Chapter 4

Graphs in Chemical Kinetics

1. General description and main concepts

1.1 SIMPLE EXAMPLE

Graph theory has found extensive application in chemical kinetics. It is
this subject that is the goal of this chapter.

Let us take a simple example to illustrate the application of graph theory
to derive a steady-state kinetic equation for a complex reaction. It is a
typical problem for the kinetics of complex reactions. As usual it is solved
as follows. Let a mechanism be given for a complex reaction involving the
participation of observed substances, i.e. initial reactants and products as
well as intermediates. In accordance with the mechanism based on a fun-
damental law of chemical kinetics, the law of mass action, we obtain a set
of differential equations accounting for the kinetics of variable inter-
mediates. Assuming that the known principle of quasi-steady-state con-
centrations is valid, we go from the above set of differential to that of
algebraic equations whose solution provides steady-state concentrations for
intermediates. Knowing these values, we can readily obtain a general ex-
pression for a steady-state reaction rate as a function of the substance
concentrations and temperature. The most cumbersome step in this se-
quence of operations is the solution of the set of algebraic equations. The
application of graph theory not only facilitates this solution (of course, only
in the linear case), but also provides the possibility of drawing some general
conclusions.

Let us consider a model catalytic isomerization reaction with the detailed
mechanism

WA +Z =2 AZ 1
(2)AZ = BZ 1 W
B3BZ =2 B+17Z 1

A =B

The equation A = B corresponds to the stoichiometric (brutto) reaction.
Here Z, AZ and BZ are the three intermediates through which a complex
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catalytic reaction proceeds; the substance Z (the active catalytic centre) is
also treated as an intermediate.

Intermediates are related by the law of conservation [Z] + [AZ] +
[BZ] = 1, since the catalyst quantity in the system is constant. ([Z], [AZ],
[BZ] are the dimensionless concentrations of the intermediates.)

Due to the fulfilment of this law of conservation, the number of linearly
independent intermediates is not three but one fewer, i.e. it amounts to two.
To the right of mechanism (1) we gave a column of numerals. Steps of the
detailed mechanism must be multiplied by these numerals so that, after the
subsequent addition of the equations, a stoichiometric equation for a com-
plex reaction (a brutto equation) is obtained that contains no intermediates.
The Japanese physical chemist Horiuti suggested that these numerals
should be called “stoichiometric” numerals. We believe this term is not too
suitable, since it is often confused with stoichiometric coeflicients, indicat-
ing the number of reactant molecules taking part in the reaction. In our
opinion it would be more correct to call them Horiuti numerals. For our
simplest mechanism, eqn. (1), these numerals amount to unity.

Let us pay attention to the reactions represented in mechanism (1). Here
there are monomolecular reactions: direct in the cases of steps (2) and (3) and
reverse in the cases of steps (1) and (2). But there are also bimolecular
reactions involving the participation of two substances, namely gas and
catalyst. These are the direct reaction of step (1) (adsorption of substance A)
and the reverse reaction of step (3) (adsorption of substance B). Strictly
speaking, mechanisms of heterogeneous catalytic reactions are never mono-
molecular. They always include, for example, adsorption steps involving at
least two initial substances, i.e. gas and catalyst. But if we consider the
conversions of only intermediates at a constant composition of the gas phase
(note that in heterogeneous catalysis most kinetic experiments are carried
out in just this way), a catalytic reaction mechanism can be treated as
monomolecular. Every elementary reaction here will involve the par-
ticipation of no more than one molecule of the intermediate. Temkin called
these mechanisms linear since their reaction rates are linearly dependent on
the intermediate concentrations. The class of linear mechanisms is par-
ticularly wide. It includes practically the whole of the enzyme reaction
‘mechanisms. It is for these reactions that King and Altman used, for the first
time, graph theory methods [1]. If some mechanism has steps in which two
or more molecules of an intermediate react, it is a linear mechanism. Me-
chanism (1) is linear. The corresponding graph is represented in Fig. 1. The
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Fig. 1. Graph of a catalytic isomerization mechanism.
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nodes of this graph are intermediates and its edges are reactions. The
directions of the reactions are indicated by arrows given for the edges.

Let us determine some notations that are essential for the further repre-
sentation.

Our graph has a cycle that is a finite sequence of graph edges, whose
beginning and end coincide. This cycle corresponds to the cyclic conversion
of the intermediates. In our case the cycle is unique.

A tree is any sequence of graph edges containing no cycles. It corresponds
to a certain combination of intermediate conversions. A spanning tree (a
maximum tree) is a sequence of graph edges containing no cycles and joining
all nodes of the initial graph. It suffices to add one more edge to obtain a
cycle. Spanning trees are treated as those of the graph node if they enter this
node. A spanning tree corresponds to the path of conversions through which
a given intermediate is formed from the combination of the rest. Spanning
trees of graph nodes corresponding to mechanism (1) are represented in Fig.
2.

When the reaction has one cycle, its graph has n nodes and r steps. It can
easily be shown that every node comprises n spanning trees and their total
number will be n?. For mechanism (1), » = 3 and hence the number of
spanning trees will be n? = 9.

Edge weights are obtained if the reaction (both direct and reverse) rates
corresponding to the graph edges are divided by the concentrations of th
reacting intermediates :

+

wE
P @
v N N
—————— e ool
2 -2

Spanning trees of node Z

3 1 ’ 1 -3
’ ———
-2 -2
Spanning trees of node AZ
\
S — e
2

2
Spanning trees of node BZ

Fig. 2. Spanning trees for the graph of an isomerization mechanism.
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where b and b, are the edge weights for the direct and reverse reactions
and [x; ] and [x; ] are the concentrations of intermediates reacting in direct
and reverse reactions, respectively. Edge weight is the rate of an elementary
reaction at a unit concentration of the reacting intermediate. In the litera-
ture this characteristic is also called a “reaction frequency” (Schwab), a
“kinetic coefficient” (Balandin), .and also a probability. Edge (reaction)
weight amounts to the rate constant of a reaction or its product by the
substance (gas or substrate) concentration.

Let us write reaction rates for mechanism (1) in accordance with the law
of mass action (for surface reactions this law is known as “‘the law of surface
action’)

w' = RAI[Z]  wr = k[AZ]
wy = ki[AZ] wy = ky [BZ] 4@
wy = ky[BZ] wy = ky [B][Z]

Here %/, ki, kS, k7, ki and k; are the rate constants for the elementary
reactions, [A] and [B] the concentrations of the gaseous substances, and [Z],
[AZ], and [BZ] the concentrations of the intermediates.

Reaction weights for the isomerization mechanism will be

bi = ki[A] b = ki
by = ki by = k; ®)
by = ki by = ky[B]

The spanning tree weight is a value amounting to the product of the
weights of its constituent edges.
Spanning trees entering into node Z will have the weights

Bz,l = b2+b3+7 Bz,z = b;bf, BZ,3 = bz_ bl_ (6)

by

The weights for spanning trees of the node AZ will be

Buzy = b07b5, Bagy = bib;, By = bjb; "
Finally, for the node BZ we will have

By, = b{bj, By, = bjby, By = bibg ®)
The total weight of node spanning trees will be

Z: B, = bjb; + bib; + by b{

AZ: By, by b + by by + b; by 9

BZ: By = biby + bib; + by bs ‘

The total weight of graph spanning trees amounts to

]

i
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B = BZ + BAZ + BBZ (10)

Let us write a formula whose application will give us a possibility to
simplify essentially the derivation of kinetic equations for complex reac-
tions following a linear mechanism

= BX
- fc (1

Here x is the concentration of the intermediate, By the total weight of node
spanning trees corresponding to a given substance, C the total number of
intermediates per unit surface of catalyst (after normalizing, the concentra-
tion is usually taken as C = 1), and

B = Y By

Relationship (11) was first reported by King and Altman [1]. They exam-
ined a linear set of quasi-steady-state equations for the intermediates of the
complex enzyme reaction following a linear mechanism. For its derivation
the authors applied the well-known Kramer rule.

On the other hand, Vol’kenstein and Gol’dshtein actively applied graph
theory methods in a series of the studies in the 1960s [2-4] and introduced
this relationship by analogy with the known Mason rule from electrical
engineering.

A strict substantiation for this analogy and derivation of this relationship
in terms of the Mason rule [5] can be found in refs. 6 and 7. In our monograph
[7] we also give proofs for the fact that the terms of eqn. (11) obtained using
the Kramer rule are spanning tree weights of various nodes. A brief substan-
tiation for eqn. (11) will be given below.

From the known concentrations of intermediates we can easily determine
a rate for any reaction step. For our reaction with an unique cycle the
steady-state rate of any step is equal either to that for the consumption of
substance A or to that of the formation of substance B (route rate).

For example

w = ky[AZ] —k; [BZ] (12)
Since &y = b7 and k; = b5, eqn. (12) can be written as

w = by [AZ] —b; [BZ] (13)
and then

by Baz — by By
B

_ by (b by '+ biby + b3 by) — by (b by + by by + BT by) 14)

b by + by by + b b + b7by + byby + bybl + blby + bbby + b b
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Most factors in the numerator of eqn. (14) cancel out and we obtain the
expression
b b by —b b b
bib; + b;b; + 070 4+ b b + bbb, + b7bT + bIO] + bib + b br

273 (15)

After substituting reaction weights from eqn. (5) into eqn. (15), we have
AR,
kl*[A](/lzZ+ + k; + ka‘) + k;[B](kl‘ + kz‘ + k;) + k;k; + kl‘kz' + ks_kf
(16)

Let us analyze the structure of eqn. (16). Its numerator can be written as
K*[A] — K [B], where K* = k;' k; k;’ and K~ = k k k. In this form it
accounts for the stoichiometric equation A = B obtained by adding all the
steps of the detailed mechanism multiplied by unit stoichiometric numbers.
It is interesting that the numerator is absolutely independent of the mechan-
ism “‘details”. Irrespective of the number of steps in our mechanism (a
thousand, a million), the numerator of a steady-state kinetic equation al-
ways corresponds to the kinetic law of the brutto reaction as if it were simple
and obeys the law of mass action. The denominator characterizes a “non-
elementary” character accounting for the rate of the catalytic reaction
inhibition by the initial substances and products.
If all steps are irreversible (k = k, =k, = 0), eqn. (16) is simplified
considerably to
kRYRIEI[A
B k+[A](k1* . 15+[) 1 ko ke )
1 2 3 278

Thus this simple example has illustrated the efficiency of graph methods in
chemical kinetics.

1.2 TWO FORMALISMS. FORMALISM OF ENZYME KINETICS AND OF STEADY-
STATE-REACTION THEORY

As has already been shown, graph theory methods were first used in
chemical kinetics by King and Altman who applied them to linear enzyme
mechanisms [1]* to derive steady-state kinetic equations. Vol’kenshtein and
Gol'dshtein in their studies during the 1960s [2—4] also elaborated a new
formalism for the derivation of steady-state kinetic equations based on
graph theory methods (“"Mason’s rule”, etc.).

Owing to the classical King—Altman and Vol’kenshtein—Gol’dshtein stu-

* Inref. 1, a complex mechanism was represented as an open graphical sequence: every graph
edge (step) jointed nodes (substances). Itis likely that it was Temkin who was the first to suggest
the representation of catalytic conversions by a cycle on the graph.
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dies, graph theory has become a traditional working instrument for enzyme
kinetics (refer, for example, to refs. 8-10). It is the apparatus that was used
in the above example in Sect. 1.1.

Here, a graph for the complex reaction mechanism is determined as
follows. Every substance x; participating in the reaction is given a node v;
of the graph G(V, E). Every elementary reaction between the substances x;
and x; is representeﬂ by the edge (v;, v;). The edge & = (v;, v;) corresponds
to a certain value b(x) that is the reaction weight. Reaction weight was
determined above as the rate at unit concentration of the reacting inter-
mediate. The directed graph (i.e. the graph with a given direction) deter-
mined in this way is called a graph of the reaction. Apparently, it is the
graph for a linear mechanism. This graph can be ascribed to the models
usually called natural. They have no differences from the conversion
schemes accepted for chemistry.

Apart from enzyme kinetics, this new trend had also appeared in the
kinetics of heterogeneous catalysis. In the 1950s, Horiuti formulated a
theory of steady-state reactions {11, 12], many of the concepts of which
correspond to the graph theory. Independent intermediates, a reaction
route, an independent reaction route, all these concepts were introduced by
Horiuti.

This can also be said about the Horiuti number (or, as Horiuti called it
himself, the stoichiometric number) discussed previously. The Horiuti num-
bers are the numbers chosen such that, after multiplying the chemical
equation for every step by the appropriate Horiuti number and subsequent
adding, all intermediates are cancelled. The equation thus obtained is the
stoichiometric (brutto) equation. Each set of stoichiometric numbers lead-
ing to the elimination of intermediates is called a reaction route. In the
general case, the Horiuti numbers form a matrix and its vector columns are
the routes.

