism corresponds to the graph formed Ьу two cycles having опе 
соmmоп node, i.e. the intermediate Z [Fig. 3(d)]. 

The reaction mechanism for butane dehydrogenation сап Ье represented 
in simplified form Ьу the steps 

(1) C4 H10 + Z <= C4 HsZ + Hz 

(2) C4 HsZ <= С4На + Z 

(3) C4 HsZ <= C4 HBZ + Hz 

(4) C4 H BZ <= С4Нв + Z 

(25) 

This mechanism corresponds to the graph formed Ьу two cycles with опе 
соmmоп step (edge) [Fig. 3(е)]. 
А sample of the n-hexane conversions оп supported platinum catalysts 

сап Ье represented Ьу the scheme 

(1) Н + К <= нк 
(2) нк <= IK 

(3) нк <= мск 

(4) мск <= МС + К 
(5) нк -> р+к 

(26) 
(6) нк -> в+к 

(7) IK <= мск 
(8) IK +± 1 + К 
(9) IK -> р+к 

(10) мск -> В + К 

Here Н, 1, В, МС, and Р are n-hexane, hexane isomers, benzene, methyl-
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cyclopentane, and cracking products, respectively, while К, НК, МСК, and 
IK are intermediates. The graph for surface conversions is given in Fig. 3(С. 
Numerals given over the directed edge of the graph point to the number of 
steps with the help of which one intermediate is formed from the other. 

Cycles in the graphs of linear mechanisms are usually called only the 
"correctly directed" cycles. For example, а sequence of the reactions (1) 
А! ..... А2 , (2) А2 ..... Аз, and (3) Аз ..... А! is the cycle, whereas the reactions (1) 
А! ..... А2 , (2) А2 ..... Аз, and (3) А1 ..... Аз do not form а cycle. This mechanism 
is acyclic.-

Simple cycles are those that do not contain any repeated points except the 
initial one. Аll simple cycles for the most complex of the above graphs, i.e. 
the graph of n-hexane conversions, are presented in Fig 4. 

The theory of steady-state reactions operates with the concepts of "а path 
of the step" , "а path of the route", and "the reaction rate along the basic 
route". Let us give their determination in accordance with ref. 16. The 
number of step paths is interpreted as the difference of the number of 
elementary reaction acts in the direct and reverse directions. Then the rate 
for the direct step is equal to that ofthe paths per unit time in unit reaction 
space. One path along the route signifies that every step has as many paths 
as its stoichiometric number for а given route. In the case when the forma­
tion of а molecule in one of the steps is compensated Ьу its consumption in 
the other step, the steady-state reaction process is realized. If, in the course 
ofthis step, по final product but а new intermediate is formed, then it is this 

Fig. 4. Simple cycles for n-hexane conversion [Fig. 3(f)]. 
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intermediate that must Ье consumed in the other step. Complete сотрепва· 
tion for the formation and consumption of intermediates does signify the 
completion of а path along воте route. 

ТЬив the rate of а steady-state reaction is determined Ьу individual paths 
along various routes. Every rate, however, сап Ье represented ав а linear 
combination of basic routes and Ьепсе а path along this route сап Ье given 
ав а linear combination of paths along the basic routes. Consequently, the 
paths along the non-basic routes composing а reaction are substituted Ьу 
equivalent paths along the basic routes. Ав а result, аН paths ofthe steps for 
а given time will appear to Ье adequately determined through basic routes. 
ТЬе reaction rate along the basic route is the number of paths along the 
basic route per unit time in unit reaction врасе provided that аН paths of the 
steps are localized along the routes of а given basis. ТЬе reaction rate ав а 
whole is set Ьу the rates along the basic routes; similarly, а vector is 
prescribed Ьу its components along the ахев of coordinates. 

ТЬе application ofthe concept of"the rate along the basic route" provides 
а possibility of obtaining а new formulation for the quasi-stationary соп­
ditions in terms of the Horiuti theory which is different from the ordinary 
опе, i.e. "the formation of ап intermediate is equal to that of its сопвитр­
tion". Temkin caHed the equations obtained "the conditions for the statio­
narity of steps". In matrix form they are represented ав 

vd = W (27) 

Here v is the matrix ofthe Horiuti (stoichiometric) numbers and d and w the 
vector-columns of the rates along basic routes and of the step rates, respec­
tively. ТЬив the rate of every step is represented ав а linear combination of 
the rates along the basic routes. Here it is recommended that а simple 
hydrodynamic analogy Ье used. ТЬе totalliquid fiow along the tube (step) is 
the reaction rate. Ттв fiow consists of individual streams which are the 
rates along the routes. 

It сап readily Ье shown that eqn. (27) is equivalent to the quasi-steady­
state condition in its general formulation. In unit time and in unit reaction 
врасе there forms "fintw of ап intermediate, where "fint is the stoichiometric 
intermediate matrix. Let ив recall that the dimension of "fjnt is (Itot Х S), 
where l tot is the total number of independent intermediates and S is the 
number of steps. After substituting w from eqn. (27), we obtain 

~T ~T ~ ~T ~ 

rintw = rint(vd) = (rintv)d (28) 
~T 

~T follows from eqn. (18) that r jnt v = О. Consequently, we also have 
rintw = О, which was to Ье proved. 

Temkin applied the identity 

(Ш+ 1 - W- 1 )W+ 2 W+ з ... + W_ 1(W+ 2 - W_ 2)W+ з ... + ... 

(29) 
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In this identity the step rates were represented in accordance with eqn. (27) 
ав 

w - w = '\' v(p) v(р) 
+8 -8 L..J s 

р 

where 8 is the number of the step and its associated graph edges, р is the 
number of independent routes, v(р) is the rate along the pth route,v~) is the 
Horiuti number along the pth route for the 8th step, and w +8 and w -8 are the 
rates ofthe direct and reverse reactions ofthe 8th step, respectively. Temkin 
[14, 15] obtained the steady-state reaction equation 

( 

(1) (1) (1)) 
(1) VS1 W- S1 VS2 Ш-SIW-SZVSЗ 

V -+ + + ... 
W S1 W+S1W+ SZ W+SIW+SZW+SЗ 

= 1-
w -81 W -S2 W - SЗ' •• 

W+SIW+S2W+SЗ' •• 

(30) 

This equation is independent of the order in which the steps are numbered. 
Temkin suggested ап algorithm оп the basis of eqn. (зо) to obtain ап explicit 
form of the steady-state kinetic equations. For linear mechanisms in this 
algorithm it is essential to apply а complex reaction graph. In воте савев the 
derivation of а steady-state equation for non-linear mechanisms оп the basis 
of eqn. (3О) is also less difficult. 

We have made ап attempt to illustrate the experience of 15 years (from the 
mid-1950s to the late 1960в) ofthe "penetration" ofthe graph theory methods 
into two sufficiently close fields, enzyme and heterogeneous catalysis kinet­
ics. From а purely utilitarian viewpoint, we prefer the algorithms approved 
in enzyme kinetics (вее, for example, refs. 9 and 10). For linear mechanisms 
these algorithms, directly connected with those of the graph theory, are а 
much more efficient way of obtaining steady-state kinetic equations than the 
algorithms based оп the steady-state reaction theory. This efficiency is 
constantly increasing ав the иве of computation analytica! methods makes 
it possible to perform computations of complex analytical calculations. Ав 
to non-linear mechanisms, the аЬоуе approaches are inefficient since neither 
of these two methods сап give an explicit form of the steady-state kinetic 
equation (here it is impossible in the general саве) or а special compact 
expression that would Ье convenient for analysis. Non-linear mechanisms 
will Ье discussed below. 

One must not underestimate, however, the importance of the general 
results obtained in terms ofthe steady-state reaction theory. Its informative 
concepts are used in theoretical kinetics, in particular the concept of Hor­
iuti (stoichiometric) numbers and а new formulation for the steady-state 
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conditions, eqn. (27). In several publications devoted to the иве of graph 
theory in chemical kinetics, quasi-steady-state conditions are used just in 
this formulation, e.g. in ref. 18. This study suggesting а new algorithm to 
derive kinetic equations is based оп the Vol'kenshtein-Gol'dshtein formal­
ism, but at the вате time the authors also use eqn. (27). 

In our series of studies of the 1970s [19-27], generalized in our monograph 
[7] (in what follows we will mostly proceed from the original material), we 
also used eqn. (27). 

1.3 NON-LINEAR MECHANISMS ON GRAPHS 

Investigations with the graphs of non-linear mechanisms had Ьееп sti­
mulated Ьу ап actual problem of chemical kinetics to examine а complex 
dynamic behaviour. This problem was formulated ав follows: for what 
mechanisms or, for а given mechanism, in what region ofthe parameters сап 
а multiplicity of steady-states and self-oscillations of the reaction rates Ье 
observed? Neither ofthe above formalisms (ofboth enzyme kinetics and the 
steady-state reaction theory) could answer this question. Непсе it was 
necessary to construct а mainly new formalism using bipartite graphs. It was 
this formalism that was elaborated in the 1970s. 

Bipartite graphs о{ complex reaction mechanisms. А mechanism of а сот­
plex chemical reaction сап Ье represented as а graph having nodes of two 
types, i.e. Ьу а bipartite graph [28, 29]. Опе of these nodes corresponds, ав 
before, to substances and the other accounts for elementary reactions (N.B. 
not for the steps, but for elementary reactions). Edges will join а node­
substance and а node-reaction if this substance takes part in the reaction. 
The edge is directed from the node-substance to the node-reaction if the 
substance is the initial reactant, and vice versa if the substance is the 
reaction product. If the reaction is described ав LIX;A; --+ L{3;A;, the number 
of edges from the node-substance to the node-reaction is IX;; in the opposite 
case it will amount to {3;. It is evident that non-linear graphs must Ье applied 
to non-linear mechanisms (see Chap. 3, Sect. 5.4) 

The basic results in the analysis of non-linear mechanisms using graphs, 
were obtained Ьу Clark [29], who developed а detailed formalism, and Ivano­
va [30, 31]. Оп the basis of Clark's approach, Ivanova formulated sufficiently 
general conditions for the uniqueness of steady states in terms of the graph 
theory. She suggested ап algorithm that сап Ье used to obtain (вее Chap. 3, 
Sect. 5.4) 

(1) conditions discriminating the region of parameters where the steady 
state is not unique (i.e. the condition for the multiplicity of steady states) 
and 

(2) conditions for the existence of such а parametric region where the 
positive steady state is unique and unstable (i.e. the condition for self-oscil­
lating rates). 

Later, Vol'pert and Ivanova [32] suggested methods of searching for some 
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critical phenomena for distributed "reaction-diffusion" systems. It is also 
possible to describe conditions for the appearance of "dissipative struc­
tures" in such systems in terms of graph theory which provides а natural 
account of the structural peculiarities of chemical reaction mechanisms. 

Let ив discriminate between the main problems in chemical kinetics 
solved using graph theory 

(1) the algorithmic derivation of steady-state kinetic equations directly 
from the complex reaction graph. These kinetic equations (structured forms) 
make it possible to carry out ageneral analysis of steady-state kinetic 
equations; 

(2) the analysis of the number of independent parameters in kinetic 
equations; 

(3) the algorithmic derivation of а characteristic polynomial required to 
study relaxation times of complex reactions; and finally 

(4) the analysis for the complex dynamic behaviour of chemical systems. 
Problems (1)-(3) are efficiently solved for linear mechanisms and the 

corresponding kinetic models. The major material in what follows will Ье 
presented primarily for linear mechanisms. 

Problem (4) is typical ofnon-linear mechanisms. The number of studies in 
this field is essentially lower since the application of graph theory in non­
linear chemical kinetics is new. Ош further description will relate to these 
principal problems. 

2. Graphs for steady-state kinetic equations 

2.1 SUBSTANTIATION OF ТНЕ "MASON RULE" 

Let ив prove the validity of the "Мавоп rule" formulated above [вее eqn. 
(11)] for linear mechanisms with тапу cycles (routes). 
А set of quasi-steady-state equations for а linear mechanism is of the form 

Ь(С)х = О, where х and с are the vector-columns of the concentrations for the 
intermediates and observed substances (those participating in the brutto­
reaction, i.e. initial substances and products) and Ь(С) is the matrix of the 
reaction weights 

Ь(С) 

Here bij 

- b!l Ь12 ' • 'Ь1n 
Ь21 - Ь22 . . . Ь2n 

(31) 

bij(c) ): О, bii = L bji . (It is evident that с> О.) The element of 
j=;6i 
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this matrix Ьи is the sum of the reaction weights. As stated above, the 
reaction weight is equal to its rate at unit concentration of the reacting 
intermediate. 

In addition the law of conservation must Ье fulfilled for the total amount, 
С, of intermediates per unit catalyst surface 

n 

I Х, = С 
г=1 

In this саве we аввите the absence of any additional laws of conservation 
arising in the case when а linear system has autonomous groups of substan­
сев (вее Sect. 5.1). 

Values of х, are determined using the set 

n 
(32) 

I Х, = С 
г=l 

where btr is the weight ofthe reaction consuming X t and forming х, and bst is 
the weight of the reaction in which х' is consumed and х, is formed. 

Let eqns. (32) correspond to the graph G according to the following rule; 
every rth intermediate corresponds to а graph node. Let us express it, like 
the concentration of an intermediate, through х. The nodes Х, and X t are 
joined Ьу the edge (х., х,) ifthe coefficient Ьэ, in eqns. (32) does not equal zero. 

Graph edges oriented in а definite direction which indicates the order of 
interconnection between the nodes are called directed arcs. Their orienta­
tion is indicated Ьу the arrows placed either оп the arcs or near them. А 
graph, а cycle, and а tree containing directed arcs are called directed. А 
directed cycle is also called а contour. 

The validity of eqn. (11) is confirmed Ьу the following theorem. 
Theorem. If а set of linear equations takes the form of eqns. (32), its 

solution is determined using the formula 

х = , 
CD, 

where D, is the sum of weights for the directed spanning trees of the graph 
with а root in the node Х, and С is the total amount of intermediates per unit 
catalyst surface. 

Let ив prove this theorem proceeding from the Mason rule [5]. For this 
purpose let ив rewrite eqns. (32) as 
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(33) 

n 

L: bn-1,r 
r=l 
r"':n-l 

ТЬеп for eqns. (33) we construct а Mason graph (а signal graph) in the 
following way. Nodes of the graph См (Mason graph) are the nodes X 1 , Х2 , 

.•• , Хn corresponding to the variables and the fictitious nodes Ха, i\, . .. , Хn ' 

ТЬе nodes Х; and Xj are joined Ьу the arc (X i , Х) whose weight is 

- bji 
n (34) 

ТЬе nodes Хn and Ха are joined Ьу the arc (Ха, Хn ) having the weight (- С). 
ТЬе arcs (Хn , Х;) join Хn with Х; and their weight is found from eqn. (34). 
Further every node Х is joined with Хn Ьу the arc whose weight is ( + 1) and 
Х; and Х; (i = 1, ... , n) are also joined Ьу the arc with the weight equal to 
(+ 1). 

ТЬе node Ха is the graph СМ input and fictitious points Xi are its outputs. 
ТЬе МаБОП formula for this graph takes the form 

1 
Х; = ~ ~ Pk/'o"k (35) 

where Pk is the kth direct path (walk) from the input node Ха to the output 
xi and /'о" is the determinant of eqns. (33) calculated using the formula 

(36) 

/'o"k is the determinant for that part of the graph obtained Ьу eliminating the 
path Pk from См. In eqn. (36), ~ Ck, is the Бит of the weights for the whole 
of the combinations of two uncontacting contours, etc. and ~ Ck is the sum 
ofthe weights for the whole ofthe combinations of т uncontacti;g contours. 
ТЬе weight of contours combination is the product ofthe weights for the arcs 
entering into these contours. Ав сап readily Ье вееп, it is far from being 
evident that the Мавоп formula, eqn. (35), is analogous to the expression for 
Хп eqn. (11) which must Ье proved. 