Horiuti stoichiometric rule. This rule is applied to find the number of
linearly independent routes. Stoichiometric numbers must satisfy the equa-
tion

VT = 0 (18)
Here 97 is the transposed matrix of the Horiuti numbers (stoichiometric
numbers) and T, the matrix of the intermediate stoichiometric coefficients.
The size for the matrices 3" and T, is (P x 8§) and (S x I,,,), respectively,
where S is the number of steps, L. the total number of independent inter-
mediates, and P the number of routes. Due to the existence of a conservation
law (at least one), the catalyst quantity and the number of linearly indepen-
dent intermediates will be

I=1I,-1 19

The multiplication of the matrices ¥ (P x S) and T,,(S x L) gives the
matrix 77T, whose size is (P x I.,). The vector column of the matrix for the
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Horiuti numbers ¥ (S x P) is the route of a complex reaction. The rank of
the matrix I';,, cannot be higher than (S — P) since, according to eqn. (19)
there are P linearly independent rows of I',,. As usual, we have

rgly,, = S—-P (20)
On the other hand, when the law of catalyst conservation is unique, we have

rgli = 1 = Ly -1 @1)
After substituting eqgn. (21) in eqn. (20), we obtain

P=8S-I,+1

This relationship for the determination of the number for the linearly in-
dependent routes is called the Horiuti stoichiometric rule. Let us apply it.
For the isomerization reaction (1) we have S = 3and [ = 3,hence P = 1.
This reaction is one-route and all the Horiuti numbers are equal to unity.
For two-step mechanisms of the type (1) A + Z 2 AZand 2)B + AZ =2 Z
+ AB (the Temkin-Boudart mechanism) we have S = 2 and I = 2. Hence
P = 1 and all the Horiuti numbers are unity.
The vinyl chloride synthesis reaction has the detailed mechanism
(1) C,H, + Z =2 ZC,H,
(2) HCl + ZC,H, —» Z + C,H;Cl
(3) HCI + Z = ZHCI
4 C,H, + ZHCl -~ Z + C;H,Cl

where 7 is the active centre, I, = 3 and the number of steps S = 4. Hence
the number of linearly independent routes amounts to

P=S~-I,+1
= 4-3+1 =2

Thus, here we have two independent routes. For a linear mechanism of
ammonia synthesis on an iron catalyst we will have

DZ+ N, 2 ZIN, 1
(2) ZN, + H, = ZN,H, 1
() ZN,H, + Z = 2ZNH 1 (22)
4 ZNH + H, =2 Z + NH; 2

N, + 3H, = 2NH,

Here I, = 4and S = 4. Hence P = 4 — 4 + 1 = 1. The reaction mechan-
ism will be one-route. This mechanism contains a non-linear step, a third
step, where intermediates react between themselves. Unlike the cases con-
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sidered above, not all the non-zero Horiuti numbers are equal. Temkin in a
series of studies during the 1960s [13-16] popularized the results of the
Horiuti theory. Later he used graph theory methods for the representation
of complex reaction mechanisms and for the derivation of steady-state kinet-
ic equations. He represented a route of a complex reaction as a graph cycle
and the number of linearly independent cycles as the number of routes.

Let us give some examples for the graphs of linear mechanisms. The
simplest mechanism of an enzyme catalytic reaction is the Michaelis-
Menten scheme

IDE+S = ES
@2)ES - P+ 8

where S and P are the substrate and product, respectively, and E and ES the
various forms of the enzyme. A graph for the conversion of the intermediates
in this mechanism is given in Fig. 3(a).

Graphs of the two-step oneroute mechanisms (the Temkin-Boudart
mechanisms) for the steam conversion of CO and liquid-phase hydrogena-
tion are illustrated in Fig. 3(b) and (c)

1Z+ H,0 = 70 + H, ()Z + Hyyy = ZH,
(2 Z0 + CO = Z + CO, (2 ZH, + A, = AH, + Z (29)
CO + H,0 = CO, + H, A+ H, = AH,

)

720 WS

U

Z ZH,
2 ;\\\—‘/
(a) (b) (c)
1 3 2
///—\
ZCCH//Z:\\\Z,//_\\Z\HCL 2w ZC,Hg
N 4 1
2 4 \“\zc‘sz‘//g
(d) MCK (e)
%7+1 \
\&8*-&9 2t jK

1"+546
(f)

Fig. 3. Graphs of linear catalytic reaction mechanisms. (a), (b), (c), One-route; (d), (e) two-route;
(f) multi-route mechanisms.
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A detailed mechanism for the synthesis of vinyl chloride on the “mercuric
chloride + medical charcoal” catalyst can be represented by the sequence
of steps [17]

I I
1) Z + CH, = ZC,H, 1 0
©) ZC,H, + HCl — Z + C,H,Cl 10 )
©8)Z + HCl =2 ZHCI 0 1
(4) ZHCI + C,H, — Z + C,H,Cl 0 1

G,H, + HCI = G,H,Cl

Here Z is the active site of (HgCl,+ HCI). Vector-columns of the stoi-
chiometric numbers are given to the right of the equations of the steps. This
mechanism corresponds to the graph formed by two cycles having one
common node, i.e. the intermediate Z [Fig. 3(d)].

The reaction mechanism for butane dehydrogenation can be represented

in simplified form by the steps
OCHy+7Z =2 CHZ + H,
2 CHZ =2 CH; + Z
3) C,HyZ = CH,Z + H,
4 CHZ = CH; + 7

This mechanism corresponds to the graph formed by two cycles with one
common step (edge) [Fig. 3(e)].

A sample of the n-hexane conversions on supported platinum catalysts
can be represented by the scheme

AOH+ K 2 HK

(25)

(2) HK IK
(3 HK = MCK
4 MCK =2 MC + K

G)HK - P+ K
@®HK - B+ K
(M IK = MCK
®IK = I +K
@IK - P+ K
(10) MCK — B + K

Here H, I, B, MC, and P are n-hexane, hexane isomers, benzene, methyl-

(26)

N

i}
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cyclopentane, and cracking products, respectively, while K, HK, MCK, and
IK are intermediates. The graph for surface conversions is given in Fig. 3(f).
Numerals given over the directed edge of the graph point to the number of
steps with the help of which one intermediate is formed from the other.

Cycles in the graphs of linear mechanisms are usually called only the
“correctly directed” cycles. For example, a sequence of the reactions (1)
A, — A, (2)A, - A;,and (8) A; —» A, is the cycle, whereas the reactions (1)
A - AL, (DA, - A;,and 3) A, — A3 do not form a cycle. This mechanism
is acyclic.

Simple cycles are those that do not contain any repeated points except the
initial one. All simple cycles for the most complex of the above graphs, i.e.
the graph of n-hexane conversions, are presented in Fig 4.

The theory of steady-state reactions operates with the concepts of “a path
of the step”, ““a path of the route”, and *“‘the reaction rate along the basic
route”. Let us give their determination in accordance with ref. 16. The
number of step paths is interpreted as the difference of the number of
elementary reaction acts in the direct and reverse directions. Then the rate
for the direct step is equal to that of the paths per unit time in unit reaction
space. One path along the route signifies that every step has as many paths’
as its stoichiometric number for a given route. In the case when the forma-
tion of a molecule in one of the steps is compensated by its consumption in
the other step, the steady-state reaction process is realized. If, in the course
of this step, no final product but a new intermediate is formed, then it is this

4t+10 MCK MCK MCK
//17+ 7"
pu

K—**IK 7+ 3- 7 3-
K o
MCK 8™+9
MCK
IK e HK e ik
4*+10 3t 47 3- ot >
K———-—IK———-—-HK MCK MCK
K IR K - - +
TN AN s
/ 10 S Ik CHK K8XIIK Y HK
+ / \31‘ 1"+5+6 1+
1~ +5+6 \\_,HK
+
MCK mok Ko KK kSO 2 K
4/ 17 \/
/‘ - 4++/f7+ 1-+5+6
——-—HK
K\&._/ K<———HK

17+5+6
1

Fig. 4. Simple cycles for n-hexane conversion {Fig. 3(f)].
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intermediate that must be consumed in the other step. Complete compensa-
tion for the formation and consumption of intermediates does signify the
completion of a path along some route.

Thus the rate of a steady-state reaction is determined by individual paths
along various routes. Every rate, however, can be represented as a linear
combination of basic routes and hence a path along this route can be given
as a linear combination of paths along the basic routes. Consequently, the
paths along the non-basic routes composing a reaction are substituted by
equivalent paths along the basic routes. As a result, all paths of the steps for
a given time will appear to be adequately determined through basic routes.
The reaction rate along the basic route is the number of paths along the
basic route per unit time in unit reaction space provided that all paths of the
steps are localized along the routes of a given basis. The reaction rate as a
whole is set by the rates along the basic routes; similarly, a vector is
prescribed by its components along the axes of coordinates.

The application of the concept of “the rate along the basic route” provides
a possibility of obtaining a new formulation for the quasi-stationary con-
ditions in terms of the Horiuti theory which is different from the ordinary
one, i.e. “the formation of an intermediate is equal to that of its consump-
tion”. Temkin called the equations obtained “the conditions for the statio-
narity of steps”. In matrix form they are represented as

W= w @7

Here v is the matrix of the Horiuti (stoichiometric) numbers and ¢ and w the
vector-columns of the rates along basic routes and of the step rates, respec-
tively. Thus the rate of every step is represented as a linear combination of
the rates along the basic routes. Here it is recommended that a simple
hydrodynamic analogy be used. The total liquid flow along the tube (step) is
the reaction rate. This flow consists of individual streams which are the
rates along the routes.

It can readily be shown that eqn. (27) is equivalent to the quasi-steady-
state condition in its general formulation. In unit time and in unit reaction
space there forms imuﬁ of an intermediate, where T, is the stoichiometric
intermediate matrix. Let us recall that the dimension of T, is (I, x S),
where I, is the total number of independent intermediates and S is the
number of steps. After substituting w from eqn. (27), we obtain

B = Tn00) = Coo (28)

LtT follows from egn. (18) that T:,t v = 0. Consequently, we also have
I'y . = 0, which was to be proved.
Temkin applied the identity

W —W_ DWW, 5. .. + W (Wey —W_DW,5...+ ...

= W WoWyg... — W W_gW_5... ‘ 29)
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In this identity the step rates were represented in accordance with eqn. (27)
as

Wy, —wW_, = Z v‘(gp)v(p)
P
where s is the number of the step and its associated graph edges, p is the
number of independent routes, v¥ is the rate along the pth route,v? is the
Horiuti number along the pth route for the sth step, and w,, and w_, are the
rates of the direct and reverse reactions of the sth step, respectively. Temkin
[14, 15] obtained the steady-state reaction equation

1 1 1
D (Z{ + w—sl‘}gz) + w’slw—SZVga) + . >

w51 w+slw+sz w+slw+32w+sa

2)

(2) ¢ (2)

v w_, v W_g W_, Vg

+v(2><l—+ 124 T I
w+sl w+51w+sz w+slw+szw+53

W_ W W . ..

- 1- (30)

w+sl w+szw+ss' .

This equation is independent of the order in which the steps are numbered.
Temkin suggested an algorithm on the basis of eqn. (30) to obtain an explicit
form of the steady-state kinetic equations. For linear mechanisms in this
algorithm it is essential to apply a complex reaction graph. In some cases the
derivation of a steady-state equation for non-linear mechanisms on the basis
of egn. (30) is also less difficult.

We have made an attempt to illustrate the experience of 15 years (from the
mid-1950s to the late 1960s) of the “penetration” of the graph theory methods
into two sufficiently close fields, enzyme and heterogeneous catalysis kinet-
ics. From a purely utilitarian viewpoint, we prefer the algorithms approved
in enzyme kinetics (see, for example, refs. 9 and 10). For linear mechanisms
these algorithms, directly connected with those of the graph theory, are a
much more efficient way of obtaining steady-state kinetic equations than the
algorithms based on the steady-state reaction theory. This efficiency is
constantly increasing as the use of computation analytical methods makes
it possible to perform computations of complex analytical calculations. As
to non-linear mechanisms, the above approaches are inefficient since neither
of these two methods can give an explicit form of the steady-state kinetic
equation (here it is impossible in the general case) or a special compact
expression that would be convenient for analysis. Non-linear mechanisms
will be discussed below.

One must not underestimate, however, the importance of the general
results obtained in terms of the steady-state reaction theory. Its informative
concepts are used in theoretical kinetics, in particular the concept of Hor-
iuti (stoichiometric) numbers and a new formulation for the steady-state
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conditions, eqn. (27). In several publications devoted to the use of graph
theory in chemical kinetics, quasi-steady-state conditions are used just in
this formulation, e.g. in ref. 18. This study suggesting a new algorithm to
derive kinetic equations is based on the Vol'kenshtein—Gol’dshtein formal-
ism, but at the same time the authors also use eqn. (27).

In our series of studies of the 1970s [19-27], generalized in our monograph
[7] (in what follows we will mostly proceed from the original material), we
also used eqn. (27).

1.3 NON-LINEAR MECHANISMS ON GRAPHS

Investigations with the graphs of non-linear mechanisms had been sti-
mulated by an actual problem of chemical kinetics to examine a complex
dynamic behaviour. This problem was formulated as follows: for what
mechanisms or, for a given mechanism, in what region of the parameters can
a multiplicity of steady-states and self-oscillations of the reaction rates be
observed? Neither of the above formalisms (of both enzyme kinetics and the
steady-state reaction theory) could answer this question. Hence it was
necessary to construct a mainly new formalism using bipartite graphs. It was
this formalism that was elaborated in the 1970s.

Bipartite graphs of complex reaction mechanisms. A mechanism of a com-
plex chemical reaction can be represented as a graph having nodes of two
types, i.e. by a bipartite graph [28, 29]. One of these nodes corresponds, as
before, to substances and the other accounts for elementary reactions (N.B.
not for the steps, but for elementary reactions). Edges will join a node-
substance and a node-reaction if this substance takes part in the reaction.
The edge is directed from the node-substance to the node-reaction if the
substance is the initial reactant, and vice versa if the substance is the
reaction product. If the reaction is described as Zo; A; — Xf;A;, the number
of edges from the node-substance to the node-reaction is ¢;; in the opposite
case it will amount to §;. It is evident that non-linear graphs must be applied
to non-linear mechanisms (see Chap. 3, Sect. 5.4)

The basic results in the analysis of non-linear mechanisms using graphs,
were obtained by Clark [29], who developed a detailed formalism, and Ivano-
va [30, 31]. On the basis of Clark’s approach, Ivanova formulated sufficiently
general conditions for the uniqueness of steady states in terms of the graph
theory. She suggested an algorithm that can be used to obtain (see Chap. 3,
Sect. 5.4)

(1) conditions discriminating the region of parameters where the steady
state is not unique (i.e. the condition for the multiplicity of steady states)
and

(2) conditions for the existence of such a parametric region where the
positive steady state is unique and unstable (i.e. the condition for self-oscil-
lating rates). _

Later, Vol'pert and Ivanova [32] suggested methods of searching for some
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critical phenomena for distributed “reaction—diffusion” systems. It is also
possible to describe conditions for the appearance of “dissipative struc-
tures” in such systems in terms of graph theory which provides a natural
account of the structural peculiarities of chemical reaction mechanisms.

Let us discriminate between the main problems in chemical kinetics
solved using graph theory

(1) the algorithmic derivation of steady-state kinetic equations directly
from the complex reaction graph. These kinetic equations (structured forms)
make it possible to carry out a general analysis of steady-state kinetic
equations;

(2) the analysis of the number of independent parameters in kinetic
equations;

(3) the algorithmic derivation of a characteristic polynomial required to
study relaxation times of complex reactions; and finally

(4) the analysis for the complex dynamie behaviour of chemical systems.

Problems (1)-(3) are efficiently solved for linear mechanisms and the
corresponding kinetic models. The major material in what follows will be
presented primarily for linear mechanisms.

Problem (4) is typical of non-linear mechanisms. The number of studies in
this field is essentially lower since the application of graph theory in non-
linear chemical kinetics is new. Qur further description will relate to these
principal problems.

2. Graphs for steady-state kinetic equations

2.1 SUBSTANTIATION OF THE “MASON RULE”

Let us prove the validity of the “Mason rule” formulated above [see eqn.
(11)] for linear mechanisms with many cycles (routes).

A set of quasi-steady-state equations for a linear mechanism is of the form
()% = 0, where £ and ¢ are the vector-columns of the concentrations for the
intermediates and observed substances (those participating in the brutto-
reaction, i.e. initial substances and products) and 5(¢) is the matrix of the
reaction weights

—byuby by,

N by — byy' * by,

be) = 21 22 ) 1)
bnlbnf . _bn.n

Here b; = b;(c) = 0, b; = Y b;. (It is evident that ¢ > 0.) The element of

J#i
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this matrix b; is the sum of the reaction weights. As stated above, the
reaction weight is equal to its rate at unit concentration of the reacting
intermediate.

In addition the law of conservation must be fulfilled for the total amount,
C, of intermediates per unit catalyst surface

Y x,=C
r=1

In this case we assume the absence of any additional laws of conservation
arising in the case when a linear system has autonomous groups of substan-
ces (see Sect. 5.1).

Values of x, are determined using the set

Xy Z b, = L by,
r-ln §= (32)
Yx, = C
r=1

where b, is the weight of the reaction consuming x, and forming x, and b,, is
the weight of the reaction in which x, is consumed and x, is formed.

Let eqns. (32) correspond to the graph G according to the following rule:
every rth intermediate corresponds to a graph node. Let us express it, like
the concentration of an intermediate, through x. The nodes x, and x, are
joined by the edge (x,, x,) if the coefficient b, in eqns. (32) does not equal zero.

Graph edges oriented in a definite direction which indicates the order of
interconnection between the nodes are called directed ares. Their orienta-
tion is indicated by the arrows placed either on the arcs or near them. A
graph, a cycle, and a tree containing directed arcs are called directed. A
directed cycle is also called a contour.

The validity of eqn. (11) is confirmed by the following theorem.

Theorem. If a set of linear equations takes the form of egns. (32), its
solution is determined using the formula

CD,
D

1

r

4

where D, is the sum of weights for the directed spanning trees of the graph
with a root in the node x, and C is the total amount of intermediates per unit

catalyst surface.
Let us prove this theorem proceeding from the Mason rule [5]. For this

purpose let us rewrite eqns. (32) as

bypxs + baxs + ...+ byx,

Z blr
r=2

X1
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bygxy + bgxs + ... + byux,
Xy = -
Z b2r
=1
r#2
(33)
by bk L+ by,
Xp-1 = 7
Z bn—l,r
=1
rén—1
x, = C—x —2%,— ... —%,_;

Then for eqns. (33) we construct a Mason graph (a signal graph) in the
following way. Nodes of the graph Gy (Mason graph) are the nodes x,, x,,

, %, corresponding to the variables and the fictitious nodes x,, %, . . ., X,.
The nodes x; and x; are joined by the arc (x;, x;) whose weight is
—b.
a; = 2 (34)

The nodes x, and x, are joined by the arc (x,, x,) having the weight (— C).
The arcs (x,, x;) join x, with x; and their weight is found from eqn. (34).
Further every node x is joined with x, by the arc whose weight is (+1) and
x;and %; (0 = 1, ..., n) are also joined by the arc with the weight equal to
(+1).
The node x, is the graph Gy input and fictitious points %; are its outputs.
The Mason formula for this graph takes the form

% = =Y PA, (35)
A4

where P, is the kth direct path (walk) from the input node x, to the output
X, and A is the determinant of egns. (33) calculated using the formula

A=1-YGC +YC, —...+ (=Y. C, (36)

A, is the determinant for that part of the graph obtained by eliminating the
path P, from Gy. In eqn. (36), £ G, is the sum of the weights for the whole
of the combinations of two uncontacting contours, etc. and X C,_is the sum
of the weights for the whole of the combinations of m uncontacting contours.
The weight of contours combination is the product of the weights for the arcs
entering into these contours. As can readily be seen, it is far from being
evident that the Mason formula, eqn. (35), is analogous to the expression for
x,, eqn. (11) which must be proved.

Equation (36) is well known in combinatorial analysis (see, for example,
ref. 33) as the inclusion and exclusion equation to calculate the number of
objects possessing a certain, apparently void, set of given properties. Let a
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given property suggest that the n-node subgraph has a combination of ¢
uncontacting contours. Then eqn. (36) provides a sum for the weights of
trees, i.e. of the directed spanning trees in the graph Gy;.

Consequently, the determinant will be

A 37

_ D
H Z bkr
B r
On the other hand, after reducing to a common denominator, the numera-
tor of eqn. (35) will take the form

Y PA, = P (38)
k

IIss.

whence the required result is obtained. Let us now prove that eqn. (35) does
actually hold.
Let P, take the form

Pi = [xO, Xns x;'13 v xik_li xik] (39)
Its weightisequalto C+ @, * a;,,. . .  a;,_,;,- The corresponding determinant
A; will be
Ai = 1 _ch1+zck2_
B P
= 1—<Za,jaj;)+... Lji # niy, ... i (40)
L

The term in brackets gives the sum of all probable contours that are not in
contact with the nodes of the path F, —x,, x,, . . ., x;,. This means that the
denominators of the contour weights are the sums

S byt E Ryiyy e by

r#a
After opening the product I, Z, b,,, & # n, i, ..., i, we will obtain factors
corresponding to the trees with the roots in the nodes x,, x; , . . ., x;, for the
path F,. In combination with the path P, = x,, x;, .. ., x; it provides a
multitude of trees with the root in x;,. The theorem has been proved. Its proof
could be carried out in terms of the known Kramer rule (see refs. 1 and, for
more detail, 7). An example for the application of eqn. (11) to a simple

catalytic isomerization reaction has been given above.

2.2 GENERAL FORM OF STEADY-STATE KINETIC EQUATION FOR COMPLEX
CATALYTIC REACTIONS WITH MULTI-ROUTE LINEAR MECHANISMS

Let the graph G(£, @) correspond to the mechanism of a complex catalytic
reaction that is linear with respect to intermediates. As before, the graph
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nodes x account for intermediates and the arcs u correspond to reactions.
Every arc & of the graph G is ascribed to the number b* (b is the reaction
weight). For the sake of convenience, we assume that ifthe arc @ = (&, y) has
a weight b* (), then the weight for the arc ¢ = (¥, £) will be expressed as
b~ (7). These designations permit us to use an undirected weighted graph as
a graph for the detailed mechanism. Each of its edges @ = (%, y) will account
for the conversion of substance y into substance x and simultaneously for
the conversion of substance x into y. Therefore the edge weight will be
expressed as an ordered pair of the numbers [b* () and b~ (@)]. If one of the
reactions does not take place, the corresponding weight will be equal to zero.

As noted above, a graph of a catalytic reaction must necessarily have
cycles, since every intermediate is both consumed and formed. When apply-
ing the term “cycle”, we will assume that it is a “simple cycle”, i.e. a cycle
containing no repeated nodes. This cycle is also called elementary.

A connected graph is a graph in which each point can be connected to the
other by a certain sequence of arcs.

An unconnected graph is a graph in which not all its nodes can be connect-
ed by a certain sequence of arcs. -

The definitions for a tree and a spanning tree were given at the beginning
of this section. Let us give some further definitions.

(1) Let H be a spanning tree for the undirected graph for the reaction
mechanism G. A directed spanning tree, H, for the directed graph of the
reaction mechanism is one whose arcs are oriented so that every node of the
spanning tree except one, called a root, has one output arc. It can easily be
seen that any node of the directed spanning tree is connected by a path with
the spanning tree root, i.e. the root can be reached from any node.

(2) A directed forest is a term for the unconnected directed graph in which
every component of connection is a directed tree with a root*.

Derivation of equation. During the step u, let a mutual conversion of the
intermediates x, and x; take place at a rate w,

w, = b*@x, —b (@) % (41)
Using egn. (41) whose proof is given above
v CD,
r Z Dr

where D, is the sum of the weights for the directed spanning trees of the
reaction graph with a root at the node x, and C is the total amount of
intermediates per unit catalyst surface (as usual, C = 1). Taking this equa-
tion into account, eqn. (41) can be written as

* All concepts of graph theory not given here can be found in the monograph 34. A good list of
the graph theory concepts required for the investigation of chemical kinetic equations is given
in ref. 35.
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b @D, b (@D,

“ T ED T ED,

or

I

w, [b+ (@) Z b(H,,) - b~ @) Z b(ﬁk,ﬁ)} by ; b(H,,) (42)
where H, , is the kth directed spannmg tree with a root at the node c. In this
case we have
b(H,,) = H b*(a) (43)
IlE ko

The sign * suggests that, for the weight calculation in (I_J,m) we take o™ (@)
or b~ (&) in accordance with the demands for arc orientation in the spanning
tree H,,.

Here we deal with the following almost evident statements.

Lemma (1). The product b* (2)b(H, ) is the weight of a graph having one
and only one contour obtained from the directed spanning tree H, , by adding
the arc 7.

Indeed, H,, is a directed spanning tree with a root x,; hence any arc
incident with x, enters x,. Since the arc u originates from x, and the directed
spanning tree H contains all the graph nodes, the arc u closes exactly one
contour.

A similar statement is also valid for the product b“(i)b(ﬁkﬁ). Let us
designate the contour from Lemma 1, through C,,. Then the inversely
directed contour will be designated as Cg,.

Lemma (2). For the graph H, | ] {«*} obtained by adding the arc u to the
directed spanning tree H,,, the addition to the contour C, is the directed
forest, apparently with one-node components whose roots are the nodes for
the contour C,;. The lemma is evident.

Lemma (3). For any graph H,,|){u"} we will always find a graph
H,4| ) {u™} since the contours G, «5 and Gy, have the same number of nodes
and their additions in the graphs H, | ) {u* } and H, ;| } {#~ } are isomorphic.
Indeed, for H,,| ) {u*}, this is a graph obtained by representing the direction
for the arcs in the contour of H, ;| J {u" }, i.e. by the substitution of C,,, for
Cuse-

ﬂThen from eqgns. (42) and (43) and lemmas (1)-(3) we immediately obtain a
general equation for the rate of step u

) (H b* @ - T[] b*(w) Y b@E)

_ {C@)} \veChyp veChp, HeR(G,C(z) (44)

w, S D,

Here {C()} is the set of simple cycles in the reaction graph passing through
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the edge u, H is the directed forest with roots belonging to C(iz), and H(G,
C(Z)) is the set of such forests.

The properties of this equation will be examined in what follows.

Let us note that the summation in eqn. (44) is taken with respect to the
number of all cycles involving the participation of step u. At the same time,
in the Horiuti-Temkin equation (“the steady-state step equation”), which is
one more formulation for the quasi-steady state conditions [11, 12]

P
Z VEP = oy —w, s =1,...,8 (45)

p=1

the summation is taken only with respect to the P independent cycles.

2.3 ANALYSIS OF PROPERTIES FOR THE GENERAL STEADY-STATE KINETIC
EQUATION OF COMPLEX CATALYTIC REACTIONS

Let us write down the general kinetic equation obtained for the steady-
state rate of the step in the form

Y CP
- (46)

w, Z Dx

where C; is the cyclic characteristics of the ith cycle

G =TJ1@-[10®
and P, is the matching parameter for this cycle

P = ¥ bH)
AeKG, Cluw)

Let us interpret these important characteristics.