Equation (36) is well known in combinatorial analysis (see, for example, 
ref. 33) ав the inclusion and exclusion equation to calculate the number of 
objects possessing а certain, apparently void, set of given properties. Let а 
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givenproperty suggest that the n-node subgraph Ьав а combination of t 
uncontacting contours. ТЬеn eqn. (36) provides а вит for the weights of 
trees, i.e. of the directed spanning trees in the graph Ом . 

Consequently, the determinant will Ье 

д = D 
ПI bkr 

(37) 

k r 

Оп the other hand, after reducing to а common denominator, the numera­
tor of eqn. (35) will take the form 

~ PkLlk = П Cfb
kr 

(38) 

k r 

whence the required result is obtained. Let ив now prove that eqn. (35) does 
actualIy hold. 

Let Р; take the form 

(39) 

Its weight is equal to С' a ni , • a i,i,' ••• aik_lik' ТЬе corresponding determinant 
Д will Ье 

Lli = 1 - I Ckj + I Ck2 -

k1 k2 

1 -(11 ацал) + ... [, j i=- n, i» ... , i k (40) 

ТЬе term in brackets gives the вит of аlI probable contours that are not in 
contact with the nodes of the path Р; - Хn , X

i" 
•.. , X ik • Тшв теаnв that the 

denominators of the contour weights are the витв 

After opening the product ПаLr Ьа" (J. i=- n, i» ... , ik , we will obtain factors 
corresponding to the trees with the roots in the nodes Хn , Xi

" 

••• , X ik for the 
path р;. In combination with the path Р; = Хо, Xi

" 

..• , Xi
k 

it provides а 
multitude oftrees with the root in Xik ' ТЬе theorem Ьав Ьееn proved. Its proof 
could Ье carried out in terms of the known Kramer rule (вее refs. 1 and, for 
more detail, 7). An example for the application of eqn. (11) to а simple 
catalytic isomerization reaction Ьав Ьееn given аЬоуе. 

2.2 GENERAL FORM OF STEADY-STATE КINETIC EQUATION FOR COMPLEX 
CATALYTIC REACTIONS WITH MULTI-ROUТE LINEAR MECНANISMS 

Let the graph О(х, и) correspond to the mechanism of а complex catalytic 
reaction that is linear with respect to intermediates. Ав before, the graph 
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nodes Х account for intermediates and the arcs и correspond to reactions. 
Every arc и of the graph G is ascribed to the number Ь ± (Ь is the reaction 
weight). For the sake of convenience, we assume that ifthe arc и = (.1, у) has 
а weight Ь+ (и), then the weight for the arc d = (1, .1) will Ье expressed as 
Ь- (и). These designations permit us to use ап undirected weighted graph as 
а graph for the detailed mechanism. ЕасЬ of its edges и = (.1,1) will account 
for the conversion of substance у into substance х and simultaneously for 
the conversion of substance х into у. Therefore the edge weight will Ье 
expressed as ап ordered pair of the numbers [Ь+ (и) and Ь- (и)]. If опе of the 
reactions does not take place, the corresponding weight will Ье equal to zero. 

As noted аЬоуе, а graph of а catalytic reaction must necessarily Ьауе 
cycles, since every intermediate is both consumed and formed. When apply­
ing the term "cycle", we will assume that it is а "simple cycle", i.e. а cycle 
containing по repeated nodes. This cycle is also called elementary. 
А connected graph is а graph in which еасЬ point сап Ье connected to the 

other Ьу а certain sequence of arcs. 
Ап unconnected graph is а graph in which not аН its nodes сап Ье connect­

ed Ьу а certain sequence of arcs. 
ТЬе definitions for а tree and а spanning tree were given at the beginning 

of this section. Let us give some further definitions. 
(1) Let Н Ье а spanning tree for the undirected graph for the reaction 

mechanism С. А directed spanning tree, Н, for the directed graph of the 
reaction mechanism is опе whose arcs are oriented so that every node ofthe 
spanning tree except опе, called а root, has опе output arc. It сап easily Ье 
seen that апу node of the directed spanning tree is connected Ьу а path with 
the spanning tree root, i.e. the root сап Ье reached from апу node. 

(2) А directed forest is а term for the unconnected directed graph in which 
every component of connection is а directed tree with а root*. 

Derivation о! equation. During the step и, let а mutual conversion of the 
intermediates Ха and Хр take place at а rate шu 

Шu = Ь+ (U)Ха - Ь- (и) Хр 

Using eqn. (41) whose proof is given аЬоуе 

CDr 

Х' = L D
r 

(41) 

where D r is the sum of the weights for the directed spanning trees of the 
reaction graph with а root at the node х' and С is the total amount of 
intermediates per unit catalyst surface (as usual, С = 1). Taking this equa­
tion into account, eqn. (41) сап Ье written as 

* АН concepts of graph theory not given Ьете сап Ье found in the monograph 34. А good list of 
the graph theory concepts required for the investigation of chemical kinetic equations is given 
in ref. 35. 
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or 

(42) 

where Hk,a is the kth directed spanning tree with а root at the node а, In this 
саэе we have 

b(Hk,a) = п Ь± (и) (43) 
ueBk ,f1. 

The sign ± suggests that, for the weight calculation in (Hk,a) we take Ь+ (и) 
or Ь- (и) in accordance with the demands for arc orientation in the spanning 
tree Hka , 

Her~ we deal with the following almost evident statements, 
Lemma (1), The product Ь+ (it)b(Hka ) is the weight of а graph having опе 

and only опе contour obtained from the directed spanning tree Hk,a Ьу adding 
the arc и, 

Indeed, Hka is а directed spanning tree with а root Ха; hence апу arc 
incident with'xa enters Ха' Since the arc и originates from Ха and the directed 
spanning tree Н contains аВ the graph nodes, the arc и closes exactly опе 
contour, 
А similar statement is also valid for the product Ь - (и)Ь(Д,р)' Let иэ 

designate the contour from Lemma 1, through CkaP ' Then the inversely 
directed contour will Ье designated аэ CkPa ' 

Lemma (2). For the graph Hk,a U {и + } obtained Ьу adding the arc и to the 
directed spanning tree Hk,a, the addition to the contour CkaP is the directed 
forest, apparently with one-node components whose roots are the nodes for 
the contour CkaP ' The lemma is evident, 

Lemma (3), For апу graph Hk,a U {и +} we will always find а graph 
Hk,p U {и - } since the contours СkЭL and CkPa have ~he эате number of nodes 
and their additions in the graphs Hk,a U {и + } and Hk,p U {и - } are isomorphic. 
Indeed, for Hk,a U {и + }, this is а graph obtained Ьу representing the direction 
for the arcs in the contour of Нц U {и - }, i.e. Ьу the substitution of CkaP for 
CkPa ' 

Then from eqns. (42) and (43) and lemmas (1)-(3) we immediately obtain а 
general equation for the rate of step и 

(44) 

Here {с(а)} is the set of simple cycles in the reactiongraph passing through 
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the edge и, Н is the directed forest with roots belonging to С(u) , and H(G, 
С(т1)) is the set of such forests. 

The properties of this equation will Ье examined in what follows. 
Let ив note that the summation in eqn. (44) is taken with respect to the 

number of аН cycles involving the participation of step u. At the вате Ете, 
in the Horiuti-Temkin equation ("the steady-state step equation"), which is 
опе more formulation for the quasi-steady state conditions [11, 12] 

р 

" v(p)v(p) = w - w 
~ s +8-8 s =' 1, ... , S 
p~l 

the summation is taken only with respect to the Р independent cycles. 

2.3 ANALYSIS OF PROPERTIES FOR ТНЕ GENERAL STEADY·STATE КINETIC 
EQUATION OF COMPLEX CATALYTIC REACTIONS 

(45) 

Let ив write down the general kinetic equation obtained for the steady­
state rate of the step in the form 

(46) 

where С; is the cyclic characteristics of the ith cycle 

С; = ПЬ+(d)-ПЬ-(d) 
v v 

and Р; is the matching parameter for this cycle 

Р; = I Ь(Н) 
НеЙ(G. С(u» 

Let ив interpret these important characteristics. 
(1) We will first clarify the вепве of the "cyclic characteristics". Let ив 

take апу cycle of the graph. Note that here а cycle is treated ав а simple 
cycle, i.e. that having по repeated nodes. Each ofits edges (step) corresponds 
to the Horiuti (stoichiometric) number. It сап readily Ье shown that, for the 
cycle of а linear mechanism, this number will Ье either + 1 or -1, depending 
оп whether the step direction coincides with а chosen direction for this 
cycle. Horiuti numbers for the steps not entering into а cycle are equal to 
zero. For а one-step mechanism having only опе cycle, аН Horiuti numbers 
are equal to + 1. (If а reaction mechanism also has buffer steps not entering 
into the cycle, their Horiuti numbers are zero.) Let ив add the steps belong­
ing to опе simple cycle, multiplying them Ьу the Horiuti numbers. We will 
obtain а brutto-equation to relate the initial substances and products. W е 
will саН this "natural". It will not necessarily Ье integer-valued. Further we 
will illustrate it in detail Ьу ап example of one-step mechanism. ТЬе brutto­
equation found сап also take the form О = О. Every simple cycle and its 
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brutto-equation corresponds to the cyclic characteristics, i.e. the difference 
between the products of the weights for direct and reverse reactions, respec­
tively. 

The sense of the cyclic characteristic is simple. It is а kinetic equation of 
our brutto-reaction ав if it were а step and consists of elementary reactions 
obeying the law of тавв action. For the cycle with the brutto-equation 
О = о, the cyclic characteristic is С = о. If аН cycles have the вате "nat­
ural" brutto-equations, their cyclic characteristics are represented ав 

(47) 

where Кр is the equilibrium constant corresponding to the brutto-equation, 
f+ (<!) and f- (1:) are concentrational dependences for the direct and inverse 
equations of the brutto-reaction presumed Ьу the elementary reactions, and 
k;+(P) the rate constants for the reactions of the pth direct cycle. 

Thus cyclic characteristics of various cycles wiH differ only in values of 
the factors (дk;+(р). Cyclic characteristics for two different cycles with the 
same"natural" brutto-equations are proportional to each other 

(!) k;+(l)) 

(!) kt (2)) 
(48) 

In the general case, а complex catalytic reaction сап Ье written in the matrix 
form 

I\А + I'\Х (49) 

Here А and Х are the vector-columns of the observed and intermediate 
substances, respectively, and Г А and Г х the matrices of their stoichiometric 
coefficients. 

Ав shown аЬоуе, the stoichiometric (Horiuti) numbers must satisfy the 
equality 

vTrX = О 

After multiplying аН steps of eqn. (49) Ьу the vector vT we obtain а set of 
brutto-reaction equations 

(50) 

or 

г А -о 
BR 

where Г BR is the stoichiometric matrix for the set of brutto-equations. 
We have already said that, in principle, the "natural" brutto-equation сап 
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have по minimum integer-valued coefficients. Let us illustrate this Ьу аn 
example ofthe catalytic isomerization reaction, which сап follow the follow­
ing mechanisms 

Mechanism 1 

(1) А + Z <=± AZ 

(2) AZ <=± B+Z 
А в 

Mechanism II 

(1) А + Z <=± AZ 

(2) AZ <=± BZ 

(3) А + BZ <=± Z + 2 В 
2А = 2В 

Mechanism III 

(1) А + Z <=' AZ 

(2) А + AZ <=± Z + 2 В 
2А = 2В 

Mechanism 1 accounts for the "natural" brutto-equation А = В obtained 
Ьу adding steps of the detailed mechanism, whereas mechanisms II and III 
correspond to the equation 2 А = 2 В. Cyclic characteristics will, apparent· 
ly, differ. In the former case С = К+ СА - К- Св, in the latter С = К+С;' 
- К- C~. 

(2) The value LЯЬ(Н) = Р. [see eqn. (46)] is а matching parameter. In the 
general case it is the sum of factors, i.e. the value characterizing the effect 
of the substances not involved in а given cycle. 

In terms of the graph theory, ь(Н) is the weight for the directed graph 
whose roots belong to а given cycle. For а complex reaction having оnе cycle 
and по ''buffer'' steps, we have Р = 1 and по matching. 

(3) As has Ьееn shown above, the cyclic characteristics is а kinetic equa­
tion for the brutto-reaction as if it were а simple step. But the denominator 
LxDx accounts for the "non-elementary" character of this reaction and 
indicates the rate retardation Ьу catalyst surface intermediates. 

Every summand in the denominator is the spanning tree weight. Let us 
recall that, in this case, the sense of the spanning tree i8 а non·cyclic 
sequence ofreactions with the help ofwhich а given intermediate is formed 
of аll others. Неnсе it сап easily Ье shown that (а) every summand of the 
denominator LxDx and of the matching parameter р. cannot simultaneously 
contain weights for the direct and reverse reactions of the same step; (Ь) 
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every summand of the denominator and of the matching parameter cannot 
contain weights for two or more reactions involving the participation of the 
same intermediate; (с) every summand ofthe denominator is а product ofthe 
(8 - Р) reaction weights, where 8 is the number of graph edges (steps) and 
Р the number of linearly independent cycles; (d) every summand of the 
matching parameter Р; is а product of the (8 - 8с ) - (Р - 1) reaction 
weights where 8с is the number of arcs belonging to а given cycle. 

It must Ье noted that at present the writing of аН summmands пх presents 
по difficulties because there exist effective computation algorithms. 

Equation (46) accounts for the step rate Ши ' The steady-state rates for 
concentration variation of substance А(Wл ) and for the step (ш.) are related 
as 

(51) 

where УuЛ is the stoichiometric coefficient for the observed substance А in 
step и. As а rule, each elementary reaction of complex mechanisms of 
heterogeneous catalysis involves the participation of по more than one 
molecule of the observed substance. Therefore Уu,Л takes а value equal 
to + 1, - 1 or О. 

Let us apply the general equation (46) for the analysis of various typical 
cases. 

1. One-route mechanisms 

Р = 1 

It is this one-route mechanism of catalytic isomerization that was used 
аЬоуе to illustrate the "operation" of graph theory in chemical kinetics. For 
а graph of а one-route mechanism see Fig. 5(а). 

Let us give one more example, а two-step reaction. Among the class of 
two-step catalytic reactions suggested Ьу Temkin [36] and studied in detail 
Ьу Boudart [37], we сап find many industrial reactions. For example 

(1) Н2 О + Z +2 ZO + Н2 

(2) ZO + СО +2 Z + С02 
СО + Н2 О = С02 + Н2 

(а) (Ь) (с) (d) (е) 

Fig. 5. Graphs of linear meehanisms. (а) One·route meehanism; (Ь) one·route meehanism with 
а "buffer" step; (е) two-route meehanism with а еоmmоn intermediate; (d) two·route meehanism 
with а ''bridge'' eonnecting eyeles; (е) two-route meehanism with а eommon step. 
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In this case the set of reaction weights will Ье 

Ь: k: [HzO] 

Ь! k! [Hz] 

Ь; k; [СО] 

Ь:; k:; [COz] 

and the reaction rate will Ье written ав 

W = 
Ь1+ Ь; Ь! Ь:; 

Ь: + Ь; + Ь! + Ь:; 

k: k; [Н2 О][СО] - k1- k:; [H z][C0 2 ] 

k: [HzO] + k! [Hz] + k; [СО] + k:; [СО2 ] 

This expression is identical to that from ref. 36. The total number of 
spanning trees in the graph ofthe one-step mechanism is equal to nz (аВ steps 
are assumed to Ье reversible). We will discriminate between direct, inverse 
and mixed spanning trees. Direct and inverse will Ье called the spanning 
trees consisting of the arcs only with the direct or inverse orientations, 
respectively. Mixed spanning trees are those containing both direct and 
inverse arcs. The number of the direct and inverse graph spanning trees is 
equal to C~-l = n. Every node has опе direct, опе inverse and (n - 2) mixed 
8panning tree8. Thus the relationship 

n + n + n(n - 2) = n z 

is fulfilled. 
It is evident that the mixed spanning trees exist only at n ~ 3. Two-step 

schemes have по mixed spanning trees. 
For the three-step mechanisms (Fig. 1) the weights for direct spanning 

trees are expressed ав 

Ь: Ь; + Ь; Ь; + Ь; Ь: 

Ь1- Ь2- + Ь:; Ь;; + Ь;; Ь! 