(1) We will first clarify the sense of the “cyclic characteristics”. Let us
take any cycle of the graph. Note that here a cycle is treated as a simple
cycle, i.e. that having no repeated nodes. Each of its edges (step) corresponds
to the Horiuti (stoichiometric) number. It can readily be shown that, for the
cycle of a linear mechanism, this number will be either +1 or — 1, depending
on whether the step direction coincides with a chosen direction for this
cycle. Horiuti numbers for the steps not entering into a cycle are equal to
zero. For a one-step mechanism having only one cycle, all Horiuti numbers
are equal to + 1. (If a reaction mechanism also has buffer steps not entering
into the cycle, their Horiuti numbers are zero.) Let us add the steps belong-
ing to one simple cycle, multiplying them by the Horiuti numbers. We will
obtain a brutto-equation to relate the initial substances and products. We
will call this “natural”. It will not necessarily be integer-valued. Further we
will illustrate it in detail by an example of one-step mechanism. The brutto-
equation found can also take the form 0 = 0. Every simple cycle and its
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brutto-equation corresponds to the cyclic characteristics, i.e. the difference
between the products of the weights for direct and reverse reactions, respec-
tively.

The sense of the cyclic characteristic is simple. It is a kinetic equation of
our brutto-reaction as if it were a step and consists of elementary reactions
obeying the law of mass action. For the cycle with the brutto-equation
0 = 0, the cyclic characteristic is C = 0. If all cycles have the same “nat-
ural” brutto-equations, their cyclic characteristics are represented as

C,

P

= [TRO[ — (&) @ @117 @) (47

i

wh_gre K,is t};l& equilibrium constant corresponding to the brutto-equation,
f*(¢) and ™ (¢) are concentrational dependences for the direct and inverse
equations of the brutto-reaction presumed by the elementary reactions, and
k7 ® the rate constants for the reactions of the pth direct cycle.

Thus cyclic characteristics of various cycles will differ only in values of
the factors (I1,k7®). Cyclic characteristics for two different cycles with the
same''natural” brutto-equations are proportional to each other

H ki+(1)>
G <___ (48)

Cz B <H ki+(2)>

In the general case, a complex catalytic reaction can be written in the matrix
form '

T,LA+TxX =0 (49)

Here A4 and X are the vector-columns of the observed and intermediate
substances, respectively, and T', and I’y the matrices of their stoichiometric
coefficients.

As shown above, the stoichiometric (Horiuti) numbers must satisfy the

equality

Wy = 0
After multiplying all steps of eqn. (49) by the vector 37 we obtain a set of
brutto-reaction equations

VT,A =0 (50)

or

T AT
BR
where T'gg is the stoichiometric matrix for the set of brutto-equations.

We have already said that, in principle, the “natural’” brutto-equation can
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have no minimum integer-valued coefficients. Let us illustrate this by an
example of the catalytic isomerization reaction, which can follow the follow-
ing mechanisms

Mechanism 1
WA+ Z =2 AZ

2AZ =2 B+ Z
A =B

Mechanism 11
MA+Z =2 AZ
2y AZ = BZ

3A+BZ =2 Z+2B
2A = 2B

Mechanism III
DA+ Z =2 AZ

QDA+ AZ 2 Z+ 2B
2A = 2B

Mechanism I accounts for the “natural” brutto-equation A = B obtained
by adding steps of the detailed mechanism, whereas mechanisms II and III
correspond to the equation 2A = 2B. Cyclic characteristics will, apparent-
ly, differ. In the former case C = K*C, —~ K~ Cy, in the latter C = K*C2
-K-Ci.

(2) The value Zgb(H) = P, [see eqn. (46)] is a matching parameter. In the
general case it is the sum of factors, i.e. the value characterizing the effect
of the substances not involved in a given cycle.

In terms of the graph theory, b(H) is the weight for the directed graph
whose roots belong to a given cycle. For a complex reaction having one cycle
and no “buffer” steps, we have P = 1 and no matching.

(3) As has been shown above, the cyclic characteristics is a kinetic equa-
tion for the brutto-reaction as if it were a simple step. But the denominator
Z.D, accounts for the “non-elementary” character of this reaction and
indicates the rate retardation by catalyst surface intermediates.

Every summand in the denominator is the spanning tree weight. Let us
recall that, in this case, the sense of the spanning tree is a non-cyclic
sequence of reactions with the help of which a given intermediate is formed
of all others. Hence it can easily be shown that (a) every summand of the
denominator £, D, and of the matching parameter P, cannot simultaneously
contain weights for the direct and reverse reactions of the same step; (b)
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every summand of the denominator and of the matching parameter cannot
contain weights for two or more reactions involving the participation of the
same intermediate; (c) every summand of the denominator is a product of the
(S — P)reaction weights, where S is the number of graph edges (steps) and
P the number of linearly independent cycles; (d) every summand of the
matching parameter P, is a product of the (S — S;) — (P —1) reaction
weights where S; is the number of arcs belonging to a given cycle.

It must be noted that at present the writing of all summmands D, presents
no difficulties because there exist effective computation algorithms.

Equation (46) accounts for the step rate w,. The steady-state rates for
concentration variation of substance A(W,) and for the step (w,) are related
as

Wa = X vuatn (1)

where y, , is the stoichiometric coefficient for the observed substance A in
step u. As a rule, each elementary reaction of complex mechanisms of
heterogeneous catalysis involves the participation of no more than one
molecule of the observed substance. Therefore y,, takes a value equal
to+ 1, —1lor0.

Let us apply the general equation (46) for the analysis of various typical
cases.

I. One-route mechanisms
C=Hb+(ﬁ)—nb“(ﬁ) P =1

It is this one-route mechanism of catalytic isomerization that was used
above to illustrate the “operation” of graph theory in chemical kinetics. For
a graph of a one-route mechanism see Fig. 5(a).

Let us give one more example, a two-step reaction. Among the class of
two-step catalytic reactions suggested by Temkin [36] and studied in detail
by Boudart [37], we can find many industrial reactions. For example

1) H,0 +Z = ZO + H,

2)Z0 + CO =2 Z + CO,
CO + H,0 = CO, + H,

OG-CO GOB

(2) (b) (c) {d) (e)

Fig. 5. Graphs of linear mechanisms. (a) One-route mechanism; (b) one-route mechanism with
a “buffer” step; (c) two-route mechanism with a common intermediate; (d) two-route mechanism
with a “bridge” connecting cycles; (e) two-route mechanism with a common step.
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In this case the set of reaction weights will be

by = k{[H0]

i

bl_ = kl_[Hz]
by = k;[CO]
by = k3 [CO,]

and the reaction rate will be written as
b by — bi by
bf + by + by + b5
_ k" ki [H,0][CO] — k; k5 [H,][CO,]
ki [H,0] + &y [H,] + k5 [COL + k&5 [CO,]

This expression is identical to that from ref. 36. The total number of
spanning trees in the graph of the one-step mechanism is equal to n? (all steps
are assumed to be reversible). We will discriminate between direct, inverse
and mixed spanning trees. Direct and inverse will be called the spanning
trees consisting of the arcs only with the direct or inverse orientations,
respectively. Mixed spanning trees are those containing both direct and
inverse arcs. The number of the direct and inverse graph spanning trees is
equal to C*"! = n. Every node has one direct, one inverse and (n ~ 2) mixed
spanning trees. Thus the relationship

W =

n+n-+nn-2 = n

is fulfilled.

It is evident that the mixed spanning trees exist only at n > 3. Two-step
schemes have no mixed spanning trees.

For the three-step mechanisms (Fig. 1) the weights for direct spanning
trees are expressed as

By, = biby + bfby + bib! = E[AlkS + Rk ki + ki RT[A]
B, = bib; +b;by + bbby = kiks + k;yk;[B] + k5 [Blk; (52)
B = bfb; + bbb + b5b7 = Ef[Alky + ki ks [B] + kS kS

where By, B;, and B,,;, are the sums of the spanning tree weights for direct,
inverse and mixed spanning trees, respectively.

The number of spanning trees is much lower if all steps are irreversible
(““strong” irreversibility) or if several (one, two, etc.) steps are irreversible
(“weak” irreversibility). In the case of “strong” irreversibility there are no
either inverse or mixed spanning trees. If the irreversibility is “weak” and
only one step is irreversible, the number of inverse spanning trees reduces
to one. In the case in which two or more steps are irreversible there are no
inverse spanning trees at all.
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For example, for the oxidation of hydrogen on the oxides of the transition
metals of Group IV, we have [38}

(1) H, + (ZO), — ZO0Z-H,0
(2) Z0Z-H,0 = ZOZ + H,0
(3)ZOZ + H, —» Z:-Z-H,0 (53)
WHZ-Z2-H0 =2 Z-Z + H,0
BYZ-Z + Oy = (ZO),
The corresponding expressions for the reaction weights are

bi = ki[H]

bf = Ry
by = k;[H,0]
b = ky[H]
bi = ki
by = ki[HO]

by = ki[O]
[16% (@) = k& ks kS kS [H (O]

Then

W oo Bk RS R RS [H )0, (54)

2 D,

where

2D, = RkykiR{[H + k3 RSRS (R + k3I0,1H,] +

+ ki kg k3 Ry [H,P[H;0] + k& k3 &y [H,][0,][H,0] +
+ Ry k§ RS (k5 + ROH,TP[0,]

If a one-route mechanism is supplemented by a “buffer” step, the graph
will have a “hanging” node [Fig. 5(b)].

For this graph the steady-state rate for a one-route mechanism will be
expressed as ‘

(e - 117
¥ D,

x

W =

The only difference is that the weights of the graph arcs going out from the
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node x must be divided by the value (1 + K,) where K, is the ratio of weights
of the direct and inverse reactions for the step associated with the “hanging”
node.

It is evident that, in the steady-state case, the “buffer” step is in equi-
librium and its rate is zero.

II. Two-route mechanisms
(1) Let us consider the mechanism of the reaction of NO and CO on silver
[39]

BNO + Z = ZNO
(2) ZNO + NO - N,0 + ZO
BN,O+7Z - N, + ZO
4720 + CO - Z + CO,
The reaction graph is represented in Fig. 6. The reaction weights are
b = k{[NO]
by = kf
by = k5 [NO]
by = ki [N,0]
bf = k{[CO]

Cyclic characteristics corresponding to the irreversible cycles I fsteps (1),
(2), (4)] and II [steps (3), (4)] are expressed as

G = ki ki k{[NOF[CO]
G = kik{[N,0][CO]

Matching parameters accounting for cycles I and T, will be B, = 1 and Py
= ki + k;[NO], respectively.
Then we obtain
Woo = Weo, = w;
_ k{Ek R [NOP[CO] + ki k/[N,O][COIk; + k7 [NOJ) 36)

2D,

(55)

Z—_—_—ZNO

N/

Fig. 6. Graph of the NO + CO reaction over silver.
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where

2D, = EES[NOP + kj [NOJ[COIR! + k) +

+ ki k§ [N,OJ[INO] + ki &{[CO] + Ay Ry [N,O]

(2) The mechanism for the synthesis of vinyl chloride, eqns. (24), whose
graph is given in Fig. 3(d), also has two routes with one “natural” brutto-
equation. Without taking into account the reversibility of steps (1) and (3),
the rate of product formation will be

W = w, + w,
ki kR [HCY[C, HL ] + k3 k3 ki [HCI[C,H,]
ki RFICHL 1 + ks kS [HCN[C,H,] + ki ks [HCI?

(67

Among two-route mechanisms, those illustrated in Fig. 5(c) (those having
one common intermediate) and in Fig. 5(e) (mechanisms having a common
step) are widespread. The graph in Fig. 5(d) accounts for the mechanism in
which two cycles are connected by a bridge “arch”. It can easily be seen that
the steady-state rate corresponding to the “arch” will be zero, i.e. this step
is in equilibrium. These typical schemes are present as fragments for multi-
route mechanisms,

Essential differences are observed between the two-route mechanism with
a common intermediate and the two-route mechanism with a common step
(common steps).

In the former case, a step of each cycle can enter into one simple cycle. In
the numerator of eqn. (46) for the step rate we will observe only one cyclic
characteristic, C, corresponding to this cycle. The presence of an additional
cycle affects only the value of the matching parameter P. The cycle rate can
vary only quantitatively, but in neither case does the reaction direction
vary. This situation corresponds to the so-called “kinetic matching”(see, for
example, ref. 40). Assuming that all steps are reversible, the total number of
spanning trees amounts to nin, + n;nl —n,n,, where n, and n, are the
number of steps in both cycles.

In the second case the step of each cycle can enter into an additional cycle
(also assuming that all steps are reversible). In the numerator of eqn. (46) for
the rate of the step of one of the cycles we observe the appearance of the
summand W¥, It contains a cyclic characteristic corresponding to the new
cycle. In the numerator for the rate of the step of the other cycle there
appears the summand — W¥*. This case corresponds to the so-called “ther-
modynamic matching” when, due to the appearance of additional cycles, it
becomes possible to change both the rate value and its sign (i.e. the reaction
direction). It is of interest to note that thermodynamic matching in the pure
form is impossible since we will always observe the presence of a summand
accounting for the performance of a reaction by “its own” cycle. The total
number of spanning trees is calculated using the formula n,(n, — 1)(n, + n,
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- 2). If both cycles are irreversible, thermodynamic matching is not ob-
served.