Ь: Ь:; + Ь; Ь;; + Ь; Ь! 

knA] k; + k; kз+ + kз+ knA] 

k! k:; + k:; k;; [В] + k;; [В] k! (52) 

knA] k:; + k; kз- [В] + kз+ k! 

where Bdir , Bin and Bmix are the sums of the spanning tree weights for direct, 
inverse and mixed 8panning trees, respectively. 

The number of spanning trees i8 much lower if аН steps are irreversible 
("strong" irreversibility) or if several (опе, two, etc.) steps are irreversible 
("weak" irreversibility). In the саве of "strong" irreversibility there are по 
either inverse or mixed spanning trees. If the irreversibility is "weak" and 
only опе step is irreversible, the number of inverse spanning trees reduces 
to опе. In the case in which two or more steps are irreversible there are по 
inverse spanning trees at аН. 
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For example, for the oxidation of hydrogen оп the oxides of the transition 
metals of Group IV, we have [38] 

(1) Н2 + (ZO)2 -> ZOZ' Н2 О 

(2) ZOZ . Н2О <=± ZOZ + Н2О 

(3) ZOZ + Н2 -> Z' Z . Н2О 

(4) Z . Z . Н2О <=± Z· Z + Н2О 

(5) Z . Z + 02 -> (ZO)2 

The corresponding expressions for the reaction weights are 

Then 

ь( k( [Н2 ] 

ь: ki 

ь; ki [Н2 О] 

ь; kt[H2] 

ь: k: 

ь;; k;;[H2O] 

ь: k: [02] 

п Ь+(u) = k(kik;k:knН2Г[02] 
v 

w k: ki k; k: k: [Н2 ]2[02] 

IDx 
х 

where 

I пх = k( k; k; k: [Н2 ]2 + k; k: k: (k( + k; )[02][Н2 ] + 
х 

+ k( k; k; k;; [Н2 Р[Н2 О] + k( k: k: k2[H2][02][H20] + 

+ k( k; k: (k; + kn[H2]2[02] 

(53) 

(54) 

If а one-route mechanism is supplemented Ьу а ''buffer'' step, the graph 
will have а 'Ъапgiпg" node [Fig. 5(Ь)]. 

For this graph the steady-state rate for а one-route mechanism will Ье 
expressed ав 

The only difference is that the weights of the graph arcs going out from the 
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node х must Ье divided Ьу the value (1 + Кх ) where Кх is the ratio ofweights 
ofthe direct and inverse reactions for the step associated with the "hanging" 
node. 

It is evident that, in the steady-state саве, the ''buffer'' step is in equi­
librium and its rate is zero. 

П. Two-route mechanisms 
(1) Let ив consider the mechanism of the reaction of NO and СО оп silver 

[39] 

(1) NO + Z <:± ZNO 

(2) ZNO + NO ...... N20 + ZO 

(3) N20 + Z ...... N2 + ZO 
(55) 

(4) ZO + СО ...... Z + С02 

The reaction graph is represented in Fig. 6. The reaction weights are 

ь: k: [NO] 

ь] kj 

ь; k;[NO] 

ь: kз+ [N2O] 

ь+ 
4 k: [СО] 

Cyclic characteristics corresponding to the irreversible cycles I [steps (1), 
(2), (4)] and II [steps (3), (4)] are expressed ав 

С1 k: k; k: [NO]2 [СО] 

С2 k: k: [N2 0][CO] 

Matching parameters accounting for cycles I and П, will Ье 11 
= kj + k; [NO], respectively. 

Then we obtain 

Wco Wco, = Ш4 

k: k; k: [NO]2[CO] + k: k: [N2 0][CO](kj + k; [NO]) 

I пх 
х 

з~}NО 
ZO 

Fig. 6. Graph of the NO + СО reaction over silver. 
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where 

+ k: k;[N2 0][NO] + k1 k;[CO] + k1 k;[N2 0] 

(2) The mechanism for the synthesis of vinyl chloride, eqns. (24), whose 
graph is given in Fig. 3(d), also has two routes with one "natural" brutto­
equation. Without taking into account the reversibility of steps (1) and (3), 
the rate of product formation will" Ье 

W Ш2 + Ш4 

k: k; k: [HCl][C2H2]2 + k: k; k: [HCl]2[C2H2] 
k: k: [С2Н2 ]2 + k: k: [HCl][C2H2] + k: k; [HCl]2 

(57) 

Among two-route mechanisms, those illustrated in Fig. 5(с) (those having 
one common intermediate) and in Fig. 5(е) (mechanisms having а common 
step) ате widespread. The graph in Fig. 5(d) accounts [от the mechanism in 
which two cycles ате connected Ьу а bridge "arch". It сап easily Ье seen that 
the steady-state rate corresponding to the "arch" will Ье zero, i.e. this step 
is in equilibrium. These typical schemes ате present as fragments [от multi­
route mechanisms. 

Essential differences ате observed between the two-route mechanism with 
а соттоп intermediate and the two-route mechanism with а соттоп step 
(соттоп steps). 

In the former case, а step of each cycle сап enter into опе simple cycle. In 
the numerator of eqn. (46) [от the step rate we will observe only one cyclic 
characteristic, С, corresponding to this cycle. The presence of ап additional 
cycle affects only the value of the matching parameter Р. The cycle rate сап 
уату only quantitatively, but in neither case does the reaction direction 
vary. This situation corresponds to the so-called "kinetic matching"(see, for 
example, ref. 40). Assuming that all steps ате reversible, the total number of 
spanning trees amounts to nin2 + nln~ - n 1 n2, where n 1 and n2 ате the 
number of steps in both cycles. 

In the second case the step of each cycle сап enter into ап additional cycle 
(also assuming that all steps ате reversible). In the numerator of eqn. (46) [от 
the rate of the step of one of the cycles we observe the appearance of the 
summand W*. It contains а cyclic characteristic corresponding to the new 
cycle. In the numerator for the rate of the step of the other cycle there 
appears the summand - W*. Tl-lis case corresponds to the so-called "ther­
modynamic matching" when, due to the appearance of additional cycles, it 
becomes possible to change both the rate value and its sign (i.e. the reaction 
direction). It is ofinterest to note that thermodynamic matching in the pure 
form is impossible since we will always observe the presence of а summand 
accounting [от the performance of а reaction Ьу "its own" cycle. The total 
number of spanning trees is calculated using the formula n 1 (n2 - 1)(n! + n2 
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- 2). If both cycles are irreversible, thermodynamic matching is not оЬ­
served. 

Let us emphasize а simple but important circumstance. If multi-route 
reactions are carried out оп а catalyst with an active site of the same type, 
they must necessarily Ье characterized Ьу either kinetic or thermodynamic 
matching. ТЬе problem of matching will Ье discussed in more detail in the 
next paragraph. 

III. Multi-route mechanisms 
As an example, let us consider the аЬоуе fragment of the conversion 

mechanism for n-hexane [its graph is given in Fig. 3(f)]. ТЬе weights of some 
arcs are equal to the sums of those of individual reactions. For example, the 
weight of the arc from НК to К amounts to ЬНК-К = Ь 1 + Ь5 + Ь6 • Let us write 
down the rate for step (3). It enters into four cycles (see Fig. 4). Cycle 1 
(HK-MCK-IK-HK) has the cyclic characteristics 

С/ = ЬЗ Ь_ 7 Ь- 2 - Ь- З Ь 7 Ь2 

ТЬе matching parameter Р] accounting for the connection ofthe node К with 
cycle 1, will Ье 

Р1 = Ь 4 + Ь -8 + Ь 1 

For cycle П (HK-MCK-IK-K-HK) we Ьауе 

Сп = ЬЗ Ь_ 7 (Ь8 + Ь9 )Ь 1 - Ь- З Ь7 Ь- 8 (Ь- 1 + Ь5 + Ь6 ) 1 

For cycle ПI (HK-MCK-K-IK-HK) the value of С is equal to 

For cycle IV (НК-МСК-К-НК) it amounts to 

С/у = Ь З (Ь4 + ыоь1 1 - Ь_ З Ь_ 4 (Ь_ 1 + Ь5 + Ь6 ) 

ТЬе matching parameter Р4 characterizing the connection of the node IK 
with cycle IV, takes the form 

Р4 = (Ь8 + Ь9 ) + Ь7 + Ь_ 2 

ТЬе cyclic characteristics and matching parameters for the cycles being 
known, we сап easily determine а numerator for the steady-state rate. Since 
the denominator is cumbersome, we omit its description here. 

ТЬе principal advantage of eqn. (46) is not only the simple derivation of 
а steady-state kinetic equation directly from the detailed reaction mechan­
ism but the possibility of obtaining from this equation the results which Ьауе 
physicochemical significance. In what follows, wewill discuss the most 
important ones. 
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2.4 HOW ТО FIND ТНЕ КINETIC EQUATION FOR REVERSE REACTIONS 

This problem, put forward independently Ьу Horiuti (1939) [41] and Bores­
kov (1945) [42], сап Ье formulated ав follows: to find а kinetic equation for 
а complex reaction in the reverse direction from the known similar expres­
sion for the direct reaction rate and applying only thermodynamic relation­
ship for the brutto-reaction. In other words it is necessary to answer the 
question, in what савев is the equation 

w+ (с) = f+ (Z!) К (Т) 
W- (с) f- ~) eq 

(58) 

valid? Here W+ (с) and W- (с) are the rates of the direct and reverse reac­
tions, respectively, f+ ~), f- (Z') are kinetic laws corresponding to the direct 
and reverse brutto-reactions, cis the set of concentrations for аН substances, 
:г andZ' are the sets of concentrations for the initial substances and products, 
respectively, and K eq (Т) is the equilibrium constant for the brutto-reactions. 
Horiuti solved this problem in 1939 for а special саве, i.e. for the reaction оп 
а hydrogen electrode. It is in connection with this problem that the known 
concept "stoichiometric number" was introduced. Boreskov, during World 
War II and not knowing of Horiuti's study, found а solution to this problem 
for а sequence of reactions under воте simplifying assumptions (e.g. one 
step is rate-determining, the kinetic relationship is а power equation). The 
Horiuti-Boreskov problem appeared to Ье rather difficult. In fact, it is the 
problem of matching kinetic and thermodynamic relationships for complex 
reactions. 80 far this problem in its general formulation, i.e. for multi-route 
non-linear reactions, has not been solved. We will now present the results 
concerning linear mechanisms. 

(1) The cycle is unique 
In accordance with eqn. (46) we obtain 

W = с 
IDx 
х 

W+ - W-
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W+(l f-(E») 
K eq (Т)Р (е) 

(59) 

where 

П Ь;Т 
w+ , 

ID. 
and 

П Ь;-
w- ; 

IDx 
х 

For this саве the Horiuti-Boreskov concept is always valid and does not 
require an assumption about the rate-determining step. 

Let ив note that in eqn. (59) the expressions f+ (~) and f- (Е) ате the kinetic 
dependences that ате written according to the law of тавв action for the 
"natural" brutto-reaction, i.e. for the reaction obtained Ьу а simple addition 
of аН cycle steps, and K eq (Т) is the equilibrium constant for this reaction. 
However, ав we mentioned above for the reaction of catalytic isomerization, 
the "natural" brutto-equation should not necessarily have integer-valued 
coefficients. For the mechanism 

(1) А + Z <Z AZ 

(2) AZ <Z В + Z 

with the "natural" brutto-equation А 

w = W+(l __ 1_ СВ) 
Keq,m СА 

But for the mechanism 

(1) А + Z <Z AZ 

(2) А + AZ <Z 2 В + Z 

with the "natural" brutto-equation 2 А 

W+(l -~) 
Keqcl/ 

W 

W+[1 ( св )21 
- Keq,mcA J 

в eqn. (59) will take the form 

(60) 

2 В, eqn. (59) will Ье 

(61) 

In eqns. (60) and (61), Keq,m is the equilibrium constant for the brutto-reac­
tion with the minimum integer-valued coefficients. 
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In the general case we сап write 

(62) 

where Фm(С) and Keq,m will correspond to the brutto-reaction with the mini­
mum integer-valued coefficients. The value к сап Ье called the brutto-reac­
tion multiplicity. 

Equation (62) is an analog of that obtained Ьу Boreskov [42] but in 
contrast to it, it does not require the assumption of the existence of а 
rate-determining step. 

(2) There are several cycles 
Let us consider the case in w hich the ra te ofthe step (or steps) of in terest 

is expressed as eqn. (59) or (62). This step participates in simple cycles at а 
non-zero rate (non-zero cycles) and these cycles correspond to the same 
"natural" brutto-equation. 

Let us interpret it in more detail. According to eqn. (46), the step rate is 
expressed ав 

The cycle will Ье characterized Ьу а zero rate in the two cases: (а) the cycle 
corresponds to the "natural" brutto-equation О = О; then С = О and (Ь) the 
cycle is in equilibrium; then С = О. Cycles with zero rates (zero cycles) do 
not provide any additional summands in the numerator, whereas the deno­
minator will now have summands accounting for the reaction retardation Ьу 
the intermediates of these cycles. 

Let two cycles have similar "natural" brutto-equations. Then their сусЕс 
characteristics will Ье expressed as 

(63) 

and similarly 

(64) 



The values Ф (С) and Keq in eqns. (63) and (64) are the вате. 
We then have 

w = 
и 

(С1 Рl + С2Р2) 

I Dx 
х 
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(65) 

Thus eqn. (65) takes the form of eqn. (59). It is evident that the вате 
statement сап also Ье made in the саве when воте step takes part in тапу 
cycles with the вате "natural" brutto-equation. The representation of type 
of ечп. (65) will also Ье valid for the steady-state rate of concentration 
variation for substance А [see eqn. (51)] if this substance participates in 
non-zero cycles with the same "natural" brutto-equation. 

Let us note one special but widespread саве when there are several cycles 
but they have only соттоп nodes (intermediates). Each cycle has its "own" 
observed substance that is consumed or formed only in this cycle. The rate 
of concentration variation for this substance will have only one cyclic 
characteristic in the numerator, hence its expression Ьу eqn. (59) is valid. 

It is possible that the reaction with the only brutto-equation will follow 
several routes. For example, the reaction of vinyl chloride synthesis 

С2 Н2 + НСI = С2Нз СI 

сап follow two routes [see eqn. (24) and Fig. 3(d)J. In this case "natural" 
brutto-equations are similar. Apparently, this сап Ье considered to Ье the 
rule. Then in the саве when all steps are reversible, eqn. (59) for the rate of 
consumption of а substance is valid. 

But, in principle, it is possible that, for the reaction with the only brutto­
equation, its different routes correspond to the "natural" brutto-equations 
having different multiplicities [вее eqn. (62)]. Then eqn. (59) would not Ье 
valid. The literature lacks studies in which this problem has been examined 
оп the basis of experimental data. 

It сап Ье concluded that, for linear multi-route mechanisms, а class has 
been specified for which the representation of а kinetic equation in the form 
of the Horiuti-Boreskov equation, ечп. (59), is valid. Note that Khomenko 
et al. [43] have analyzed а kinetic equation for the two-route reaction, one 
of which is in equilibrium. For the results of the analysis for а non-linear 
one-route mechanism, see ref. 44. 

2.5 MATCНING OF REACTIONS AND ТНЕ REPRESENTATION OF ТНЕ КINETIC 
EQUATION IN ТНЕ HORIUTI-BORESKOV FORM 

The result obtained provides an interesting aspect in interpreting the 
matching of the аЬоуе reactions. If а kinetic equation сап Ье presented in 
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the Horiuti-Boreskov form, we are dealing with "kinetic matching". In this 
case the addition of ап additional cycle affects the value of the rate but 
cannot result in а reversal of the direction. 

But if the kinetic equation cannot Ье presented in this form, we are 
dealing with "thermodynamic matching" affecting both the value of the rate 
and its sign (direction). Thus, the typical mechanism 

corresponds to the kinetic equations 

WI = CjPj 

IDx 

and 

and the mechanism 

corresponds to the equations 

WI = CjPj + С* 
IDx 
х 

(66) 

(67) 

where С* is the сусЕс characteristic of the total cycle obtained after remov­
ing the arc (X j , Х2 ); Р* = 1. Equation (66) is the case ofkinetic matching and 
(67) that of thermodynamic matching. The concept of thermodynamic and 
kinetic matching is applied in the case when at least two brutto-reactions 
take place in the system and сап affect each other. But multi-route mесЬап­
isms сап also Ье realized for cases with only опе brutto-reaction. Various 
cycles сап have either соmmоп arcs (steps) or only соmmоп nodes (inter­
mediates). In this case we сап also observe matching: various routes with 
different characteristics will Ье matched. 
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2.6 OBSERVED КINETIC REGULARITIES AND CHARACTERISTICS OF DETAILED 
MECHANISMS 

ТЬе analysis of observed kinetic parameters, primarily of the observed 
reaction rate order, and observed activation energy is ап integral part ofthe 
kinetic study of complex catalytic reactions. 

In accordance with ref. 35, the terms observed order and observed activa­
tion energy сап Ье used correctly only for power kinetic relationships. Here 
we will examine the relationships between the experimentally observed 
values aln WjalnA and aln W(a( -ljRТ) and the characteristics of the de­
tailed mechanism. W е believe these relationships to Ье rather informative. 
As the subject of the analysis we will take а one-route catalytic reaction 
with а mechanism that is linear with respect to the intermediates. 

Since the steps of these mechanisms usually involve the participation of 
по more than one molecule of the observed substance, the steady-state rate 
of its concentration variation will Ье presented ае WA = р W, where р is the 
number of steps involving the substance participation of А and W the 
steady-state rate for any step (rate over the route). 

2.6.1 Observed reaction order 

Let us first present воте transformational expressions for the steady-state 
step rate. Every path corresponding to the summand of пх сап include 
several steps for the consumption of the вате substance. The weight of the 
corresponding spanning tree will then Ье characterized Ьу the power ех­
ponent for the concentration of this reactant with which it enters into this 
spanning tree. This exponent is the total number of molecules consumed for 
аН steps of а given path. 

Assuming that the chosen substance, А, reacts in р steps of the n-step 
one-route mechanism, let ив express the denominator of the steady-state rate 
ав а polynomial with respect to its concentration 

(68) 

After а similar transformation of the numerator, we сап write 

W = К[А]Р - В-

Во + B1[A] + ... + Вр[А]Р 
(69) 

where Во, B 1 , ••• , Вр , В- = ПiЬ i- are functions of the composition and 
temperature which are independent of the concentration of substance А. We 
then have 

_ JlnW _ alnw/aln[A] 
тА - aln[A] - д[А] д[А] 

рК[А]Р 

К[А]" - В 
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К[А]"(рВо + (р -l)В, [А] + ... + Bp_1 [A]P-l) + В- (В, [А] + ... + Вр[А]") 

(К[А]Р - В-)(ВО + В,[А] + ... + В)А]Р) 

After several transformations we obtain 

т = 
А 

I spanning trees with [А]Р р-2 . 
1 - + I (Р - 1 + 1) 

ВО + Bj[A] + ... + Вр[А]Р i~O 

I spanning trees containing [A]i рВ-
~------------------------- + ~~----~ 

ВО + Bj[A] + ... + Вр[АУ К[А]Р - В-

W е сап write eqn. (71) as 

alnW 
т = 
А aln[A] 

(70) 

(71) 

. I spanning trees containing [A]i рВ-
1) + -:::=-:-=,---=-

ВО + Bj[A] + ... + Вр[А]Р К[А]Р - В 

(72) 

w е will now give some preliminary notes that will Ье necessary for the 
following discussions. 

(1) Let substance А interact with only some of the intermediates. А graph 
for the one-route mechanism is given in Fig. 7. 1п this mechanism substance 
А reacts only in the step8 enclo8ed between the node8 u and (j + 1). For 
definitene88, we а88ите that j > и. ТЬе fir8t 8tep in which А react8 i8 the 
step u and the last i8 the step j. It i8 evident that (j + 1 - и) )о р, which 

\ 
\ 
\ 
\ 
I 

"'- ----

/ bT:k/[A] 

\ / / ьJ-1...-_ - - - _ 
Xj+~-___ -"'-

bj Х} bJ-1 

Fig. 7. Graph of а one·route catalytic reaction. 
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indicates that substance А сап react with not all the intermediates localized 
between the nodes х and х .. Let us represent the number ofindices for which 
х. interacts with А ~s 1. J 

, (П) For а general proof we will analyze the route all steps of which are 
reversible. If воте step is irreversible, the weights of the spanning trees 
containing an inverse reaction, must Ье treated as zero. 

Under assumptions (1) and (П), the relationship 

is valid. 

i) I spanning trees containing [A]i 

Во + B1[A] + ... + Вр[А)Р 

(73) 

Here the summation is performed with respect to those values of i for 
which X

i 
interacts with А; D(~_l) is the sum of the weights for all spanning 

trees containing an inverse reaction of the (i - l)th step. The validity of ечп. 
(73) сап Ье proved Ьу using the fact that the summation in the right-hand 
side exhibits the appearance ofthe factor (р - k) before every spanning tree 
containing [A]k. We omit а strict mathematical proof since it is cumbersome 
and will write а general formula for the observed order of the reversible 
n-step reaction taking into account eqns. (72) and (73) 

JlnW 
т = 
А Jln[A] 

(74) 

where W- = В- / L D is the rate of the inverse reaction and W = (К[А)Р 

- В - )/L D is the t~t~l reaction rate. 
х х 

Equation (74) has an interesting physicochemical sense. It appears that 
the observed order is controlled Ьу three components. 

(1) The вит of steady-state coverages of intermediates reacting with А. 
(2) The вит of the values for Dii-l)/LхDх , every summand of which is the 

ratio of the вит of the spanning trees weight containing an inverse reaction 
of the (i - l)th step, to the вит of weight for all spanning trees of the 
reaction graph. The presence of an inverse reaction involving the par­
ticipation of the intermediate Х• reduces its steady-state coverage. The 
summation is performed with respect to аН iEI. The value D(i-l)/LхDх i5 
determined ав а "portion" of the inverse reaction for the (i - l)th step. In а 
similar way the "portion" for the direct reaction in the ith step сап Ье 
determined. 

(3) Reaction reversibility as а whole. It is characterized Ьу the value 
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where K eq is the equilibrium constant of the brutto-reaction, ~ and l' are the 
concentration vectors for the initial substances and products, respectively, 
and f+(Zi) and [-(1') are functions for the direct and inverse "natural" 
brutto-reaction, respectively. 

Thus the observed order is "three-step" and is controlled Ьу the sum of 
intermediates, the reversibility оЕ the previous steps и, and finally Ьу the 
reaction reversibility as а whole. 

Let us give, without proof, the equations 

(75) 

i.e. the sum оЕ reaction portions involving the participation of the ith 
intermediate is equal to the concentrations of аН the other intermediates 
and 

n n 

I D i+ + I Di- = (n - 1) I Dx (76) 
i=l i=l 

Assuming that substance А reacts only in one step and applying eqns. (75) 
and (76), we obtain 

D+ W-
--'- = 1 - тА + IDx W 

If the order for the reaction rate is found according to the product Б, we сап 
also determine the contribution оЕ the inverse reaction for the (i - l)th step 

дi-l) = 1 _ т _ W+ 
IDx в W 

Here тв is the reaction rate order with respect to substance Б [Б par­
ticipates only in the inverse reaction of the (i - l)th step]. 

In the case when the initial substance А takes part in the direct reaction 
ofthe ith step and the product Б reacts in the inverse reaction ofthe (i -l)th 
step, the steady-state coverage will Ье determined as Х; = тА + тв. 

Various particular cases сап Ье easily obtained from eqn. (74). If sub­
stance А reacts only in one ith step and at least one step is irreversible, we 
obtain 
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If the step (i - 1) is irreversible, we have 

(77) 

It must Ье noted that an attempt to find а relationship between kinetic 
orders and surface coverages was made as early as 1958 [45]. Here the 
exponents for the kinetic equations W = К[А]m[вг were interpreted as 

, ()(t m=m---
()(А8А 

where т' is the number ofparticles of А entering into the activated complex, 
()(А and ()(t are the amounts of surface sites occupied Ьу the substance А and 
the activated complex, respectively, and 8 А is the surface coverage Ьу the 
substance А. It is evident that if т' = ()(А = ()(t = 1, then т = 1 - 8 А. 

Relationship (77) was given Ьу Sokolovskii [46] for the irreversible two­
step mechanism 

(1) А + Z ~ AZ 

(2) AZ + В ~ АВ + Z 

But the role of eqn. (77) for interpreting the kinetic relationship and, in 
particular, their relation with surface coverage was first shown clearly Ьу 
Golodets [47]. 

If the one-route mechanism is а combination of irreversible steps and the 
substance А participates in several of these steps, then 

where the Х; values are the concentrations of the ith intermediates with 
which А reacts. This relationship сап easily Ье obtained from eqn. (74) Ьу 
taking into account the irreversibility of аll steps. 

Let us consider а probable value for the observed order. For the irrever­
sible case it сап never Ье greater than unity irrespective of the number of 
steps in which the reactant takes part. Reversibility of individual steps 
increases the observed order but its value will not Ье greater thanp (i.e. the 
number of steps involving the participation of the reactant А), if the reaction 
is irreversible as а whole, i.e. W- = о. This conclusion follows directly from 
eqns. (74) and (75). But if the total reaction is reversible, the observed order 
сап, in principle, Ье arbitrarily high. It must Ье noted, however, that the 
value JW(J[A] cannot Ье determined according to Jln W(Jln[A] near equi­
librium since W+ ~ W- and (W- jW) -> 00. 

Examples. 
(1) Let us analyze the observed rate orders for hydrogen oxidation оп 

Group IV transition metal oxides. For the steps of the detailed mechanism 
in accordance with refs. 38, 48, and 49, see eqn. (53); the appropriate kinetic 
equation is given Ьу eqn. (54). 

From eqn. (74) we obtain 
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( 
aln W ) = [(ZObl + [ZOZ] + п; 

aln[H2] [02J.[H,O],T~const. :Е 

k; k4+ k5+ (k: + kз+ )[Н2 ][02] k: k: kt ki [Н2 ][02][Н2 О] 
~~~~~--~~~~ + ~~~~~~~~~~ 

:Е :Е 

( 
alnW) = [ZZ] + п;: 

aln[02] [H,J.[H,O],T~const. :Е 

k: k; ki k: [Н2 ]2 k; k; ki k;: [Н2 ]2[Н2 О] 
~~~~~~ + ~~~~~~~~~ 

:Е :Е 

( 
alnW ) 

aln[H20] [02],[H,],T~const. 

- (k: k; ki k;: [Н2 ]2[Н2 О] + k: k: kt ki [Н2 ][02][Н2 О]) 
:Е 

The fact that тн,о # О accounts for the effect of water observed experiment­
аВу. It сап easily Ье shown that 

тн, + то, + тн,о = [(ZO)z] + [ZOZ] + [ZZ] 

i.e. it equals the total concentration ofthe water-free species. At high values 
of kt [02] under the assumption that k: = ki, k; = k: , and ki = k;: 
(which is similar to ref. 23) we obtain 

тн, = 2 + 1 
ImH,ol (Ьн,оРн,о) 

whence а value for the adsorption coefficient сап Ье determined 

ь _ ki 
н,о - k; 

(ТЬе available literature data for this coefficient are scarce and inaccurate.) 
This problem was analyzed more fuHy in ref. 49. 

(2) Let us consider а catalytic reaction of NO with СО оп silver. Its 
detailed mechanism in accordance with ref. 39 is given Ьу eqn. (55) and the 
appropriate kinetic equation is eqn. (56). It сап readily Ье shown that 

тсо = 
alnW 

aln[CO] 

alnW 
aln[NO] 

[ZO] 

[Z] + [ZNO] + ki kj [СО] 
:Е 

According to the experimental data, the value of тсо is close to unity. 
Since тсо = [ZO], it сап Ье suggested that in this temperature range the 
surface is practically completely covered Ьу oxygen and step (3) is rate-deter­
mining. For more detail, see ref. 39. 
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ТЬив examples (1) and (2) enable ив to affirm that the observed rate order 
or а combination of the observed orders сап Ье used to estimate steady-state 
concentrations for intermediates. 

AIso useful сап Ье the ratio of observed orders with respect to various 
substances. Ттв value is the ratio of surface coverage and its advantage is 
that it does not contain а cumbersome denominator LxDx. In this вепве this 
characteristics for а single-route reaction is similar to the known charac­
teristics of multi-route reactions, i.e. selectivity. 

In principle, the observed order:s сап Ье used to discriminate between 
воте mechanisms. For example, for the всЬете 

(1) А + В + Z -> ABZ 

(2) ABZ -> АВ + Z 

we obtain тА = тв = [Z]; whereas for the mechanism 

(1) А + Z -> AZ 

(2) AZ + В -> АВ + Z 

we have тА = [Z], тв = [AZ], тА + тв = 1. (Н is evident that these 
всЬетев are indistinguishable only at тА = тв = 0.5.) Having the estimate 
for the surface coverage obtained from the observed order, we сап easily 
estimate reaction constants. 

Now let ив present воте relationships for the irreversible two-step те­
chanism 

(1) А + Z -> AZ 

(2) AZ -> В + Z 

JlnW 
Jln[A] 

Jln[Z] 
Jln[A] 

[Z] 

J2 lnW 
J(ln[A])2 

[AZ] = 1 - [Z] 

ТЬив we have 

Jln W J2ln W 
Jln[A] + J(ln[A])2 1 

2.6.2 Observed activation energy 

Let ив write ап expression for the steady-state rate in the form 

W = 
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where B dir,; is the weight of the spanning tree for the node i containing only 
direct reaction steps, B inv,; is the weight of the spanning tree for the node i 
containing only inverse reactions, and B mix,; is the sum ofthe weights for the 
"mixed" spanning trees of the ith node containing both direct and inverse 
reactions. 

Let иБ also give а formula for the steady-state concentration of the ith 
in termedia te 

[Х;] = Bdir,; + дпу,; + Brpix,i 

I Bdir,; + I Binv,; + I Bmix'; 
(79) 

i /,' 

Let us show that, for а one-route linear mechanism assuming that the rate 
constant ЬаБ the Arrhenius dependence оп temperature, (i.e, k/ = ktj ехр( -
Е/ (RT), the equation 

JlnW 
д( -l/RT) 

(80) 

is valid where Е/ and Ei- are the activation energies for the direct and 
inverse reactions of the ith step, respectively, and (- ДНеq ) = 

('L;E;+ - L;E;-) is the thermal effect of the "natural" brutto-reaction. For 
the derivation of eqn. (80) we will write Jln W(J( - l(RT) using eqn, (78) as 

JlnW (~E;+) 1) Ь;+ - (~Ei-) 1) Ь;-
J(-l/RT) П Ь;+ - П Ь;-

i i 

- (~Bdir,{~ Е/) + ~ Binv,;(~ Е/) + 

+ ~ ~ [~l (Е/ + :t: Ej - ) Д Ь/ Д bj- ) J 
I (Bdir,; + Binv,; + Bmix,;) 

; 

After reducing this expression to а common denominator, we сап readily 
extractL;x;E; and (L;E;+ - L;En П;Ь;-((П;Ь;+ - П;Ьi), It сап Ье shown that 
the rest ofthe summands are reduced to the form L; (Е;+ - E(i-l)D(i-l)(Lх DJ, 
Due to the cumbersome calculations, we will not present а strict proof of the 
validity of eqn. (80), 

Let us consider the parameter дЕ; = Ei+ - E(i-l) in eqn. (80). It is the 
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energyparameterfor the ith intermediate, i.e. the difference between activa­
tion energies of two reactions involving the participation of the same inter­
mediate. It сап easily Ье shown that L-i(дЕJ = L-i ( - ДНР . .) = (- ДНР )' ТЬе 
value Dii-1) was determined above as the contribution ofthe inverse reaction 
for the (i - l)th step. 