Let us emphasize a simple but important circumstance. If multi-route
reactions are carried out on a catalyst with an active site of the same type,
they must necessarily be characterized by either kinetic or thermodynamic
matching. The problem of matching will be discussed in more detail in the
next paragraph.

II1. Multi-route mechanisms

As an example, let us consider the above fragment of the conversion
mechanism for n-hexane [its graph is given in Fig. 3(f)]. The weights of some
arcs are equal to the sums of those of individual reactions. For example, the
weight of the arc from HK to K amounts to byg.x = b, + b; + b,. Let us write
down the rate for step (38). It enters into four cycles (see Fig. 4). Cycle I
(HK-MCK-IK-HK) has the cyclic characteristics

C = byb_;b_y —b_3bib,
The matching parameter P, accounting for the connection of the node K with
cycle I, will be

P = b, +b_g+ b

For cycle II (HK-MCK-TK-K-HK) we have
Gy = b3b_y(bs + bo)by —b_sbib_o(b_; + bs + bg) B =1

For cycle Il (HK-MCK-K-IK-HK) the value of C is equal to
Cu = by(by + by)b_gb_y —b_yb_, (b5 + by)b, Po=1

For cycle IV (HK-MCK-K-HK) it amounts to
Gy = by(by + byp)by —b_3b_,(b_; + by + &)

The matching parameter P, characterizing the connection of the node IK
with cycle IV, takes the form

P, = (bg+ b)) + b, + b,

The cyclic characteristics and matching parameters for the cycles being
known, we can easily determine a numerator for the steady-state rate. Since
the denominator is cumbersome, we omit its description here.

The principal advantage of eqn. (46) is not only the simple derivation of
a steady-state kinetic equation directly from the detailed reaction mechan-
ism but the possibility of obtaining from this equation the results which have
physicochemical significance. In what follows, we will discuss the most
important ones.

References pp. 257-258
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2.4 HOW TO FIND THE KINETIC EQUATION FOR REVERSE REACTIONS

This problem, put forward independently by Horiuti (1939) [41] and Bores-
kov (1945) [42], can be formulated as follows: to find a kinetic equation for
a complex reaction in the reverse direction from the known similar expres-
sion for the direct reaction rate and applying only thermodynamic relation-
ship for the brutto-reaction. In other words it is necessary to answer the
question, in what cases is the equation

+ =
W@ POk ) (59)
o @

valid? Here W*(¢) and W™ (¢) are the rates of the direct and reverse reac-
tions, respectively, f* (€), f~ () are kinetic laws corresponding to the direct
and reverse brutto-reactions, ¢is the set of concentrations for all substances,
7 and € are the sets of concentrations for the initial substances and products,
respectively, and K (T') is the equilibrium constant for the brutto-reactions.
Horiuti solved this problem in 1939 for a special case, i.e. for the reaction on
a hydrogen electrode. It is in connection with this problem that the known
concept “stoichiometric number” was introduced. Boreskov, during World
War IT and not knowing of Horiuti’s study, found a solution to this problem
for a sequence of reactions under some simplifying assumptions (e.g. one
step is rate-determining, the kinetic relationship is a power equation). The
Horiuti-Boreskov problem appeared to be rather difficult. In fact, it is the
problem of matching kinetic and thermodynamic relationships for complex
reactions. So far this problem in its general formulation, i.e. for multi-route
non-linear reactions, has not been solved. We will now present the results
concerning linear mechanisms.

(1) The cycle is unique
In accordance with eqn. (46) we obtain

C [T —[]or
W= — i i
ZDJ‘ ZDJ:

W+ - W~
+ W_
Wi )

1a]f[b;
w( G )
@) [1 & (T
= W+<1 ___.___l._____)
£ @[]k (T)

il
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- W+<1 ——fﬂ,—) 59
K (THE @)
where
16
W = D,
and
[To:
W—- - i

2D,

For this case the Horiuti-Boreskov concept is always valid and does not
require an assumption about the rate-determining step.

Let us note that in eqn. (59) the expressions f* (@ and - (€) are the kinetic
dependences that are written according to the law of mass action for the
“natural” brutto-reaction, i.e. for the reaction obtained by a simple addition
of all cycle steps, and K. (T) is the equilibrium constant for this reaction.
However, as we mentioned above for the reaction of catalytic isomerization,
the “natural” brutto-equation should not necessarily have integer-valued
coeflicients. For the mechanism

MA+Z a2 AZ
(2)AZ = B+ 2
with the “natural” brutto-equation A = B eqn. (59) will take the form

W = W+<1~ ! C—B) (60)

eq,m Ca
But for the mechanism
WA +Z = AZ
@A+ AZ 2 2B+ 7
with the “natural” brutto-equation 2A = 2B, eqn. (59) will be
ch
K., Ch/

(e

In egns. (60) and (61), K., . 1s the equilibrium constaﬁt for the brutto-reac-
tion with the minimum integer-valued coefficients.

W = W*(l—
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In the general case we can write

W = w+[1 _ @—m@ﬂ (62)

eq,m
where ¢,(¢) and K, will correspond to the brutto-reaction with the mini-
mum integer-valued coefficients. The value k can be called the brutto-reac-
tion multiplicity.

Equation (62) is an analog of that obtained by Boreskov [42] but in
contrast to it, it does not requiré the assumption of the existence of a
rate-determining step.

(2) There are several cycles

Let us consider the case in which the rate of the step (or steps) of interest
is expressed as eqn. (59) or (62). This step participates in simple cycles at a
non-zero rate (non-zero cycles) and these cycles correspond to the same
“natural” brutto-equation.

Let us interpret it in more detail. According to eqn. (46), the step rate is
expressed as

Y. GP,
w, = SO,

The cycle will be characterized by a zero rate in the two cases: (a) the cycle
corresponds to the “natural” brutto-equation 0 = 0; then C = 0 and (b) the
cycle is in equilibrium; then C = 0. Cycles with zero rates (zero cycles) do
not provide any additional summands in the numerator, whereas the deno-
minator will now have summands accounting for the reaction retardation by
the intermediates of these cycles.

Let two cycles have similar “natural” brutto-equations. Then their cyclic
characteristics will be expressed as

[T - I1 %)

bl y 2
yifqp -
Hm( n<b;>l>

i

G

i

- e -£2) (63)

and similarly

ey 4@
6 = fier(i-49) &)

eq
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The values ¢ (¢) and K, in egns. (63) and (64) are the same.
We then have
w (CGP + GR)
u Z Dx
-2
<H G P+ 1 <b,~+)“P2) A K/
i i . Z D

x

(65)

il

x

Thus eqgn. (65) takes the form of eqn. (59). It is evident that the same
statement can also be made in the case when some step takes part in many
cycles with the same “natural” brutto-equation. The representation of type
of eqn. (65) will also be valid for the steady-state rate of concentration
variation for substance A [see eqn. (51)] if this substance participates in
non-zero cycles with the same “natural” brutto-equation.

Let us note one special but widespread case when there are several cycles
but they have only common nodes (intermediates). Each cycle has its “own”
observed substance that is consumed or formed only in this cycle. The rate
of concentration variation for this substance will have only one cyclic
characteristic in the numerator, hence its expression by eqn. (59) is valid.

It is possible that the reaction with the only brutto-equation will follow
several routes. For example, the reaction of vinyl chloride synthesis

C,H, + HCl = C,H,Cl

can follow two routes [see eqn. (24) and Fig. 3(d)]. In this case “natural”
brutto-equations are similar. Apparently, this can be considered to be the
rule, Then in the case when all steps are reversible, eqn. (59) for the rate of
consumption of a substance is valid.

But, in principle, it is possible that, for the reaction with the only brutto-
equation, its different routes correspond to the "natural” brutto-equations
having different multiplicities [see eqn. (62)]. Then eqn. (59) would not be
valid. The literature lacks studies in which this problem has been examined
on the basis of experimental data.

It can be concluded that, for linear multi-route mechanisms, a class has
been specified for which the representation of a kinetic equation in the form
of the Horiuti~Boreskov equation, eqn. (59), is valid. Note that Khomenko
et al. [43] have analyzed a kinetic equation for the two-route reaction, one
of which is in equilibrium. For the results of the analysis for a non-linear
one-route mechanism, see ref. 44.

2.5 MATCHING OF REACTIONS AND THE REPRESENTATION OF THE KINETIC
EQUATION IN THE HORIUTI-BORESKOV FORM

The result obtained provides an interesting aspect in interpreting the
matching of the above reactions. If a kinetic equation can be presented in
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the Horiuti-Boreskov form, we are dealing with “kinetic matching”. In this
case the addition of an additional cycle affects the value of the rate but
cannot result in a reversal of the direction.

But if the kinetic equation cannot be presented in this form, we are
dealing with "thermodynamic matching” affecting both the value of the rate
and its sign (direction). Thus, the typical mechanism

corresponds to the kinetic equations

C, P,
WI - 141
> D,
and
WII — CZPZ (66)

2D,

x

and the mechanism

AR
X1. Xo
w—/

corresponds to the equations

Wi o CP + C*

2. D,

. 67
Wi — GFR - C

2D,

where C¥ is the cyclic characteristic of the total cycle obtained after remov-
ingthearc (X;, X,); P* = 1. Equation (66) is the case of kinetic matching and
(67) that of thermodynamic matching. The concept of thermodynamic and
kinetic matching is applied in the case when at least two brutto-reactions
take place in the system and can affect each other. But multi-route mechan-
isms can also be realized for cases with only one brutto-reaction. Various
cycles can have either common arcs (steps) or only common nodes (inter-
mediates). In this case we can also observe matching: various routes with
different characteristics will be matched.
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2.6 OBSERVED KINETIC REGULARITIES AND CHARACTERISTICS OF DETAILED
MECHANISMS

The analysis of observed kinetic parameters, primarily of the observed
reaction rate order, and observed activation energy is an integral part of the
kinetic study of complex catalytic reactions.

In accordance with ref, 35, the terms observed order and observed activa-
tion energy can be used correctly only for power kinetic relationships. Here
we will examine the relationships between the experimentally observed
values dlnW/dlnA and dlnW/d(— 1/RT) and the characteristics of the de-
tailed mechanism. We believe these relationships to be rather informative.
As the subject of the analysis we will take a one-route catalytic reaction
with a mechanism that is linear with respect to the intermediates.

Since the steps of these mechanisms usually involve the participation of
no more than one molecule of the observed substance, the steady-state rate
of its concentration variation will be presented as W, = pW, where p is the
number of steps involving the substance participation of A and W the
steady-state rate for any step (rate over the route).

2.6.1 Observed reaction order

Let us first present some transformational expressions for the steady-state
step rate. Every path corresponding to the summand of D, can include
several steps for the consumption of the same substance. The weight of the
corresponding spanning tree will then be characterized by the power ex-
ponent for the concentration of this reactant with which it enters into this
spanning tree. This exponent is the total number of molecules consumed for
all steps of a given path.

Assuming that the chosen substance, A, reacts in p steps of the n-step
one-route mechanism, let us express the denominator of the steady-state rate
as a polynomial with respect to its concentration

> D, = By + B[A] + Bj[AF + ... + B,[AP (68)
After a similar transformation of the numerator, we can write
K[AP — B~
= 69
W B, + Bi[A] + ... + B,[AP (69)
where By, By, ..., B,, B~ = I1;b; are functions of the composition and

temperature which are independent of the concentration of substance A. We
then have

_ dnW W /oAl
" T Tm[A] ~ FA]

o[A]

PKIAY B [A] + 2B,[A] + ... + pB [AP

K[AF - B~ B, + B[A] + ...+ B[AF
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K[AP@B + (@ ~1DB[A] + ... + BP_I[A]"") + BT(BA] + ... + BP[A}P)
(KIAP — B')(B0 + B Al + ...+ Bp[A]")

(70)
After several transformations we obtain
m, =1 - ) spanning trees with [A] . piz O—i+1)
B + BJ[A] + ...+ Bp[A]p i<0
ing trees containing [AJ' -
Y spanning trees containing [A] . pB _ 1)
B, + BIA] + ... + BP[A]" K[A¥ - B
We can write egn. (71) as
_ OlnW
s T FInA]
Pl . spanning trees containing [A]' B~
= Y ®-9 ) g glal, i
i=0 B, + BJA] + ...+ BP[A]P KIAP - B
(72)

We will now give some preliminary notes that will be necessary for the
following discussions.

(I) Let substance A interact with only some of the intermediates. A graph
for the one-route mechanism is given in Fig. 7. In this mechanism substance
A reacts only in the steps enclosed between the nodes v and (j + 1). For
definiteness, we assume that j > u. The first step in which A reacts is the
step © and the last is the step j. It is evident that (j + 1 — uw) > p, which

b . S
—
e —
bk
bl ki (A
+
b4

bt

\ // b7—1 —TT T~

m

-
: —— —
x/+1 Xj-1 —_—

- X et
b by

Fig. 7. Graph of a one-route catalytic reaction.
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indicates that substance A can react with not all the intermediates localized
between the nodes x_and x.. Let us represent the number of 1ndlces for which
x, interacts with A as L.

(II) For a general proof we will analyze the route all steps of which are
reversible. If some step is irreversible, the weights of the spanning trees
containing an inverse reaction, must be treated as zero.

Under assumptions (I) and (II), the relationship

- i) Z spanning trees containing [AJ
z'b B, + B/[A] + ...+B[A]

D~(G-1
73
R ST (73)
is valid.