Ву analogy with eqn. (74), let us also consider various particular cases for 
eqn. (80). If at least one step is irreversible, the equality 

n+1 

L: (Ei+ ~ E(i-1»D(i-1) 
L: XiEi+ + -,-i~--,2=--__ =---___ _ 

L: пх 

will Ье valid. If дЕ• ~ О, the corresponding terms disappear. If аll steps are 
irreversible, we obtain 

E obs = L: XiEi+ 
i 

Note that the latter relationship in its particular formulation for а two­
step mechanism was reported previously Ьу П'сhепkо and Golodets [50]. 

ТЬе expression for the observed activation energy eqn. (80), is similar to 
that for the observed order, eqn. (74), in its "three-step" character. Here 
there are also three summands that account for the contribution of inter­
mediates, individual reversible steps, and the total reversibility of the reac­
tion. 

It is interesting that eqn. (80) сап Ье written in а form that is similar to 
the Bronsted equation 

Еоьэ = А - В(- днр ) 

where А is а complex function of the composition of the gas mixture and В 
is total reaction reversibility 

w-
в = w+ - w 

1 

А value for the reversibility В сап easily Ье found if the equilibrium con­
stant of the brutto-reaction and the gas phase composition are known. 

It is possible that this relationship between the thermal effect of the 
complex reaction and its observed activation energy is responsible for the 
fact that the Bronsted equation (or its analogs) appear to Ье valid for some 
elementary reactions as well. А question arises whether the observed activa­
tion energy сап Ье higher than the activation energy of elementary steps. 

If аН steps are irreversible than in accordance with eqn. (80), Еоьэ cannot 
Ье higher than the activation energy of the individual reactions. If only part 
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ofthe steps is reversible, then ЕОЬБ сап Ье greater than the maximum activa­
tion energy Ei+ , but cannot Ье higher than 'f.iEi+ . And finaHy, if аН the steps 
are reversible, then ЕОЬБ сап, in principle, Ье arbitrarily high. As in the case 
of the observed reaction order, it must Ье taken into consideration that the 
value Jln WjJ( -ljRТ) cannot Ье used to evaluate JWjJT near equilibrium. 

Other conditions being equal, ап increase in ЕОЬБ will Ье promoted Ьу the 
endothermicity of the brutto-reaction: 'f.iE/ > 'f.iEi-, whereas its decrease 
will Ье accounted [от Ьу the exothermicity of the brutto-reaction: 
'f.iEi- > 'f.;E/. 

Example. 
W е shall consider hydrogen oxidation оп Group IV transition metal 

oxides [see eqn. (53) for the mechanism] [38,48,49]. 
Under the assumption that k: = k:, ki = k:, k:; = k:;, and high values 

for k 5 [02]' the steady-state kinetic equation (54) will take the form 

k: ki [Н2 ] 

Ll 
W 

where 

Ll = 2knH2] + ki(2 + Ьн20 [Н2 О]) 

Taking into account the simplifications made, we сап write 

ЕОЬБ = mн2Е1 + (1 - mн,)Е2 + !mH20!QH2o 

where Е1 and Е2 are the activation energies [от reactions (1) and (2), respec­
tively, and QH

2
0 is the heat of adsorption of water. 

With water eliminated in the cycle, mН2 = 1 and (1 - mн,) ::::; !mн,о! ::::; О, 
we obtain ЕОЬБ = Е1 , i.e. the observed activation energy is the same as the 
activation energy of reaction (1). If we know the observed orders (mН2 and 
mн2о), Еоьв> Е1 (from the experiment at mН2 = 1), and also QH,O (it was deter­
mined in ref. 49), we сап find Е2 • 

Thus the known values for the observed reaction rate orders and the 
observed activation energy сап Ье useful [от the determination ofthe activa­
tion energies for individuaI reactions. 

Let us consider the analogy between the expressions for the observed rate 
order and the observed activation energy. In our opinion, this analogy is 
essential. It is interesting that the observed values are the derivatives of the 
complex reaction rate and they prove to Ье equal to the sum of the three 
values containing the following three characteristics of the graph 

(1) the concentrations ofintermediates corresponding to the graph nodes; 
(2) the "portion" of the reactions corresponding to the graph arcs, and 
(3) the totaI reversibility of the complex reaction corresponding to the 

total conversion cycle. 
It is possible that this kind of"differentiation оп the graph" will aIso take 

place in more complicated cases than the опе considered. 
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Оп the basis of the general formula (46), we сап classify the dependences 
of the reaction rate оп the three parameters partial pressure of reactants, 
temperature, and the total pressure. For such investigations, see Chap. 3, 
Sect. 3 of ref. 7. 

3. Graphs for the analysis of the number of independent 
parameters 

3.1 SIMPLE EXAMPLES 

The obtained steady-state kinetic equations (46) are the kinetic model 
required for both studies of the process and calculations of chemical reac­
tors. The parameters of eqns. (46) are determined оп the basis of experimen­
tal data. It is this problem that is difficult. The fact is that, in the general 
case, eqns. (46) are fractions whose numerator and denominator are the 
polynomials with respect to the concentrations of observed substances (соп­
centration polynomials). Coefficients of these polynomials сап Ье cumber­
some complexes of the initial model parameters. These complexes сап also 
Ье related. 

Let us illustrate this Ьу some examples. 
(А) Let us take the above isomerization mechanism 

(1) А + Z --> AZ; 

(2) AZ --> BZ 

(3) BZ --> В + Z 

(irreversible case). The kinetic equation will take the form [see eqn. (17)] 

W = 
k1 k2 kз [А] 

k1 [A](k 2 + kз ) + k2 kз 

k1[A] 

The initial model contains three reactions, but ( + 2) and ( + 3) are of the same 
type with the weights k2 and kз , respectively. Оп the basis of the isothermal 
experiment, the rate constants for reactions ( + 2) and ( + 3) cannot Ье deter­
mined separately. Among the three parameters of а given simple reaction we 
сап find only two. Опе is k1 and the other is complex, К = (k2 + kз )j(k2 kз ), 
which does not оЬеу the ordinary Arrhenius equation k = koe-Е/RТ(поп­
Arrhenius complex). But it is possible that the presence of non-Arrhenius 
parameters Ьу themselves will not present ап obstacle for the determination 
ofthe entire reaction rate constants according to the isothermal experimen­
tal data. It is only important that the number of Arrhenius complexes in the 
denominator of the concentration polynomial is not 16wer than that of the 
parameters to Ье determined. 
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(В) Let ив consider а more complex example of а catalytic conversion of 
methane [51] 

(1) СН4 + Z ~ CH2 Z + Н2 

(2) HzO + CH2 Z ~ ZCHOH + Н2 

(3) ZCHOH ~ ZCO + Hz 

(4) ZCO ~ Z + СО 

with the brutto-equation 

СН4 + Hz О = СО + 3 Н2 

The equilibrium step 

Z + Hz О ~ ZO + Hz 

resulting in the 'Ъапgiпg" node [ZO], will not Ье taken into consideration. 
The kinetic equation will take the form 

(ki k; k; k: [СН4][Н2О] - kj k;; k:; k-; [СО][Нz]З) 

I 
w 

where 

I = K1[HzO] + K z[CH 4 ] + Кз[Нz ] + К4 [СН4 ][Н2 О] + 

+ КБ [СО][Н2 ] + Кб[НzО][СО] + К7 [СН4 ][Н2 ] + К8 [Н2 ]2 + 

+ Кэ [СО][Н2 ]Z + КlO [СН4 ][Н2 ]2 + K ll [H20][Hz][CO] + 

+ K12[CH4][H20][H2] + К1з [Н2 ]З 

КБ = k; k-; kj, 

k: kj k;;, 

Kll = k; k:; k-; , K 1Z = ki k; k:; , К1з = kj k;; k:; 

(81) 

If the mechanism had not contained reactions of the вате type, the 
concentration polynomial L would have had 42 = 16 terms among which we 
would have found по similar опев. Coefficients for the polynomial terms 
would have Ьееп products of the reaction rate constants and would have 
obeyed the Arrhenius equation. But in the given саве we have two direct 
reactions of the вате type, (+ 3) and ( + 4), taking place without the par­
ticipation of gas-phase substances and three inverse reactions of the вате 
type, (- 1), (- 2) and (- 3), involving the participation of the gas-phase 
hydrogen. Therefore the polynomial L Ьав 13 terms. Among these terms two 
have coefficients that do not satisfy the Arrhenius equation. Among the 
remaining 11 terms we сап identify 8 independent опев, which corresponds 
to the number ofreactions. For example, ifwe сЬоове Кз , К5 , Кб, К7 , Кв, КlO , 
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Кп , and K 12 ав independent, the rest of the Arrhenius complexes сап Ье 
represented ав 

КзКs К _ КЗК7 
К1 =-К' 2- К' 

5 S 

Non-Arrhenius complexes сап Ье determined using the relationships 

(82) 

Note that 

К± (Кз К5 Кв К7 КВ K 10 K ll K 12 )1/З 

КЗКSК7К12 
К± 

К5 KsK10 Кп 
К- = К± = kj k; k:; k; 

Thus the complexes in the numerator are determined оп the basis of those 
in the denominator. They proved to Ье dependent оп the latter and bear по 
new information. Reaction parameters are found according to the formulas 

К+ + _ К+ К-

ki K
1

' k2 - К2 ' k; = К1з ' 

k - - К1О k
4
+ = К1 

2 - ki k:;' k; k;' 

Though the reaction mechanism here is more complex than in the previous 
example and the kinetic equation also has non-Arrhenius parameters, it is 
possible to determine аН the reaction rate constants. The fact is that there 
is а sufficient quantity of the Arrhenius complexes. In this саве it appears 
that аН "mixed" complexes, i.e. complexes containing parameters of both 
direct and inverse reactions, are independent. Here these complexes evident­
ly corresponding to the mixed spanning trees of the graph are coefficients for 
various concentration characteristics. It is this fact that permitted ив to 
obtain the convenient eqns. (82). 

3.2 REASONS FOR DEPENDENCE AND ТНЕ IMPOSSIВILITY OF DETERMINING 
PARAMETERS 

А weH-kпоwп dependence of the equilibrium constants appears in the 
саве in which воте step is а linear combination of the others. For example, 
if we have three steps (1) А -.=t В, (2) В -.=t С, and (3) А -.=t С, where step (3) 
is а linear combination of the other two, its equilibrium constant satisfies 
References рр. 257-258 
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the relationship Кеq,З = Keq,j Keq,z. Therefore the reaction rate constants also 
appear to Ье dependent 

k: kj+ kz+ 

k:; = k1 k;; 

These dependences must always Ье taken into account in the solution of 
inverse kinetic problems. For example, when finding constants for eqns. (16) 
and (81) we must take into account that 

and 

Пki+ = к 
Пk; eq' 

where кеч is the equilibrium constant ofthe corresponding brutto-reactions. 
А different dependence ofthe parameters in kinetic equations was report­

ed Ьу Horiuti [11] who suggested а method for determining the number of 
independent parameters. The method consists ofthe numerical estimation of 
а rank for some Jacobian matrix. (It is known that this procedure сап result 
in а considerable error.) Later, these problems were analyzed in detail Ьу 
Spivak and Gorskii [52, 53] but they did not aim at the elucidation of the 
physico-chemical reasons for the appearance of dependent and undetermin­
аЫе parameters. It is this aspect that we will discuss below. 

W е have already noted that а denominator of the steady-state kinetic 
equation is the concentration polynomial L. Each summand of this polyno­
mial is the spanning tree weight and corresponds to some path for the 
formation of а chosen intermediate from the rest. Among the reaction paths 
there сап Ье dependent paths due to the reversibility of the suffi.ciently large 
number of steps. 

For example, in the one-route mechanism аН n steps are irreversible and 
there are n independent spanning trees. If one step is reversible [the number 
ofreactions amounts to (n + 1)], there are (n + 1) spanning trees and аН of 
them are independent. But if the mechanism has two reversible steps [the 
number of reactions is (n + 2)], it сап readily Ье shown that the number of 
spanning trees amounts to (n + 3), i.e. their number is larger than the 
number of reactions and one spanning tree is dependent. These dependences 
must Ье taken into account. In the general case, when аН steps of the 
one-route mechanism are reversible, the polynomial L contains nz sum­
mands, i.e. weights ofthe spanning trees Bk,i formed Ьу various combinations 
of 2n with respect to (n - 1) co-factors Ь/, and they are determined using 
the formulae 

i-1 k-1 

B k,; = П Ь/ П bj- 1,2, ... , n, 
}=k+l j=l (83) 

i-l 

П Ь/ = 1, b/;+j = Ь/ j 1,2, ... 
j= 1 
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ТЬе dimension of the basis for the weights of spanning trees is 2n; аН the 
rest of n2 - 2n spanning trees will Ье dependent. For the spanning tree 
weights B k•i these dependences сап Ье expressed as 

k, i, = 1, 2, ... , n (84) 

where 

(

" )11(n-l) 

П В 
!OJ 

'~I 

and 

_ _ (" )11(n-l) 
В - П Bj_J.j 

'~I 

since, in accordance with the spanning tree definition, we Ьауе the relation­
ships 

Ь+ 
В+ 

J В J.J 
(85) 

В-
Ь-:- = J 

Bj_l,j 

Here the weights of direct, Bj,j, and inverse, Bj_l,j, spanning trees are chosen 
to Ье independent. АН mixed spanning trees are expressed through them 
using eqns. (83). It is the dependence of the spanning trees that leads to the 
dependence of the concentration polynomial coefficients. After choosing апу 
2n independent polynomial terms to 2n independent spanning trees, we сап 
abstract summands corresponding to the dependent spanning trees. It must 
Ье noted that the chosen 2n independent spanning trees are not necessarily 
direct and inverse ones. For example, in the аЬоуе example (the catalytic 
conversion of methane) we Ьауе chosen 2n independent mixed spanning 
trees. 

ТЬе principal fact is that if we Ьауе 2n of апу independent summands, we 
сап easily determine parameters for the whole of reactions (whose number 
is 2n). In short, it is necessary that the number of independent summands 
will Ье equal to the number of reactions in the detailed mechanism. If this 
number is smaller, воте parameters cannot Ье determined. 

Let ив show воте reasons for the reduction in the number of independent 
summands. First, it is the structural peculiarities of а complex graph. ТЬе 
number of its spanning trees сап appear to Ье lower than that ofthe paramet­
ers. Second, а similar type ofthe kinetic law for individual reactions. ТЬеве 
two cases will Ье discussed in special sections. 

ТЬе analysis shows that the second саве is the most typical. А complex 
reaction mechanism often includes several reactions subjected to the same 
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kinetic law. For example, it сап involve the participation of the same 
gaseous substance or а reaction in which gaseous substances do not react at 
аН. The weights ofthese reactions are ofthe same type. Then the concentra­
tional polynomial of the denominator will have similar terms with factors 
that, in the general case, will Ье sums of the products of individual reaction 
constants. There are non-Arrhenius complexes. W е observed them in both 
the cases in Sect. 3.1. The only difference is that, in the second case, the 
number of Arrhenius complexes is greater than the number of reactions, 
whereas in the first it is lower. 

It is well-known that the difference of parameter values results in the 
indeterminacy of parameters. Rate limitation and the steady-state reaction 
rate will Ье dependent only оп the parameters of "slow" steps. But this case 
is beyond the scope of our discussion here. 

3.3 INDETERMINACY OF PARAMETERS AND GRAPH STRUCTURE 

Let us consider а complex catalytic reaction following а multi-route 
linear mechanism, аН steps of which are reversible. 

Note that every term ofthe concentration polynomial in the denominator 
of eqn. (46) is the spanning tree weight. Let us introduce а concept of 
"concentration characteristics" for а spanning tree* and define it as а 
product ofthe observed reactant concentrations participating in the totality 
ofreactions corresponding to а given spanning tree. Spanning trees with the 
same characteristics will Ье referred to as similar whereas those for which 
there are по similar characteristics will Ье called individual. 