Here the summation is performed with respect to those values of i for
which X, interacts with A; D(;_l) is the sum of the weights for all spanning
trees containing an inverse reaction of the (i — 1)th step. The validity of eqn.
(73) can be proved by using the fact that the summation in the right-hand
side exhibits the appearance of the factor (p — k) before every spanning tree
containing [A]*. We omit a strict mathematical proof since it is cumbersome
and will write a general formula for the observed order of the reversible
n-step reaction taking into account eqns. (72) and (73)

_ olnW
a7 FIn[A]
2Dy w- 4
= R
UEn W

where W~ = B7/Z D _is the rate of the inverse reaction and W = (K[A}
- B~ )/E D _is the total reaction rate.

Equatlon (74) has an interesting physicochemical sense. It appears that
the observed order is controlled by three components.

(1) The sum of steady-state coverages of intermediates reacting with A.

(2) The sum of the values for D;_,,/=,D,, every summand of which is the
ratio of the sum of the spanning trees weight containing an inverse reaction
of the (i — 1)th step, to the sum of weight for all spanning trees of the
reaction graph. The presence of an inverse reaction involving the par-
ticipation of the intermediate X; reduces its steady-state coverage. The
summation is performed with respect to all iel. The value D;. /X, D, is
determined as a “portion” of the inverse reaction for the (i — 1)th step. In a
similar way the “portion” for the direct reaction in the ith step can be
determined. ‘

(3) Reaction reversibility as a whole. It is characterized by the value

References pp. 257-258



222

Hbz- - + 13 -1
; 4 [K f(C)_l}

B )

where K, is the equilibrium constant of the brutto-reaction, ¢ and ¢ are the
concentration vectors for the initial substances and products, respectively,
and f*(¢) and £~ (€) are functions for the direct and inverse “natural”
brutto-reaction, respectively.

Thus the observed order is “three-step” and is controlled by the sum of
intermediates, the reversibility of the previous steps u, and finally by the
reaction reversibility as a whole.

Let us give, without proof, the equations

DY + Diy
2D,
i.e. the sum of reaction portions involving the participation of the ith

intermediate is equal to the concentrations of all the other intermediates
and

1 - x (75)

SO+ YD = n-DYD. (76)

Assuming that substance A reacts only in one step and applying eqns. (75)
and (76), we obtain
Dy w-
L= 1 - my 4 —er

2 D, w

If the order for the reaction rate is found according to the product B, we can
also determine the contribution of the inverse reaction for the (i — 1)th step

Diy _ ,_ . W
2 D W

Here my is the reaction rate order with respect to substance B [B par-
ticipates only in the inverse reaction of the (i — 1)th step].

In the case when the initial substance A takes part in the direct reaction
of the ith step and the product B reacts in the inverse reaction of the i — 1)th
step, the steady-state coverage will be determined as x; = m, + mg.

Various particular cases can be easily obtained from eqn. (74). If sub-
stance A reacts only in one ith step and at least one step is irreversible, we
obtain
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If the step (I — 1) is irreversible, we have
my, = x; (77

It must be noted that an attempt to find a relationship between kinetic
orders and surface coverages was made as early as 1958 [45]. Here the
exponents for the kinetic equations W = K[A]"[B]" were interpreted as

%
N

s

m = m —

where m’ is the number of particles of A entering into the activated complex,
o, and o, are the amounts of surface sites occupied by the substance A and
the activated complex, respectively, and 8, is the surface coverage by the
substance A. It is evident that if m’ = a4, = o, = 1, thenm = 1 — 6,.

Relationship (77) was given by Sokolovskii [46] for the irreversible two-
step mechanism

WMA+Z - AZ
AZ+B - AB+ Z

But the role of eqn. (77) for interpreting the kinetic relationship and, in
particular, their relation with surface coverage was first shown clearly by
Golodets [47].

If the one-route mechanism is a combination of irreversible steps and the
substance A participates in several of these steps, then

my = )X
2

where the x; values are the concentrations of the ith intermediates with
which A reacts. This relationship can easily be obtained from egn. (74) by
taking into account the irreversibility of all steps.

Let us consider a probable value for the observed order. For the irrever-
sible case it can never be greater than unity irrespective of the number of
steps in which the reactant takes part. Reversibility of individual steps
increases the observed order but its value will not be greater than p (i.e. the
number of steps involving the participation of the reactant A), if the reaction
isirreversible as a whole, i.e. W~ = 0. This conclusion follows directly from
eqns. (74) and (75). But if the total reaction is reversible, the observed order
can, in principle, be arbitrarily high. It must be noted, however, that the
value dW/A[A] cannot be determined according to dln W/dIn[A] near equi-
librium since W* =~ W~ and (W~ /W) — oo.

Examples.

(1) Let us analyze the observed rate orders for hydrogen oxidation on
Group IV transition metal oxides. For the steps of the detailed mechanism
in accordance with refs. 38, 48, and 49, see eqn. (53); the appropriate kinetic
equation is given by eqn. (54).

From egn. (74) we obtain
References pp. 257-258
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dnW > Dy

= (7 = [(ZO),] + [20Z] + —

i (Cﬂn[Hz] [05],[Hp 0], 7= const. [(Z0)1 [ ] z
_ RRTES (BT + RSIHL[0,] + ki kS RS Ry [H,][0,][H, 0]

z )

onw > D;
My, = | = = [ZZ] + —
O <@1n[02] [H,][H;0],T= const. (2] z
ki k3 ki RS [H,)* + ki ks ks ki [H,*[H;0]
z %
< nW

aln[HzO])[OZ],[HZ].T=const.
— (b ks B3 Ry [HL)P[H, 0] + ki kS RS Ry [H,]1[0,1[H,0])
z

My,0 =

The fact that my,q # 0 accounts for the effect of water observed experiment-
ally. It can easily be shown that

my, + mo, + mye = [(ZO),] + [Z0Z] + [ZZ]

i.e.it equals the total concentration of the water-free species. At high values

of k£ [0O,] under the assumption that k = kf, kf = &/, and k, = k;

(which is similar to ref. 23) we obtain .
My, 2

= + 1
lmHZOl (bHZOpHZO)

whence a value for the adsorption coefficient can be determined

ok _ K
R R
(The available literature data for this coeflicient are scarce and inaccurate.)
This problem was analyzed more fully in ref. 49.
(2) Let us consider a catalytic reaction of NO with CO on silver. Its
detailed mechanism in accordance with ref. 39 is given by eqn. (55) and the
appropriate kinetic equation is egn. (56). It can readily be shown that

dnW
Mmoo = Fnco] - 1401
oW ki k7 [CO]
o = samo] ~ 17+ (N0 + Soe=

According to the experimental data, the value of mgg is close to unity.
Since mgy = [ZO], it can be suggested that in this temperature range the
surfaceis practically completely covered by oxygen and step (3) is rate-deter-
mining. For more detail, see ref. 39.
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Thus examples (1) and (2) enable us to affirm that the observed rate order
or a combination of the observed orders can be used to estimate steady-state
concentrations for intermediates.

Also useful can be the ratio of observed orders with respect to various
substances. This value is the ratio of surface coverage and its advantage is
that it does not contain a cumbersome denominator =, D, . In this sense this
characteristics for a single-route reaction is similar to the known charac-
teristics of multi-route reactions, i.e. selectivity.

In principle, the observed orders can be used to dlscrmnnate between
some mechanisms. For example, for the scheme

WA +B+Z7Z - ABZ
(2) ABZ - AB + 7
we obtain m, = my = [Z]; whereas for the mechanism
MA+Z - AZ
2)AZ + B -» AB + 7

we have m, = [Z], mg = [AZ], my + my = 1. (It is evident that these
schemes are indistinguishable only at m, = mg = 0.5.) Having the estimate
for the surface coverage obtained from the observed order, we can easily
estimate reaction constants.

Now let us present some relationships for the irreversible two-step me-

chanism
WA+ Z - AZ
2)AZ - B+ 7Z

olnW
dln[A] (Z]
dln[Z] FInW

dln[A] d(In[A])?
= [AZ] = 1 - [Z]
Thus we have

on W . FPln W
dIn[A]  &(In[A])?

2.6.2 Observed activation energy

Let us write an expression for the steady-state rate in the form
[T65 = ITo;

Z By, + Z Bivi + Y, Buis

i

(78)
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where By, is the weight of the spanning tree for the node i containing only
direct reaction steps, B, is the weight of the spanning tree for the node i
containing only inverse reactions, and B, ; is the sum of the weights for the
“mixed” spanning trees of the ith node containing both direct and inverse
reactions.

Let us also give a formula for the steady-state concentration of the ith
intermediate

_ Bdir,i + Binv,i + Brpix,i
z Bdir,i + Z Binv,i + z Bmix.i
Let us show that, for a one-route linear mechanism assuming that the rate

constant has the Arrhenius dependence on temperature, (i.e. & = kg, exp(—
E? [RT), the equation :

[X:] (79)

JdnW
Eoe = #(—1/RT)
n+l
Y B - EDey (DB -SE )W
— -E'+ + i=2 + i i
Zx i ST W
En++1 = E (80)

is valid where E* and E; are the activation energies for the direct and
inverse reactions of the ith step, respectively, and (—-AH,) =
(X,E;" — X,E;) is the thermal effect of the “natural” brutto-reaction. For
the derivation of eqn. (80) we will write dlnW/d(— 1/RT') using eqn. (78) as

SnW <Z Ei+>ﬂb? - (Z Ef)ljb;
a(—1/RT) 1-[ b H = _
Spm(pE) rre) -

J#i

i k j=Fk+1 =1

Z (Bgiri + Binvi + Buixi)

After reducing this expression to a common denominator, we can readily
extractZ;x; E; and (X, E — X, E7) 11,67 [(I1;b; — I1,b; ). It can be shown that
the rest of the summands are reduced to the form X, (E;* — E;_,,D;_y/Z, D.).
Due to the cumbersome calculations, we will not present a strict proof of the
validity of eqn. (80).

Let us consider the parameter AE; = E* — E;_ 1') in eqn. (80). It is the
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energy parameter for the ith intermediate, i.e. the difference between activa-
tion energies of two reactions involving the participation of the same inter-
mediate. It can easily be shown that Z,(AE;) = Z,(- AH,;) = (— AH,). The
value D;_,, was determined above as the contribution of the inverse reaction
for the (i — 1)th step.

By analogy with eqn. (74), let us also consider various particular cases for
eqn. (80). If at least one step is irreversible, the equality

n+l
Z (B = Ei)Dg_y
Eobs = inEi+ + = En++1 = E1+

2. D,

will be valid. If AE; =~ 0, the corresponding terms disappear. If all steps are
irreversible, we obtain

By = Z@‘CiEi+

Note that the latter relationship in its particular formulation for a two-
step mechanism was reported previously by I'chenko and Golodets [50].

The expression for the observed activation energy eqn. (80), is similar to
that for the observed order, eqn. (74), in its “three-step” character. Here
there are also three summands that account for the contribution of inter-
mediates, individual reversible steps, and the total reversibility of the reac-
tion.

It is interesting that eqn. (80) can be written in a form that is similar to
the Bronsted equation

Ey = A — B(~ AH)

where A is a complex function of the composition of the gas mixture and B
is total reaction reversibility
e
W+ — W~
1
(I{eqf+ (%)/f— (T’E) - 1)

B =

A value for the reversibility B can easily be found if the equilibrium con-
stant of the brutto-reaction and the gas phase composition are known.

It is possible that this relationship between the thermal effect of the
complex reaction and its observed activation energy is responsible for the
fact that the Bronsted equation (or its analogs) appear to be valid for some
elementary reactions as well. A question arises whether the observed activa-
tion energy can be higher than the activation energy of elementary steps.

If all steps are irreversible than in accordance with eqn. (80), E,,, cannot
be higher than the activation energy of the individual reactions. If only part
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of the steps is reversible, then E can be greater than the maximum activa-
tion energy E;*, but cannot be higher than X, E;* . And finally, if all the steps
are reversible, then E; can, in principle, be arbitrarily high. As in the case
of the observed reaction order, it must be taken into consideration that the
value dInW/3(— 1/RT) cannot be used to evaluate W/dT near equilibrium.

Other conditions being equal, an increase in E,,, will be promoted by the
endothermicity of the brutto-reaction: L, E;* > XZ;E;, whereas its decrease
will be accounted for by the exothermicity of the brutto-reaction:
ZE- > LE”.

Example.

We shall consider hydrogen oxidation on Group IV transition metal
oxides [see eqn. (53) for the mechanism] [38, 48, 49].

Under the assumption that kf = ki, k5 = kf, k7 = k;,and high values
for ks[0,], the steady-state kinetic equation (54) will take the form

ki ks [H,]

LA

where
2o = 2k{[H;] + k3 (2 + byol[H,0])
Taking into account the simplifications made, we can write
Ege = myE + (1 — mg)E; + [muolgs,o

where E, and E, are the activation energies for reactions (1) and (2), respec-
tively, and gy, is the heat of adsorption of water.

With water eliminated in the cycle, my, = 1and (1 — my,) & |myl = 0,
we obtain E,,, = E,, i.e. the observed activation energy is the same as the
activation energy of reaction (1). If we know the observed orders (my, and
Mu,0)s Eopss E; (from the experiment at my, = 1), and also gy, (it was deter-
mined in ref. 49), we can find E,.

Thus the known values for the observed reaction rate orders and the
observed activation energy can be useful for the determination of the activa-
tion energies for individual reactions.