It is evident that spanning trees are individual only in the case where the 
reaction weights are different. For example, the two-route mechanism 

(1) А + Z --> AZ 

(2) AZ + В --> АВ + Z 

(3) С + Z --> CZ 

(4) CZ + D --> CD + Z 

with different reaction weights ь: = ki СА, ь; = k; Св, ь; 
ь: = k: CD corresponds to the denominator in eqn. (46) 

I: = (k1+ k: )СА CD + (k; k;)Cв Се + (k; k: )СВ CD 

Here аН spanning trees are individual. 
But spanning trees сап also Ье individual when some weights are similar. 

For example, the two-route mechanism** 

* In what follows we will introduce а concept of а "spanning tree colour" adequately corres­
ponding to its concentration characteristics. 

** Refer to the mechanism of vinyl chloride synthesis, eqn. (24), with the kinetic eqn. (57). 



(1) А + Z -> AZ 

(2) AZ + В -> АВ + Z 

(3) В + Z -> BZ 

(4) BZ + А -> АВ + Z 

with the reaction weights Ь:; = ki Сл, ь; = k; Св, ь; 
ь: = k: Сл corresponds to the denominator of eqn. (46) 

I = (ki knCl + (k; knC~ + (k; knСл СВ 
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k; Св, and 

Here аП spanning trees are also individual though воте reaction weights 
are similar. It is evident that аП individual spanning trees are of the Arr­
henius type, and the similar spanning trees lead to the formation of поп­
Arrhenius complexes. Оп the basis of а steady-state kinetic experiment, the 
factors of the summands in the denominator of eqn. (46) are determined. 
ТЬеу differ in their concentration characteristics. 

ТЬе number of the summands in eqn. (46) will give the number of the 
parameters under determination. Factors ofthese summands are the product 
of the reaction rate coefficients (Arrhenius complexes) or the витв of these 
products (non-Arrhenius complexes). 

Let аН the spanning trees Ье individual. ТЬеп аll factors in the denomina­
tor of eqn. (46) are the Arrhenius complexes K i • 

Here we will have the linear equations 

ln bi1 + ln Ь;2 + ... + ln Ь;n = ln К; = 1, 2, ... , A(G) (86) 

where A(G) is the number of аll directed spanning trees in the reaction graph 
G. 

From eqns. (86) опе must сЬоове а set of linearly independent equations 
and Ьу using known methods find the reaction rate constants. 

ТЬе analysis, however, shows that, even when аН the factors in the 
denominator of eqn. (46) are Arrhenius factors, reaction rate constants 
cannot always Ье determined оп their basis. ТЬе analysis carried out using 
graph theory methods shows that it is possible only for definite types of 
mechanisms, namely for those that correspond to (а) Hamiltonian or (Ь) 
strong bi-connected graphs (the latter term is due to Evstigneev) [54]. 

Let us explain the content and the physico-chemical sense of the above 
terms. 

(а) Hamiltonian graphs are those containing а cycle passing through аН 
their nodes опсе only. Applied to the complex reaction mechanisms, these 
graphs are interpreted ав foHows: there exists а соттоп cycle of conver­
sions (steps) uniting аП intermediates. Among Hamiltonian graphs there is 
а one-route (Fig. 1) and also воте two-route [Figs. 5(е) and (6)] mechanisms. 
А graph represented in Fig. 8(а) and also that of а sufficiently complex 
enzyme reaction taking place in the presence of two independent inhibitors 
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5r-------,6 2 

41------17 4 з 

з t-------i 8 

21------19 
8 

'-------' 10 
5 6 

(а) (ь) 

Fig. 8. Hamiltonian graphs. (а) Multi·route reaction; (Ь) complex enzyme reactions in the 
presence of two independent inhibitors. 

[Fig. 4.8(Ь), see ref. 9, р.86] are the Hamiltonian graphs. The Hamiltonian 
cycle 1-2-3-4-5--6-7-8-1 is marked Ьу arrows. 

Non-Hamiltonian graphs of composite mechanisms are widespread, e.g. 
the graphs ofvinyl chloride synthesis and n-hexane conversion [Fig. 3(d) and 
(f) and Fig. 5(с) and (d)]. The simplest non-Hamiltonian graph is that of the 
two-step mechanism supplemented Ьу а 'Ъuffег" step yielding а non-reactive 
substance. For the mechanism 

(1) А + Z f:± AZ + С 

(2) AZ + В f:± D + Z 

(3) Z + Е f:± ZE 

the corresponding kinetic equation is 

W= W~~~-~~~~~ 
(k: СА + k; СВ + k j Се + k2 ~)kз + (k; СВ + k j Ce)k; СЕ 

(87) 

At k1 = k:; = О 

W = k: k; СА CBk:; 
(k: СА + k; Св)kз + k; СВ • k; СЕ 

(88) 

The denominator of eqn. (88) contains three terms whereas the number of 
rate constants amounts to four. One ofthe constants cannot Ье determined. 

(Ь) Strong bi-connected graph. In non-strict terminology this is а graph 
without cutpoints, i.e. those graph points whose elimination together with 
their respective arcs tдшsfогms this graph into ап unconnected graph. (Ав 
far as the graph connectivity is concerned, refer to Sect. 2.2 and ref. 34). In 
this case conversion cycles will not Ье connected either Ьу а common step 
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or а соттоп substance. Cutpoints ofvarious graphs are represented in Fig. 
5(Ь) (point Х) and (d) (Х and У). 

In this саве not аН the parameters сап Ье determined. An estimate for the 
number of these indeterminable parameters is obtained ав follows. The 
number is equal to the number of graph cutpoints. (А proof of this results 
from the Giles theorem [55].) Thus, for the саве iHustrated in Fig. 5(Ь), the 
factors in the denominator of eqn. (46) being known, one cannot determine 
one constant, whereas in the саве shown in Fig. 5(d) two constants cannot 
Ье found. This estimate will decrease-ifthe parameters are determined оп the 
basis of the coefficients not only from the denominator but also from the 
numerator. It сап Ье done since we сап also apply some expressions for the 
rates of variation of substances (in this саве reaction cycles differ in their 
brutto-equations ). 

Ав an example, let ив describe а two-route mechanism with different 
brutto-equations. 

(1) А + Z -> AZ 

(2) AZ + В -> АВ + Z 

(3) С + Z -> CZ 

(4) CZ + D -> CD + Z 

This mechanism corresponds to the kinetic equations 

KjCACBCD 

K2 CC CD CB WCD = 
КЗСА ~ + К4 СВ СС + КБСВСD 

where, ав in the previous example, we have 

К! ki k; k:, К2 = k; k; k:, КЗ ki k:, 

К4 k; k;, and Кб = k; k: 

Whence 

ki 
К! k; 

К2 k; 
К4 

k: Кб' К' 
= К2 Кб' = 

б 

(89) 

(90) 

КЗК 
К! б 

А final conclusion сап Ье formulated ав follows. The number of the 
parameters that cannot Ье determined from the steady-state kinetic data is 
the вате ав the number of steps that do not enter into the cycles. The вошсе 
ofindeterminacy of"the parameters implies ''buffer'' sequences [Fig. 3(Ь)] and 
"bridges" between the cycles [Fig. 3(d)]. Note that this estimate refers only 
to the graph structure when individual reaction weights have not been 
specified. 
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3.4 ТНЕ NUMBER OF DETERMINABLE PARAMETERS AND GRAPH COLOUR 

The situation Ьесотев radicaIly different when the weights of individual 
reactions are of the вате type, ав happens in most савев. Some examples 
have Ьееп given in Sect. 3.1. 

One-type weights of individual reactions lead to the fact that воте врап­
ning trees will have the вате concentration characteristic (вее Sect. 3.3) and 
these spanning trees will Ье similar. 

Graph theory often app1ies а concept of"graph co1our". We will introduce 
this concept ав follows. А set ofvbserved substances reacting with inter­
mediates according to а detailed reaction mechanism will Ье associated with 
а set of co1ours !Ха, !Хl, ••• , !Хm , where !Ха is colour1ess and corresponds to the 
саве when по substance reacts with ап intermediate. Then each arc will Ье 
co1oured to the co1our of the observed substance taking part in the reaction. 
Every spanning tree will also Ье characterized Ьу а set of its arc co1ours. If 
the spanning tree inc1udes воте arcs ofthe вате colour, опе сап ta1k about 
this colour intensity in а given spanning tree. Colour intensity (the number 
of colour repetitions) is equa1 to the number of molecules of the substances 
participating in the reactions corresponding to the spanning tree or to the 
number of spanning tree arcs (reactions) in which this substance is present. 
Then the concentration characteristics will Ье represented Ьу the vector (ra, 
r1 , ... , r m)Т' E1ements of this vector, name1y intensities, are the numbers of 
colour arc !Х; in the spanning tree Т. This characteristic corresponds identic­
аПу to the concentration characteristic introduced previous1y in Sect. 3.3. 

Thus the problem of determining spanning trees with different concentra­
tion characteristics reduces to the determination of the number of different­
ly coloured spanning trees. 

For its solution, let ив introduce а concept of the graph of spanning trees 
ф(G) for а given graph G. Let Т! and Т2 Ье two spanning trees of the graph 
G. We will вау that Т2 is coup1ed with Т1 if Т2 is obtained from Т! Ьу removing 
опе ofthe arcs и and Ьу adding ап arc и, i.e. Т2 = (Т1 \{u}Щи}). 
А graph of the spanning trees ф(G) of the graph G is called ап indirected 

graph whose nodes correspond to the spanning trees ofthe graph G in which 
two points are adjacent if, and on1y if, their respective spanning trees are 
coupled. 

Let ив present а theorem from ref. 56. If ф(G) has по 1ess than three nodes, 
then апу edge ofthe graph ф(G) сап Ьесоте а part ofthe Hamiltonian cycle 
in ф(G). For our purposes, this property is made concrete in the theorem 
proved in ref. 57. 

Theorem. Whatever two spanning trees Т1 and Т2 of the graph with k 
соттоп arcs тау Ье, there always exists а sequence of (n - k) pairwise 
coupled spanning trees Т! = T

i" 
Ti2 , ••• , Tin _

k 
= Т2 , where n is the number 

of nodes in the graph G. 
In accordance with this theorem опе сап make the following corollaries. 
(1) Ifthe graph G contains two spanning trees one 6fwhich consists ofthe 
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arcs coloured to the colour r;, [the concentration characteristic is of the form 
(n - 1, О, ... , О)] and the other has arcs with the colour f3 [the concentration 
characteristic is of the form (О, n - 1, О, ... , О)], it will also have spanning 
trees with аll intermediate concentration characteristics, i.e. with the con­
centration characteristics of the form 

(n - 2, 1, ... , О) (n - 3,2, ... , О), ... , (1, n - 2, О, ... ) (91) 

(2) If the graph G contains three spanning trees with the concentration 
characteristics (n - 1, О, О, ... ), (О, n - 1, О, ... ), (О, О, n - 1, ... ), it will also 
have spanning trees with characteristics of the intermediate types 

(n - 1, О, О, ... ) 

(n - 2, 1, О, ... ) (n - 2, О, 1, ... ) 

(1, n - 2, О, ... )(1, n - 3, 1, ... ) ... (1, 1, n - 3, ... )(1, О, n - 2, ... ) 

(О, n - 1, О, ... )(0, n - 2, 1, ... ) ... (О, 1, n - 2, ... )(0, О, n - 1, ... ) 

(92) 

Further generalizations are evident. 
It is clear that corollary (1) implies that the graph G contains n groups 

with different colours (concentration characteristics). Corollary (2) suggests 
that the graph G comprises n(n + 1)/2 of these groups. But if one assumes 
that the graph G contains four similar-coloured spanning trees, the number 
ofits spanning trees will Ье equal to n(n + 1)(n + 2)/6. This value is greater 
than the number of arcs in the complete symmetrically directed graph. W е 
believe, however, that this case is extremely rare. 

In accordance with corollaries (1) and (2), one сап readily find а method 
to calculate the number of similar spanning trees if they have two, three or 
four colours. In the graph G, let по Ье the greatest number of the r;,-coloured 
arcs that сап Ье met in one spanning tree. Then only those spanning trees 
that contain О, 1, 2, ... , n arcs having the colour r;, are admissible. The 
colours of these spanning trees will Ье obtained if, in eqn. (91), we eliminate 
the right- and left-hand characteristics with the respective components 
higher than n" or пр. It сап Ье seen from eqn. (92) that, in the саве of three 
colours, these characteristics fill а regular triangle. It is sufficient to elimi­
nate the sections which are also triangular that correspond to the charac­
teristies of the spanning trees with the non-admissible number of the arcs 
having а given eolour. In the ease of four colours, the characteristies of 
spanning trees fill а regular tetrahedron from which it suffices to remove 
sections that are also tetrahedral and are adjacent to the graph nodes. 

То find spanning trees with the greatest number of the similar-coloured 
ares, it suffices to give the arcs of the colour required (e.g. а) воте low 
negative weight (- 8) and the rest ofthe arcs unit weight and to apply to the 
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graph G an algorithm for the construction of а directed spanning tree having 
the lowest weight [58]. It is evident that the application of such procedures 
is efficient only for complex graphs. 

Example. А detailed mechanism for one of the reactions catalyzed Ьу 
аmiпоасуl-tRNА-sупthеtаsе [59] is represented Ьу the set of steps 

А Т R Т А 
Е... ~ ЕА. ~ ЕАТ --. ЕР. ~ EPR. ~ EPRT. ~ EPRTA 

product product 

(93) 

where Е is enzyme, А is adenosine triphosphate, Т is tryptophan and R is 
tRNA (transporting ribonucleic acid). 
А coloured graph for this mechanism is represented in Fig. 9. The colours 

а, {З, д, and у correspond to the substances А, Т, R and the "colourless" 
substance (i.e. to the саве when the observed substance does not take part 
in the reaction with an intermediate). А spanning tree colour is represented 
ав four numerals (r., rp, ro, and ry). Each of these numerals indicates the 
number of arcs having the corresponding colours. Using the above pro­
cedure, let ив represent spanning trees having а variety of colours with the 
help oftwo regular triangles for the two савев по = О and по = 1, respective­
ly (Fig. 10). 

Regular triangles eliminate the sets ofnumerals that do not satisfy limita­
tions for the number of arcs having а specified colour. Then we will have 17 
sets of different colours. But not all these sets correspond to real graph 
spanning trees. After testing, it appears that six sets correspond to the 
forbidden configurations. 

Finally, the denominator has 11 sets of spanning trees, whereas the initial 
mechanism contains 13 rate coefficients. 

This algorithm permits ив to determine the number of parameters "manu­
ally" оп the basis of the reaction graph without derivation of а steady-state 
kinetic equation. For large-sized and complex-structure graphs it is recom­
mended that the corresponding sets of spanning trees are selected using 
computations [60]. 

cl i3 б i3 cl 

~ 
у у 

Fig. 9. Graph of reaction catalyzed Ьу аmiпоасуl-tRNА-synthеtаsе. 



(6,0,0,0) 

(2,2,2,0) (2,1,3,0) (2,0,4,0) 

. (1,2,3,0) (1,1,4,0) (1,0,5,0) ~ 

(0,6,0,0) (0,5,1,0) (0,4,2,0) (0,3,3,0) (0,2,4,0) (0,1,5,0) ~" 

(2,2,1,1) (2,1,2,1) (2,0,3,1) 

(1,2,2,1) (1,1,3,1) (1,0,4,1) 

(0,2,3,1) (0,1,4,1) (0,0,5,1) 

Fig. 10. Variously coloured spanning trees for the mechanism from Fig. 9. 

3.5 BRUTTO·REACTION, DETAILED MECHANISM AND ТНЕ NUMBER OF 
PARAMETERS UNDER DETERMINATION 
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This section is devoted to the relation between the brutto (stoichiometric) 
equation corresponding to the detailed mechanism and the structure of а 
kinetic equation, Note that аН the detailed mechanisms above сап conven­
tionally Ье divided into two classes, (This division will Ье applied in what 
foHows.) 