Let us consider the analogy between the expressions for the observed rate
order and the observed activation energy. In our opinion, this analogy is
essential. It is interesting that the observed values are the derivatives of the
complex reaction rate and they prove to be equal to the sum of the three
values containing the following three characteristics of the graph

(1) the concentrations of intermediates corresponding to the graph nodes;

(2) the “portion” of the reactions corresponding to the graph arcs, and

(3) the total reversibility of the complex reaction corresponding to the
total conversion cycle. -

It is possible that this kind of “differentiation on the graph” will also take
place in more complicated cases than the one considered.
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On the basis of the general formula (46), we can classify the dependences
of the reaction rate on the three parameters partial pressure of reactants,
temperature, and the total pressure. For such investigations, see Chap. 3,
Sect. 3 of ref. 7.

3. Graphs for the analysis of the number of independent
parameters

3.1 SIMPLE EXAMPLES

The obtained steady-state kinetic equations (46) are the kinetic model
required for both studies of the process and calculations of chemical reac-
tors. The parameters of eqns. (46) are determined on the basis of experimen-
tal data. It is this problem that is difficult. The fact is that, in the general
case, eqns. (46) are fractions whose numerator and denominator are the
polynomials with respect to the concentrations of observed substances (con-
centration polynomials). Coefficients of these polynomials can be cumber-
some complexes of the initial model parameters. These complexes can also
be related.

Let us illustrate this by some examples.

(A) Let us take the above isomerization mechanism

WA +Z - AZ
(2) AZ - BZ
B)BZ - B+ 1Z
(irreversible case). The kinetic equation will take the form [see eqn. (17)]

Fyky ks [A]
By [Al(Ry + ky) + koks

ki [A]
1+ [(By + ky)/(Rykes)] [A]

The initial model contains three reactions, but (+ 2) and (+ 3) are of the same
type with the weights &, and k;, respectively. On the basis of the isothermal
experiment, the rate constants for reactions (+ 2) and (+ 3) cannot be deter-
mined separately. Among the three parameters of a given simple reaction we
can find only two. One is &, and the other is complex, K = (k, + k;)/(kok3),
which does not obey the ordinary Arrhenius equation & = ke ¥FT(non-
Arrhenius complex). But it is possible that the presence of non-Arrhenius
parameters by themselves will not present an obstacle for the determination
of the entire reaction rate constants according to the isothermal experimen-
tal data. It is only important that the number of Arrhenius complexes in the
denominator of the concentration polynomial is not lower than that of the
parameters to be determined.

W =
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(B) Let us consider a more complex example of a catalytic conversion of
methane [51]

1)CH, + Z = CH,Z + H,
(2) H,0 + CH,Z = ZCHOH + H,
(3) ZCHOH = ZCO + H,
4)ZCO =2 Z + CO

with the brutto-equation
CH, + H,O = CO + 3H,

The equilibrium step
Z + H,O0 = ZO + H,

resulting in the “hanging” node [Z0], will not be taken into consideration.
The kinetic equation will take the form

(ky k3 R k) [CH,IH,0] — ki ky ks k; [COJ[H,T)

)

W = (81)

where
Yy = K[H,0] + K,[CH,] + K,[H,] + K,[CH,][H,0] +
+ K;[COJ[H,] + Ks[H,0][CO] + K,[CH,][H,] + K [H,]* +
+ K,[COJH,]* + K, [CH,][H,]* + K;;[H,0][H,][CO] +
+ Ky,[CH,J[H,O][H,] + Kys[H,J*

K, = kikik{, K, = kikik{, K; = kikik;,

K, = kiki (ki + ki), K, = kikiky, K; = kikik;,
K, = kfkik;, K, = RfkiER;,

Ky, = ki(hy ks + ks ki + ki ky), Ky, = kik;k;,

Ky = kiksky, Ky = kikiks, Ky = kikikg

If the mechanism had not contained reactions of the same type, the
concentration polynomial £ would have had 4> = 16 terms among which we
would have found no similar ones. Coefficients for the polynomial terms
would have been products of the reaction rate constants and would have
obeyed the Arrhenius equation. But in the given case we have two direct
reactions of the same type, (+3) and (+4), taking place without the par-
ticipation of gas-phase substances and three inverse reactions of the same
type, (—1), (—2) and (—3), involving the participation of the gas-phase
hydrogen. Therefore the polynomial Z has 13 terms. Among these terms two
have coefficients that do not satisfy the Arrhenius. equation. Among the
remaining 11 terms we can identify 8 independent ones, which corresponds
to the number of reactions. For example, if we choose K, K;, K;, K, K, Ky,
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K,,, and K, as independent, the rest of the Arrhenius complexes can be

represented as
KK . _ KK . _ KKy
K5 ) 2 Ks y 13 K7
Non-Arrhenius complexes can be determined using the relationships

KKy | KKy, KoKi

K, =

K, =

? K, K, Ky

(82)

K - K6K12 + K7K12

! Kll KIO

Note that
K* = (K3K5K6K7K8K10K11K12)1l3 = k1+ k; k; k: ki Ry Ry By
K+ = ——~K3K§I57K12 = hihiks ki
K. K. K K,

K- = 2SS = kiR

Thus the complexes in the numerator are determined on the basis of those
in the denominator. They proved to be dependent on the latter and bear no
new information. Reaction parameters are found according to the formulas

K* K+ K-
T N e
k1 Kl’ 2 sz 4 K13
K K
+ 6 - _ 12
S 7 i
= kR = — ky = ==
T ER M T ER T R

Though the reaction mechanism here is more complex than in the previous
example and the kinetic equation also has non-Arrhenius parameters, it is
possible to determine all the reaction rate constants. The fact is that there
is a sufficient quantity of the Arrhenius complexes. In this case it appears
that all “mixed” complexes, i.e. complexes containing parameters of both
direct and inverse reactions, are independent. Here these complexes evident-
ly corresponding to the mixed spanning trees of the graph are coefficients for
various concentration characteristics. It is this fact that permitted us to
obtain the convenient eqns. (82).

3.2 REASONS FOR DEPENDENCE AND THE IMPOSSIBILITY OF DETERMINING
PARAMETERS

A well-known dependence of the equilibrium constants appears in the
case in which some step is a linear combination of the athers. For example,
if we have three steps (1) A 2 B, (2) B 2 C, and (3) A = C, where step (3)
is a linear combination of the other two, its equilibrium constant satisfies
References pp. 257-258
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the relationship K, ; = K, K, Therefore the reaction rate constants also
appear to be dependent

ki kY Ry

kR kiR
These dependences must always be taken into account in the solution of
inverse kinetic problems. For example, when finding constants for eqns. (16)
and (81) we must take into account that

ki kg kg

Rk "

eq

and

Ik}
I k} = Keqv
where K., is the equilibrium constant of the corresponding brutto-reactions.

A different dependence of the parameters in kinetic equations was report-
ed by Horiuti [11] who suggested a method for determining the number of
independent parameters. The method consists of the numerical estimation of
a rank for some Jacobian matrix. (It is known that this procedure can result
in a considerable error.) Later, these problems were analyzed in detail by
Spivak and Gorskii [52, 53] but they did not aim at the elucidation of the
physico-chemical reasons for the appearance of dependent and undetermin-
able parameters. It is this aspect that we will discuss below.

We have already noted that a denominator of the steady-state kinetic
equation is the concentration polynomial £. Each summand of this polyno-
mial is the spanning tree weight and corresponds to some path for the
formation of a chosen intermediate from the rest. Among the reaction paths
there can be dependent paths due to the reversibility of the sufficiently large
number of steps.

For example, in the one-route mechanism all n steps are irreversible and
there are n independent spanning trees. If one step is reversible [the number
of reactions amounts to (n + 1)], there are (n + 1) spanning trees and all of
them are independent. But if the mechanism has two reversible steps [the
number of reactions is (n + 2)], it can readily be shown that the number of
spanning trees amounts to (n + 3), i.e. their number is larger than the
number of reactions and one spanning tree is dependent. These dependences
must be taken into account. In the general case, when all steps of the
one-route mechanism are reversible, the polynomial £ contains n® sum-
mands, 1.e. weights of the spanning trees B, formed by various combinations
of 2n with respect to (n —~ 1) co-factors b, and they are determined using
the formulae

i-1 B-1
B,, = I b7 [1 b7 i = 1,2,..,n,
j=1

jek+i

(83)

7

i-1
_Hlb; = Lb:, = bt j = 1,2...
i
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The dimension of the basis for the weights of spanning trees is 2n; all the
rest of n? — 2n spanning trees will be dependent. For the spanning tree
weights B,,; these dependences can be expressed as

By = [l = Il —  hio= L2...n (84)

n j(n-1)
B - HB,-_L]->
j=1

since, in accordance with the spanning tree definition, we have the relation-
ships

y o B
ijj

(85)
- B-

J=Lj

Here the weights of direct, B; ;, and inverse, B;_, ;, spanning trees are chosen
to be independent. All mixed spanning trees are expressed through them
using eqns. (83). It is the dependence of the spanning trees that leads to the
dependence of the concentration polynomial coefficients. After choosing any
2n independent polynomial terms to 2n independent spanning trees, we can
abstract summands corresponding to the dependent spanning trees. It must
be noted that the chosen 2n independent spanning trees are not necessarily
direct and inverse ones. For example, in the above example (the catalytic
conversion of methane) we have chosen 2n independent mixed spanning
trees.

The principal fact is that if we have 2n of any independent summands, we
can easily determine parameters for the whole of reactions (whose number
is 2n). In short, it is necessary that the number of independent summands
will be equal to the number of reactions in the detailed mechanism. If this
number is smaller, some parameters cannot be determined.

Let us show some reasons for the reduction in the number of independent
summands. First, it is the structural peculiarities of a complex graph. The
number of its spanning trees can appear to be lower than that of the paramet-
ers. Second, a similar type of the kinetic law for individual reactions. These
two cases will be discussed in special sections.

The analysis shows that the second case is the most typical. A complex
reaction mechanism often includes several reactions subjected to the same

References pp. 257-258
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kinetic law. For example, it can involve the participation of the same
gaseous substance or a reaction in which gaseous substances do not react at
all. The weights of these reactions are of the same type. Then the concentra-
tional polynomial of the denominator will have similar terms with factors
that, in the general case, will be sums of the products of individual reaction
constants. There are non-Arrhenius complexes. We observed them in both
the cases in Sect. 3.1. The only difference is that, in the second case, the
number of Arrhenius complexes is greater than the number of reactions,
whereas in the first it is lower.

It is well-known that the difference of parameter values results in the
indeterminacy of parameters. Rate limitation and the steady-state reaction
rate will be dependent only on the parameters of “slow” steps. But this case
is beyond the scope of our discussion here.

3.3 INDETERMINACY OF PARAMETERS AND GRAPH STRUCTURE

Let us consider a complex catalytic reaction following a multi-route
linear mechanism, all steps of which are reversible.

Note that every term of the concentration polynomial in the denominator
of eqn. (46) is the spanning tree weight. Let us introduce a concept of
“concentration characteristics” for a spanning tree* and define it as a
product of the observed reactant concentrations participating in the totality
of reactions corresponding to a given spanning tree. Spanning trees with the
same characteristics will be referred to as similar whereas those for which
there are no similar characteristics will be called individual.

It is evident that spanning trees are individual only in the case where the
reaction weights are different. For example, the two-route mechanism

WA+ 7Z - AZ
()AZ + B > AB + Z
@) C+7Z > CZ
(4)CZ+D —» CD + 2

with different reaction weights b7 = k& Cy, by = ki Cy, by = R C, and
by = Rk} Cp corresponds to the denominator in eqn. (46)

Y = REDCCo + (R k)G Co + (RS RI)CCy

Here all spanning trees are individual.
But spanning trees can also be individual when some weights are similar.
For example, the two-route mechanism**

* In what follows we will introduce a concept of a “'spanning tree colour” adequately corres-
ponding to its concentration characteristics.

** Refer to the mechanism of vinyl chloride synthesis, eqn. (24), with the kinetic eqn. (57).
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WA+Z — AZ
@AZ+B — AB + Z
3)B+Z - BZ
(4)BZ + A > AB + Z

with the reaction weights b7 = k' Cy, b = ki Cg, b = ki G5, and
bl = ki C, corresponds to the denominator of eqn. (46)

Y = (RTEDCE + (k5 kCE + (R kI)CACy

Here all spanning trees are also individual though some reaction weights
are similar. It is evident that all individual spanning trees are of the Arr-
henius type, and the similar spanning trees lead to the formation of non-
Arrhenius complexes. On the basis of a steady-state kinetic experiment, the
factors of the summands in the denominator of eqn. (46) are determined.
They differ in their concentration characteristics.

The number of the summands in eqn. (46) will give the number of the
parameters under determination. Factors of these summands are the product
of the reaction rate coefficients (Arrhenius complexes) or the sums of these
products (non-Arrhenius complexes).

Let all the spanning trees be individual. Then all factors in the denomina-
tor of eqn. (46) are the Arrhenius complexes K.

Here we will have the linear equations

Inb +Inb, +...4+Inb = ImK i =12..,4G (86

where A(G) is the number of all directed spanning trees in the reaction graph
G.

From eqns. (86) one must choose a set of linearly independent equations
and by using known methods find the reaction rate constants.

The analysis, however, shows that, even when all the factors in the
denominator of egn. (46) are Arrhenius factors, reaction rate constants
cannot always be determined on their basis. The analysis carried out using
graph theory methods shows that it is possible only for definite types of
mechanisms, namely for those that correspond to (a) Hamiltonian or (b)
strong bi-connected graphs (the latter term is due to Evstigneev) [54].