(1) Mechanisms in which each step includes at least опе observed sub­
stance either initial or product (the observed substances сап Ье present in 
the step ав both), For generality, it is suggested that аН the steps Ье rever­
sible, 

(2) Mechanisms containing steps having по observed substances. 
Let us give воте examples. 
Mechanisms о! class 1. This is а well-known Michaelis-Menten scheme 

(1) Е + S f::± ES 

(2) ES -+ Р + S 
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with the brutto-equation 8 = Р. These are two-step one-route mechanisms 
that fit the Temkin-Boudart scheme, e.g. 

(1) Z + Н2 О :;::t ZO + Н2 

(2) ZO + СО :;::t Z + С02 

[see eqn. (23)] with the brutto-equation 

Н2 О + СО = Н2 + С02 

It is the one-route mechanism for hydrogen oxidation оп the oxides of Group 
TV transition metals [38] 

(1) Н2 + (ZO)2 -> ZOZ· Н2О 

(2) ZOZ· Н2О :;::t ZOZ + Н2О 

(3) ZOZ + Н2 -> ZZ· Н2О 

(4) ZZ· Н2О :;::t ZZ + Н2О 

(5) ZZ + 02 -> (ZO)2 

with the brutto-equation 

2Н2 + 02 = 2Н2 О 

А mechanism of this class is also а one-route scheme for 802 oxidation over 
vanadium catalysts having а 'Ъuff'еr" step [61] 

(1) V~+ щ- + 802 :;::t V~+ 02- + 80з 
(2) V~+ 02- + 802 :;::t V~+ 8Щ-

(3) V~+ 80~- + 02 :;::t V~+ O~- + 80з 
(4) V~+ 80~- :;::t Vi+ + 80з 

and а one-route catalytic conversion of methane [51] 

(1) СН4 + Z :;::t ZCH2 + Н2 

(2) Н2О + ZCH2 :;::t ZCHOH + Н2 

(3) ZCHOH :;::t ZCO + Н2 

(4) ZCO :;::t Z + СО 

with the brutto-equation 

СН4 + Н2 О = СО + 3Н2 

We сап also give examples of two-route mechanisms belonging to this class: 
а detailed mechanism for vinyl chloride synthesis [17] 

(1) Z + С2Н2 :;::t Z· С2 Н2 



(2) Z . С2 Н2 + НС! ---+ Z + С2 Нз Сl 

(3) Z + HCl <=± Z· НС! 

(4) Z· НС! + С2Н2 ---+ Z + С2Нз Сl 

with the brutto-equation 

С2Н2 + HCl = С2Нз Сl 

and а mechanism for the NO + СО. interaction over silver [39] 

(1) NO + Z <=± ZNO 

(2) ZNO + NO ---+ N2 0 + ZO 

(3) N2 0 + Z ---+ N2 + ZO 

(4) ZO + СО ---+ Z + С02 

with the brutto-equations 

2NO + СО 
and 

N20 + СО = N2 + С02 
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Every step ofthese mechanisms contains at least one observed substance 
and in this саве only one of its molecules reacts. 

Mechanisms о{ class 2. А typical mechanism of this class is the model 
mechanism for the catalytic isomerization treated previously 

(1) А + Z <=± AZ 

(2) AZ <=± BZ 

(3) BZ <=± В + Z 
with the brutto-equation А = В. А second step of this mechanism is the 
mutual conversions of intermediates. It does not contain any observed 
substances. Some examples for two-route mechanisms of this class сап Ье 
found in ref. 62. For an example of the multi-route mechanism, see eqn. (26), 
Fig. 3(f). 

The physico-chemical sense of the classification suggested is clear. If the 
steps such as AZ <=± BZ involving по participation of the observed substan­
ces ("latent steps") are fast compared with the rest of steps or are not present 
at аН, the mechanism must Ье attributed to class 1. Otherwise it will belong 
to class 2. 

In our opinion, ав one starts studying воте reaction mechanism for which 
по data concerning the mutual conversions of intermediates are available 
yet, it is reasonable to suggest that this mechanism belongs to class 1. Note 
that the mechanisms known from the available literature that сап Ье attri­
buted to class 2 are met much more rarely. 
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Using graph theory terminology presented in 8ect. 3.4, mechanisms of 
class 1 сап Ье called "coloured". It implies that every step has at least one 
arc-reaction having а colour of the observed substance participating in the 
reaction. 

Mechanisms ascribed to class 2 сап Ье called those with "colourless" 
steps (i.e. those containing по observed substances). 

3.5.1 Brutto-equation and the nUl11ber о[ steps 

Every graph's cycle corresponds to its "natural" brutto-equation. We will 
assume that the stoichiometric coefficients in this equation are minimum 
integer-valued, i.e. for simplicity the multiplicity is taken to Ье equal to 
unity (вее 8ects. 2.3 and 2.4). W е suggest that, ав in аН the above examples, 
only one molecule of each observed substance (either initial or product) is 
either consumed or formed. 

Then, for а mechanism of class 1, one сап give а simple estimate of the 
number of steps corresponding to а given brutto-equation 

(94) 

where nin and nprod are the numbers ofthe initial substances and products in 
the brutto-reaction, respectively, nmax(nin, nprod) is the maximum number 
among them, and nin + nprod is the total number of molecules in the brutto­
equation. 

Let us apply estimate (94) to the various mechanisms of class 1 given 
above. For the Michaelis-Menten mechanism, the brutto-reaction is of the 
form: 8 = Р, nin = 1, nprod = 1, and s = 1 + 1 = 2. For СО conversion, the 
brutto-equation takes the form 

Н2 О + со = С02 + Н2 

nin = nprod = 2, s = 2. For hydrogen oxidation оп Group IV transition 
metals, we have s = 5. Indeed, for the brutto-equation 

2Н2 + 02 = 2Н2О 

we obtain s = nin + nprod = 5. For the mechanism of 802 oxidation over 
vanadium catalysts in the cycle we have s = 3 (а 'Ъuff'еr" step has not been 
taken into account). Indeed, for the brutto-equation 

2802 + 02 = 280з 

we will have nin = 3, nprod = 2, and s = Птах = nin 
conversion of methane with the brutto-equation 

СН4 + Н2 О = со + 3 Н2 

we obtain nin = 2, nprod = 4, and s = 4. 

3. For the one-route 

In the two-route mechanism of vinyl chloride synthesis, the number of 
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steps in еасЬ route amounts to two. Indeed, the brutto-equation for еасЬ 
route 

we have nin = 2, n prod = 1, and s = 2. In the two-route mechanism of NO 
reaction with СО steps (1), (2), and (4) correspond to the brutto-equation 

2 NO + СО = N2 О + С02 

(nin = 3, nprod = 2, s = Птах = nin '= 3), whereas steps (3) and (4) correspond 
to the brutto-equation 

NzO + СО = N2 + С02 

(nin = nprod = 2 and s = 2). 
ТЬив eqn. (94) is fulfilled in the mechanisms considered ав an accurate 

estimate for the number of steps. Моуе often it is а lower bound (according 
to the number of molecules either of the initial substances оу of products) 
and rarely will it Ье an ирреу bound (according to the number of the initial 
substances and products). 

Although аll the mechanisms of class 1 ауе "coloured" (i.e. every step 
contains the observed substances), certain reactions сап Ье "colourless". 
For example, if the number of molecules of the initial substances is greater 
than that of products (the reaction proceeds with decreasing volume) and 
the estimate s = Птах = n in is fulfilled, then there must Ье (nin - nprod) of 
"colourless" inverse reactions (вее, for example, the 802 oxidation where 
n in = 3, nprod = 2, and there is one "colourless" inverse reaction). But if 
nprod > nin (the reaction proceeds with increasing volume) and 
s = Птах = n prod , there must Ье (nprod - nin) of "colourless" direct reactions 
(see, for example, the methane conversion where n in = 2, nprod = 4, and there 
ауе two "colourless" direct reactions). But if s = nin + nprod, then in princi­
ple there сап Ье s "colourless" reactions. Actually their number is lower 
(see, for example, the oxidation of hydrogen over Group IV metal oxides 
where s = nin + nprod = 5 and there ауе two "colourless" reactions). 

Certainly, for the mechanisms of class 2 the number of steps сап Ье тисЬ 
greater than that determined in accordance with eqn. (94). Here this esti­
mate will play the role of the lower bound. 

Note that if the reactions involve the participation of тоуе than one 
molecule of the observed substance, then eqn. (94) will need corrections. 

3.5.2 Graph colours and kinetic equation structure 

ТЬе brutto-equation depends оп the structure of the kinetic equation and 
its parameters. In 8ect. 2.3 we have already spoken about cyclic characteris­
tics in the numerator of the steady-state kinetic eqn. (46). It is the kinetic 
equation of the brutto-reaction as if it were а simple step. ТЬе form of the 
cyclic characteristics is independent of the detailed mechanism. But under 
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воте suppositions both the structure of the denominator summands and 
their type also depend оп the brutto-equation. Let ив first carry out an 
analysis for а one-route mechanism. 

It has already been shown that the denominator of eqn. (46) contains 
weights of three types of spanning trees: direct, inverse, and mixed. Every 
spanning tree has its own concentration characteristics and its own colour. 
In the previous section, the problem of determining the number of indepen­
dent parameters was associated with estimating the number of variously 
coloured spanning trees. 

Ав an example, let us consider the catalytic conversion of methane [51] 
with the brutto-equation 

СН4 + Н2 О = со + 3 Н2 

Let this reaction Ье realized through а one-route linear mechanism. Direct 
spanning trees are formed Ьу the combination of (n - 1) direct reactions of 
n reactions. It сап easily Ье understood that, irrespective of the reaction 
mechanism, there must Ье spanning trees including [СН4 ] and those includ­
ing [Н2 О]. Ав far ав the spanning tree including [СН4][Н2 О] is concerned, it 
will Ье present in the саве when "colourless" reactions exist among direct 
reactions. In our саве, ав shown above, there are at least two "colourless" 
direct reactions, i.e. n in = np,od = 2. 

Hence, among the direct spanning trees there will Ье spanning trees of 
two colours, i.e. their number will Ье exactly equal to that of the initial 
substances. There will Ье one more two-coloured spanning tree formed due 
to the fact that the reaction sequence includes а reaction that does not 
involve the participation ofthe observed substance. А вит ofthe weights of 
direct spanning trees сап Ье written ав 

(95) 

The complex Кз appears to Ье the sum of two products of constants (non­
Arrhenius complex). The reason for this fact is that the mechanism includes 
two "colourless" steps. It сап Ье shown similarly that, irrespective of the 
mechanism, inverse spanning trees must necessarily contain those including 
[Н2 ]3 and [СО][Н2 ]2. The presence of the inverse spanning tree including 
[СО][Н2 ]3 shows that the sequence ofinverse reactions contain "colourless" 
reactions. Among inverse spanning trees there are also those of two colours 
and their number will equal the number of products and probably one more 
spanning tree (if there are "colourless" reactions). In the general form, the 
вит of the inverse spanning tree weights will Ье written ав 

г--------, 

К{[Н2 ]3 + Щ[СО][Н2 ]2 + I Кз [СО][Н2 ]3, (96) 
L ________ J 

The complex Щ is non-Arrhenius and is the вит of three products. The 
reason for this is that the brutto-equation involves three molecules of Н2 , 

and the three steps of the detailed mechanism must Ье subject to the вате 
type of kinetic law. It is due to this fact that such spanning trees appear. 
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Equations (95) and (96) contain concentration characteristics [СН4 ], 

[Н2 О], [Н2 ]З, and [СО][Н2 ]2. It is nothing е1ве than а combination of (n - 1) 
concentrations of the initia1 substances (products) of n possible опев. In 
addition, eqns. (95) and (96) contain summands out1ined Ьу broken 1ines. 
ТЬеу appear due to the fact that the reaction sequence а1во contains "co1-
our1ess" reactions. For the direct sequence the presence of these reactions 
is obligatory, whereas in the inverse one it is probable. 

Let ив consider mixed spanning trees. ТЬе weight вит сап Ье written here 
ав [вее eqn. (81)] . 

К;'[Н2 ] + К;'[СО][Н2 ] + K~[H20][CO] + K~'[CH4][H2] + 

+ К;'[Н2 ]2 + K~'[CH4][H2]2 + K;'[HzO][H2][CO] + 

+ K;;[CH4 ][H20J[H2 ] (97) 

Ттв expression is apparent1y considerably dependent оп the specificity of 
the four·step detai1ed mechanism [51]. It contains severa1 "crossing" terms 
that depend оп the concentrations of both initia1 substances and products. 

Equations oftype (97) сап a1so comprise а summand inc1uding concentra­
tions of the who1e of the brutto-reaction participants, i.e. K~'[CH4][H20]~ 
[СО][Н2 ]З. It is evident that, in this саве, the reaction mechanism must Ье 
attributed to c1ass 2 and contains а sufficient1y 1arge number of "co1our1ess" 
reactions. ТЬе number of steps here amounts to s > nin + nprod' ТЬе ana1ysis 
performed using this examp1e сап readi1y Ье genera1ized. For а one-route 
cata1ytic reaction with one-route 1inear mechanism the following conc1u­
sions сап Ье drawn. 

(1) In the denominator of the steady-state kinetic equation (46), severa1 
summands generated Ьу direct and inverse spanning trees do not depend оп 
the detai1ed mechanism. For the inverse саве their number is equa1 to the 
overall number of the brutto-reaction participants. ТЬе form of these вит­
mands is defined Ьу the combinations of the (n - 1) concentrations of the 
initial substances (products) of n possible опев. 

For ехатр1е, for the brutto-equation 

тА + nВ = рС + qD 

the denominator must contain four terms that are independent of the de­
tai1ed mechanism of the form K , [A]m-' [ВГ, K 2 [A]m[B]n-l, Кз [С]Р-l [D]Q, and 
K 4 [CY[D]Q-l. 

(2) If the denominator of eqn. (46) Ьаа а term corresponding to the kinetic 
relationship of the direct (inverse) reaction, it imp1ies that the direct (in­
уегве) sequence of reactions invo1ves steps inc1uding по observed substan­
сев. 

For examp1e, for the brutto-equation 

тА + nВ = рС + qD 

висЬ terms will Ье of the form К5 [А]m[вг, K 6 [Cf[D]Q. In princip1e it is 

References рр. 257-258 



248 

possible that the term К7 [А]т [ВГ[СУ[D]q will appear. ТЬе presence of such 
terms whose appearance is, apparently, rare, is the criterion for the mechan­
ism to Ье attributed to class 2 (mechanisms here include steps containing по 
observed substances at all). 

(3) Coefficients for the terms in the denominator of eqn. (46) сап Ье sums 
of the constants' products (non-Arrhenius complex). 

The reason (ог the non-Arrhenius type о( complex lies in the (act that the 
brutto-equation comprises several molecules о( оnе ог the other substance. For 
example, for the brutto-equation 

тА + nВ = рС + qD 

the factor К! in the term К! [А]m-! [в]n is the non-Arrhenius complex, i.e. the 
sum of the products of т constants. If т = 1 the complex is always Arr­
henius. ТЬе coefficient ofthe term К[А]m[вг сап also Ье non-Arrhenius ifthe 
number of "colourless" reactions in the spanning tree is greater than unity. 

(4) Mixed spanning trees generate several terms. It is these terms that are 
responsible for the detailed mechanism specificity. ТЬеу сап contain mixed 
products of the concentrations of the initial product substances. Exponen­
tial factors for these concentrations will differ from those in the terms 
generated Ьу direct and inverse spanning trees. For example, for the same 
brutto-equation 

тА + nВ = рС + qD 

mixed spanning trees сап generate the terms К[АУ[В]Р[СГ[D]", where 
IX :::; т - 2, f3 :::; n - 2, у :::; р - 2, and д :::; q - 2. ЕасЬ ofthese terms depends 
оп the specificity of the reaction sequence. Their interpretation must pro­
mote our understanding of the detailed mechanism. 

Hence one must understand the importance of special kinetic experiments 
with mixtures containing high concentrations ofproducts. But the available 
experimental data here are very limited in number. Note that mixed span­
ning trees appear only when the number of steps is s ~ 3. 

(5) The number of parameters of eqn. (46) under determination, Npud , сап 

Ье found using the estimate 

(98) 

It is interesting that this estimate coincides with that for the number of steps 
[eqn. (94)]. 

But if the sequence of direct (or inverse) reactions contains at least one 
"colourless" reaction, then eqn. (98) takes the form 

(98а) 

In the case in which both ofthe sequences have "colourless" reactions, we 
have 

(98Ь) 
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(6) АН that has Ьееп said above refers to the саве in which аН the 
mechanism steps are reversible. But ifthe steps are irreversible we wiH have 

when по "co1our1ess" reactions are present or 

Npud = nin + 1 

when they are present. 

(99а) 

(99Ь) 

Непсе, in the irreversible саве,' the number of parameters under deter­
mination is equa1 to that of graph's co1ours (inc1uding the co1our of "co1our-
1ess" reactions). 

(7) For the irreversible саве, the kinetic equation (46) сап Ье written in а 
very simp1e form 

W = 
к 

(100а) 
nin 

L ki/C, 
i=l 

or 

W 
к 

(100Ь) 
nin 

1 + L kjC, 
i=l 

In the саве in which two reactants react (n in = 2), eqn. (100а) will take the 
form 

W 
K1C1 + К2 С2 

(100с) 

For three reactants (nin = 3), eqn. (100а) is represented ав 

(100d) 

and во оп. 
It is important to understand that the type of eqns. (100) corresponding to 

the irreversible саве depends neither оп the detai1ed mechanism nor even оп 
the type of the brutto-equation. It is dependent on1y оп the number of 
substances taking part in the brutto-conversion. Note that sometimes it is 
said that а two-step mechanism is realized if the kinetic relationships satisfy 
eqn. (100с). 

Let ив demonstrate the way in which the above considerations сап Ье 
app1ied to interpret the detai1ed mechanism according to the observed kinet­
ic dependences. Let the reaction rate for hydrogen oxidation over oxides Ье 
described Ьу eqn. (54) rewritten ав 

W = К[Н2 ]'[О2] 
К,[Н2]' + К,[Н,](О,] + Кз[Н,]'[Оz] + К,[Н,]'[Н,О] + К5 [Н,](О,](Н2 О] 

(101) 
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For the brutto-equation 

2Н2 + 02 = 2Н2 О 

we have n
in 

= 3 and n
prod 

= 2. In accordance with eqn. (94), the number of 
steps for the mechanism must Ье 3 ~ s ~ 5. 

Since the denominator contains the term Кз [Н2 ]2 [02]' the direct sequence 
of the reactions must also contain а "colourless" reaction (one or two). 
Hence s = 4 or 5. 

The steps of water production сап Ье treated as reversible since there are 
terms containing [Н2 О]. But as there is по term with [Н2 0]2, it is evident that 
these two steps are separated Ьу some irreversible step. If s = 4, every one 
of the terms in the denominator of eqn. (101) must Ье а product of three 
reaction weights. The terms K 1[H2]2 and К2 [Н2 ][02] are sure to contain а 
weight of the "colourless" reaction since their exponential factor is two. 
This is still more valid at s = 5, when these terms will include the weights 
of two "colourless" reactions. 

Some information about the detailed mechanism must Ье provided Ьу the 
mixed terms К4[Н2]2[Н2 О] and К5 [Н2][02][Н2 О]. Judging Ьу their form, one 
сап suggest first that water is not liberated in the step consuming oxygen, 
and second that in the two steps that consume hydrogen, water is not 
liberated either. Hence water is liberated in those steps of the decomposition 
of intermediates that do not involve the participation of the initial gaseous 
substances. 

In our case the catalyst is oxide. It is natural to suggest that the first step 
in the catalytic cycle is the interaction of an oxide species with hydrogen 
and that the last step is the reduction of species. 

Hence the mechanism сап Ье characterized as follows. 
(1) Step 1 is the interaction of the initial catalytic species with hydrogen. 

In this case water is not formed. 
(2) Step 2 is the decomposition of an intermediate formed in step 1 with the 

liberation of water. The step is reversible. 
(3) Step 3 is the interaction of the intermediate formed in step 2. Water is 

not formed. 
(4) Step 4 is similar to step 2. 
(5) Step 5 is the reduction of the initial catalytic species (Ьу interaction 

with oxygen). 
The sequence of steps 2 and 3 cannot Ье reversed since, in this case, two 

reversible steps ofwater liberation will Ьесоте adjacent. As has been shown 
аЬоуе, this is not admissible since the denominator of eqn. (101) has по 
К[Н2 ОГ term. 

The mechanism suggested has five steps including two "colourless" reac­
tions [steps (2) and (4)]. Note that to interpret data it would Ье useful to have 
information concerning the temperature dependence of the complexes. One 
сап say in advance that К and К) are the Arrhenius complexes, whereas К2 
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is the non-Arrhenius complex. If we had information indicating that Кз was 
the non-Arrhenius complex and К4 and К5 the Arrhenius complexes, it would 
further promote the data interpretation. For example, if КЗ is the поп­
Arrhenius complex, it implies that the direct sequence ofreactions has two 
"colourless" reactions rather than опе аБ has Ьееп suggested from the 
beginning. 

Непсе in this саБе, оп the basis of the detailed analysis of only the 
steady-state kinetic equation, we have managed to formulate а reaction 
mechanism. This mechanism is simi"lar to that suggested in ref. 38. 

W е believe analysis such аБ has Ьееп demonstrated above will also prove 
to Ье useful in more general саБеБ. It must Ье noted that this analysis places 
heavy demands оп the inverse kinetic problem whose result is to restore 
summands of the steady-state kinetic equation. 

4. Graphs to analyze relaxations. General form of 
characteristic polynomial 

А non-steady-state kinetic model for а complex catalytic reaction with а 
linear mechanism is described аБ 

f = В(е)1 (102) 

where 1 and с are the vector-columns for the concentration of the inter­
mediate and observed substances, reepectively, and В(е) is the matrix ofthe 
reaction weights. 

In addition, а conservation law of the total catalyst amount must Ье 
fulfilled 

n 

I Х; = С 
i=l 

Equation (102) is the non-steady-state kinetic model for the conversion of 
intermediates (for heterogeneous catalysis, for the conversion of surface 
substances) assuming that the concentrations ofthe observed substances are 
constant. Ав is known, the solution of eqn. (102) is of the form 

n 

Xi(t) = I Х}; ехр (Ajt) (103) 
j=i 

where Aj are the roots of the characteristic equation (eigen-values). 
Note that а characteristic polynomial of the square matrix А = Ilaijll of 

the order n is called а determinant for а set of linear homogeneous equations 
n 

L (aik - bikA)Xk = О 
k~l 

i, ... , n 

where bik is the Kronecker symbol and А is the scalar 
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{
1 if i =k 

(j'k = , о in the opposite case 

The analysis of the characteristic polynomial (primarily of its roots) is 
absolutely necessary when studying the non-steady-state behaviour of а 
complex chemical system, А traditional problem is to study the spectrum of 
relaxation times 'i = l/IRe).il [63]. А characteristic polynomial сап Ье writ­
ten ав 

(105) 

where every coefficient d i (i = 1, 2, ... , n) is equal to the arithmetic sum of 
the whole of the ith order minors from the matrix determinant. 

Calculation of the coefficients di for а given matrix is а very laborious 
process. We will give а method to calculate these coefficients proceeding 
directly from the complex reaction graph. Like а steady-state kinetic equa­
tion, а characteristic polynomial will Ье represented in the general (struc­
turalized) form: 

(106) 

Let us give а determination for the k-spanning tree (k is а positive in­
teger). А k-spanning tree for the graph G(x,u) will Ье caHed ап unconnected 
partial graph * containing аН the points, i.e. а rooted forest (а set of rooted 
trees) аН of whose arcs are directed towards the roots, i.e. the given graph 
points х. А rooted tree сап also Ье degenerated, i.e. consisting of опе point. 
When speaking of trees, spanning trees and graphs, here and hereafter we 
imply that they are directed. The weight of the spanning tree is the product 
of the weights of its arcs. The weight for the degenerated component is 
assumed to Ье equal to unity. 

Evstigneev and Yablonskii [64] proved the foHowing theorem: coefficient 
of ).k (k is the exponential factor) for the characteristic polynomial Р(),) 
amounts to the вит of the weights for аН the k-spanning trees of the reaction 
graph at k =F- О and is equal to zero at k = О. 

Proof; It suffices to prove that the вит of аН the kth order minors amount­
ing to the coefficient of).k is at the вате time equal to the sum ofthe weights 
for аН the (n - k)-spanning trees of the reaction graphs. At k = О the 
coefficient of),O amounts to the В(с) matrix determinant. Since, according to 
the conservation law, апу diagonal element of В(е) satisfies the equality 

n 

bii = L bji 
j=l,j#i 

the rows ofthis matrix are linearly dependent and the coefficient equals zero, 
Let us give relationships for various coefficients. 

* А partial graph of the graph G(x, и) is the graph Н = (у, и) where у " х and v " и, 
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(а) k = 1. The coeffi.cient of ,i is equal to the sum of аН the principal 
(n - l)th order minors. As has Ьееп proved in ref. 6, every minor of this type 
equals the sum of the weights for the spanning trees entering into the point 
Xk· 

(Ь) 1 < k < n -1. The coeffi.cient of ,ik amounts to the sum of the prin· 
cipal (n - k)th order minors. It сап Ье shown that every uncanceHed term 
wiH correspond to the n-point graph having по contours and exactly (n - k) 
arcs, i.e. а forest consisting of k components. In this case а forest is а 
non-connected graph whose every connected component i8 а tree (probably 
consisting of опе point). 

(с) k = n -1. The coeffi.cient of Аn-l is equal to the spur of а matrix, i.e. 
to the sum of the weights for аН the reaction graph arcs. 

(d) k = n. The coeffi.cient of Аn amount8 to the weight of the empty (i.e. 
having по arcs) n-point graph. According to the determination, its weight 
equals unity. 

Taking into account the аЬоуе remarks about the characteristic equation 
coeffi.cients, its general form сап Ье repre8ented ав 

Аn-l + Ctl bi ) Аn-2 + ... + C~l D i ) ,in-k-l + ... + D = О (107) 

where n is the number ofthe graph's arcs and nk is the number of k-spanning 
tree8. The вате type of general form of the characteristic equation сап also 
Ье obtained from ref. 65 using the concept of the " Coates flow graph" [66]. 

Example. Let ив consider the known mechanism for catalytic isomeriza­
tion 

(1) А + Z +Z AZ 

(2) AZ ~ BZ 

(3) BZ ~ В + Z 

with the reaction weights Ь: = k: [А], Ь 1 = k1 , ь; = k;, ь:; = k:;, 
ь: = k:, ь:; = k:; [В]. А characteristic equation wiH Ье 

А2 + dj,i + D = О 

where 

d1 I bi = knA] + k1 + k; + k:; + k: + k:; [В] 

D k: [A](k; + k: + k:;) + k:; [B](k1 + k:; + k;) + 

+ k; k; + k1 k:; + k; k1 

If аН its steps are irreversible, we obtain 

d] kn А] + k; + k: 

D k: [A](k; + k;) + k; k: 
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Corollaries. (1) Coefficients of the characteristic equation cannot contain 
terms having simuItaneously direct and inverse weights (e.g. they cannot 
have ь; ь2 ) and the terms containing weights of two reaction-arcs emanat· 
ing from the same point. 

(2) In accordance with the Vieta formulas, coefficients of the characteris­
tic equation are related to its roots Ьу the equations 

D = п Л; 
(109) 

For an arbitrary j, the equation 

is valid where nj = СГ 1 is the number of combinations of (n -1) elements 
taken from j. 

In the irreversible саве, for the above example we will have 

- d 1 -k;[А] -k;-k; 

Л1 + ilz 
(110) 

D ki [A](k; + kn + k; ki 

il1 il2 

(3) А useful corollary follows from the comparison of steady·state kinetic 
and characteristic equations. For example, as has been shown above, for а 
one-route reaction with а linear mechanism the equation 

(111) 

will Ье valid where 

The expressions (+ (t!) and (- (Е) correspond to the "natural" brutto-reaction 
and С is the overall number of active centres per unit catalyst surface. 

The denominator of eqn. (111) is the determinant for the weights' matrix 
В(с). But the same determinant is also а free term of the characteristic 
equation D that equals the product of the roots, i.e. D = Пi~lil; (n is the 
number of independent intermediate substances). 
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It is evident that 

n-1 

WI = WП Лi 
i=l 

[K+{+(~) К- {- (7:)]с (112) 

or 

W 
к+{+(-::г) К- {- (7:) 

n-I 
(113) 

СП " 
i=l 

where '; is the relaxation time and is equal to l/IRелJ 
The expression оп the right-hand side of eqns. (112) and (113) is usually 

written down as а kinetic law for а simple step consisting of two elementary 
(direct and inverse) reactions satisfying the law ofmass action. As а rule, the 
steady-state rate for а complex reaction does not fit this expression*. It 
appears that this natural type is satisfied Ьу W/(П i ';) rather than the steady­
state rate W. This value is experimentally observed (W and 'i from the 
steady-state and non-steady-state experiments, respectively). This value 
must have Ьееп given some special term. 

After differentiating eqn. (113) we obtain 

alnW ---- + ----~--­
alncj 

= m/l - ф) (114) 

where mj is the total number ofjth reactant molecules taking part in аН the 
reactions of the detailed mechanism (or the amount of this reactant mole­
cules in the "natural" brutto-reaction) 

ф 
К- {- (7:) 

К+ {+ (j) 

in which K eq is the equilibrium constant of the brutto-reaction. 
The value aln W/alncj is the observed order for the reaction rate found 

from the monoparametric dependences in the non-steady-state experiment. If 
both the order and the value of m/l - ф) are known, we сап find the value 
дlп(П,,)-I/дlп Cj from eqn. (114). This value сап Ье caHed the observed relaxa-

* In early works оп kinetics, this equation was also assumed to 'fit the steady·state rate of 
composite reaction (вее ref. 41). 
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tion order. For the irreversible саве (ф О) we will have 

aln()] ,;)-1 
aln Cj 

aln W 
(115) 

А general form of the characteristic equation in combination with а 
steady-state kinetic equation will provide additional possibilities for the 
interpretation of the observed kinetic relationships. 

5. Conclusion 

Graph theory provided various fields of physical chemistry and chemical 
physics with а technique that ЬаБ been extensively used in theoretical 
physics (the well·known Feynman diagram technique). It also appeared to Ье 
extremely effective in both chemical kinetics and chemical polymer physics. 
The major advantage of this technique is the extremely simple derivation of 
equations and the possibility of their direct physical interpretation. 

In terms of graph theory, it is convenient to represent several non·empiri­
cal and semi-empirical methods of quantum chemistry. Energy and charge 
characteristics of molecules are treated ав various structural characteris­
tics of molecular graphs. 

In chemical kinetics, the graph technique is used to obtain steady-state 
kinetic equations for multi-route linear mechanisms, to analyze the number 
of independent model parameters and to determine the stability of steady 
states for open chemical systems. We believe that, in the near future, the 
possibilities of the "graph analytical" methods will Ье ever increasing. We 
are facing а period for а wide application of algorithmic languages intended 
for operation with graphs. There are two probable ways: (1) the development 
of special-purpose computers or processors based оп microprocessing de· 
vices and (2) the application of analytical computation systems. Already at 
present there exist programs to derive and analyze complex steady·state 
kinetic equations and characteristic polynomials (вее, for example, refs. 60 
and 67-69). 

ТЬе concepts of "graph-molecule" and "graph·reaction" are natural for 
chemistry, which is а science which раув mисЬ attention to the order of 
arrangement, bonds, and sequences of transformations. 

It is possible that in future chemists will develop concepts about а univer· 
ваl dynamic graph accounting for the evolution of complex chemical вув­
tems. But already graph theory сап give mисЬ to chemists. In our opinion, 
it is quite possible that this theory will Ьесоmе а "chemical esperanto" 
understandable Ьу chemists of various specialities. 
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