Let us explain the content and the physico-chemical sense of the above
terms.

(a) Hamiltonian graphs are those containing a cycle passing through all
their nodes once only. Applied to the complex reaction mechanisms, these
graphs are interpreted as follows: there exists a common cycle of conver-
sions (steps) uniting all intermediates. Among Hamiltonian graphs there is
a one-route (Fig. 1) and also some two-route [Figs. 5(e) and (6)] mechanisms.
A graph represented in Fig. 8(a) and also that of a sufficiently complex
enzyme reaction taking place in the presence of two independent inhibitors
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5 6 1 - 2
4 7 4 3

3 8

» . Y 8 7
1 10 £ - ,

(a) (b)

Fig. 8. Hamiltonian graphs. (a) Multi-route reaction; (b) complex enzyme reactions in the
presence of two independent inhibitors.

[Fig. 4.8(b), see ref. 9, p.86] are the Hamiltonian graphs, The Hamiltonian
cycle 1-2-3-4-5-6-7-8-1 is marked by arrows.

Non-Hamiltonian graphs of composite mechanisms are widespread, e.g.
the graphs of vinyl chloride synthesis and n-hexane conversion [Fig. 3(d) and
(f) and Fig. 5(c) and (d)]. The simplest non-Hamiltonian graph is that of the
two-step mechanism supplemented by a “‘buffer” step yielding a non-reactive
substance. For the mechanism

WA+Z 2 AZ+C
20AZ+B =2 D+ Z
3 Z+E a2 ZE

the corresponding kinetic equation is

(ki by CoCg — ki ky CoCp)ky

W= (i Cy + ky Cg + kT Co + Ry Codky + (ks Cy + ky Codki Cg
(87
Atk = &k =0
W ki ki Cy Caks 58)

(R Cy + RS Cydky + ki Cy- ki Cy

The denominator of eqn. (88) contains three terms whereas the number of
rate constants amounts to four. One of the constants cannot be determined.

(b) Strong bi-connected graph. In non-strict terminology this is a graph
without cutpoints, i.e. those graph points whose elimination together with
their respective arcs transforms this graph into an unconnected graph. (As
far as the graph connectivity is concerned, refer to Sect. 2.2 and ref, 34). In
this case conversion cycles will not be connected either by a common step
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or a common substance. Cutpoints of various graphs are represented in Fig.
5(b) (point X) and (d) (X and Y).

In this case not all the parameters can be determined. An estimate for the
number of these indeterminable parameters is obtained as follows. The
number is equal to the number of graph cutpoints. (A proof of this results
from the Giles theorem [55].) Thus, for the case illustrated in Fig. 5(b), the
factors in the denominator of eqn. (46) being known, one cannot determine
one constant, whereas in the case shown in Fig. 5(d) two constants cannot
be found. This estimate will decrease if the parameters are determined on the
basis of the coefficients not only from the denominator but also from the
numerator. It can be done since we can also apply some expressions for the
rates of variation of substances (in this case reaction cycles differ in their
brutto-equations).

As an example, let us describe a two-route mechanism with different
brutto-equations.

(WHA+Z - AZ
(2)AZ +B » AB + 7
3HC+7Z - CZ
4“HCZ+D - CD + 2

This mechanism corresponds to the kinetic equations

K, C GG
W.. = 1L4C80p
AB K,C,Cy + K, Gy C; + K,;CgCp 89
K,C.Cpy G
Wep 2Lcip Ly (90)

K,C,Cy + K,GC; + K,CyCy
where, as in the previous example, we have

Ky = kiRE, K, = Kk'kf, K, = kK],

K, = kiki, and K, = kik}
Whence
K, K. K K,
oo 1 o= 22 Foo 4 Nt
kl st k3 K5, kZ KZ K5: k4 Kl KS

A final conclusion can be formulated as follows. The number of the
parameters that cannot be determined from the steady-state kinetic data is
the same as the number of steps that do not enter into the cycles. The source
of indeterminacy of the parameters implies “buffer’’ sequences [Fig. 3(b)] and
“bridges” between the cycles [Fig. 3(d)]. Note that this estimate refers only
to the graph structure when individual reaction weights have not been
specified.
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3.4 THE NUMBER OF DETERMINABLE PARAMETERS AND GRAPH COLOUR

The situation becomes radically different when the weights of individual
reactions are of the same type, as happens in most cases. Some examples
have been given in Sect. 3.1.

One-type weights of individual reactions lead to the fact that some span-
ning trees will have the same concentration characteristic (see Sect. 3.3) and
these spanning trees will be similar.

Graph theory often applies a concept of ““graph colour”. We will introduce
this concept as follows. A set of observed substances reacting with inter-
mediates according to a detailed reaction mechanism will be associated with
a set of colours oy, o, . . ., 0, Where &, is colourless and corresponds to the
case when no substance reacts with an intermediate. Then each arc will be
coloured to the colour of the observed substance taking part in the reaction.
Every spanning tree will also be characterized by a set of its arc colours. If
the spanning tree includes some arcs of the same colour, one can talk about
this colour intensity in a given spanning tree. Colour intensity (the number
of colour repetitions) is equal to the number of molecules of the substances
participating in the reactions corresponding to the spanning tree or to the
number of spanning tree arcs (reactions) in which this substance is present.
Then the concentration characteristics will be represented by the vector (ry,
Ty . . o I'm)p. Elements of this vector, namely intensities, are the numbers of
colour arc ¢; in the spanning tree 7. This characteristic corresponds identic-
ally to the concentration characteristic introduced previously in Sect. 3.3.

Thus the problem of determining spanning trees with different concentra-
tion characteristics reduces to the determination of the number of different-
ly coloured spanning trees.

For its solution, let us introduce a concept of the graph of spanning trees
¢(G) for a given graph G. Let T} and T, be two spanning trees of the graph
G. We will say that T}, is coupled with 7 if T}, is obtained from T} by removing
one of the arcs u and by adding an arc v, i.e. Ty = (T3\{z}U{v}).

A graph of the spanning trees ¢(G) of the graph G is called an indirected
graph whose nodes correspond to the spanning trees of the graph G in which
two points are adjacent if, and only if, their respective spanning trees are
coupled.

Let us present a theorem from ref. 56. If ¢(G) has no less than three nodes,
then any edge of the graph ¢(G) can become a part of the Hamiltonian cycle
in ¢(G). For our purposes, this property is made concrete in the theorem
proved in ref. 57.

Theorem. Whatever two spanning trees T, and 7T, of the graph with %
common arcs may be, there always exists a sequence of (n — k) pairwise
coupled spanning trees T} = T, , T}, .. ., T, = T,, where n is the number
of nodes in the graph G.

In accordance with this theorem one can make the following corollaries.

(1) If the graph G contains two spanning trees one of which consists of the

n-k
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arcs coloured to the colour « [the concentration characteristic is of the form
(n -=1,0,...,0)] and the other has arcs with the colour § [the concentration
characteristic is of the form (0, n —1, 0, . . ., 0)], it will also have spanning
trees with all intermediate concentration characteristics, i.e. with the con-
centration characteristics of the form

n-2,1,...,0n -3,2,...,0,...,0,n —2,0,...) (91)

(2) If the graph G contains three spanning trees with the concentration
characteristics (n —1,0,0,...),0,n—1,0,...),(0,0,n —1,.. ), it will also
have spanning trees with characteristics of the intermediate types

(n-1,0,0,..)
(n -2,1,0,... n-201,..)

1n-20..)14n7n-31..5...4L,Lnr-3..)0n-2..)
©On-1,0..00,n-~-2,1,..)...0,1,n—-2,..50,0,n —-1,...)
(92) -

Further generalizations are evident.

It is clear that corollary (1) implies that the graph G contains n groups
with different colours (concentration characteristics). Corollary (2) suggests
that the graph G comprises n(n + 1)/2 of these groups. But if one assumes
that the graph G contains four similar-coloured spanning trees, the number
of its spanning trees will be equal to n(n + 1)(n + 2)/6. This value is greater
than the number of arcs in the complete symmetrically directed graph. We
believe, however, that this case is extremely rare.

In accordance with corollaries (1) and (2), one can readily find a method
to calculate the number of similar spanning trees if they have two, three or
four colours. In the graph G, let n, be the greatest number of the «-coloured
arcs that can be met in one spanning tree. Then only those spanning trees
that contain 0, 1, 2, ..., n arcs having the colour « are admissible. The
colours of these spanning trees will be obtained if, in eqn. (91), we eliminate
the right- and left-hand characteristics with the respective components
higher than n, or n,. It can be seen from eqn. (92) that, in the case of three
colours, these characteristics fill a regular triangle. It is sufficient to elimi-
nate the sections which are also triangular that correspond to the charac-
teristics of the spanning trees with the non-admissible number of the arcs
having a given colour. In the case of four colours, the characteristics of
spanning trees fill a regular tetrahedron from which it suffices to remove
sections that are also tetrahedral and are adjacent to the graph nodes.

To find spanning trees with the greatest number of the similar-coloured
arcs, it suffices to give the arcs of the colour required (e.g. o) some low
negative weight (— ¢) and the rest of the arcs unit weight and to apply to the
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graph G an algorithm for the construction of a directed spanning tree having
the lowest weight [58]. It is evident that the application of such procedures
is efficient only for complex graphs.

Example. A detailed mechanism for one of the reactions catalyzed by
aminoacyl-tRNA-synthetase [59] is represented by the set of steps

A T R T A
ET—® EA T—=2 EAT —» EP & EPR &2 EPRT &=2EPRTA

product product
(93)

where E is enzyme, A is adenosine triphosphate, T is tryptophan and R is
tRNA (transporting ribonucleic acid).

A coloured graph for this mechanism is represented in Fig. 9. The colours
a, B, 8, and y correspond to the substances A, T, R and the “colourless”
substance (i.e. to the case when the observed substance does not take part
in the reaction with an intermediate). A spanning tree colour is represented
as four numerals (r,, ry, r5, and r,). Each of these numerals indicates the
number of arcs having the corresponding colours. Using the above pro-
cedure, let us represent spanning trees having a variety of colours with the
help of two regular triangles for the two cases n, = 0 and n; = 1, respective-
ly (Fig. 10).

Regular triangles eliminate the sets of numerals that do not satisfy limita-
tions for the number of arcs having a specified colour. Then we will have 17
sets of different colours. But not all these sets correspond to real graph
spanning trees. After testing, it appears that six sets correspond to the
forbidden configurations.

Finally, the denominator has 11 sets of spanning trees, whereas the initial
mechanism contains 13 rate coefficients.

This algorithm permits us to determine the number of parameters “manu-
ally” on the basis of the reaction graph without derivation of a steady-state
kinetic equation. For large-sized and complex-structure graphs it is recom-
mended that the corresponding sets of spanning trees are selected using
computations [60].

Fig. 9. Graph of reaction catalyzed by aminoacyl-tRNA-synthetase.
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(5,1,0,0) {5,0,1,0)
(4,20,0) (4,1,1,0) (4,0,2,0)

(3,2,1,0)

(3,1,2,0) (3,0,3,0)

(2,40,0)
(1,5,0,0) (1,4,1,0) (1,3,2,0)

©(1,2,3,0) {1,1.4,0) (1,05,0)
(0,6,0,0) {0,51,0) (0,4,2,0) (0,33,0) (0,2,4,0) (0,1,5,0)

(2,3,1,0) (2,2,20) (213,0) (20,4,0)

(5,0,0,1)
(4,1,01) (4,011)
(3,2,01) (32,11) (30,21}

(2,211) (21,21) (2,03,1)
(1,2,2,1) (11,3,1) (1,0,4,1)

(1,4,01) (1,311}

(0,5,0,1) (04,1,1) (0,3,21) (0,2,3,1) (0,1,4,1) (0,0,5,1)

Fig. 10. Variously coloured spanning trees for the mechanism from Fig. 9.

3.5 BRUTTO-REACTION, DETAILED MECHANISM AND THE NUMBER OF
PARAMETERS UNDER DETERMINATION

This section is devoted to the relation between the brutto (stoichiometric)
equation corresponding to the detailed mechanism and the structure of a
kinetic equation. Note that all the detailed mechanisms above can conven-
tionally be divided into two classes. (This division will be applied in what
follows.)

(1) Mechanisms in which each step includes at least one observed sub-
stance either initial or product (the observed substances can be present in
the step as both). For generality, it is suggested that all the steps be rever-
sible.

(2) Mechanisms containing steps having no observed substances.

Let us give some examples.

Mechanisms of class 1. This is a well-known Michaelis-Menten scheme

(DE+ 8 =2 ES
2)ES - P+ 8
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with the brutto-equation S = P. These are two-step one-route mechanisms
that fit the Temkin—Boudart scheme, e.g.

MZ+ HO =2 ZO + H,
(2)20 + CO = Z + CO,

[see eqn. (23)] with the brutto-equation
H,0 + CO = H, + CO,

It is the one-route mechanism for Kydrogen oxidation on the oxides of Group
IV transition metals [38]

1) H, + (ZO), » ZOZ-H,0
(2) ZOZ-H,0 = Z0OZ + H,0
(3)Z20Z + H, - ZZ-H,0
4 ZZ-H,0 = Z7Z + H,0
(B)ZZ + O, —» (Z0O),

with the brutto-equation
2H, + O, = 2H,0

A mechanism of this class is also a one-route scheme for SO, oxidation over
vanadium catalysts having a “buffer” step [61]

(1) Vit O~ + S0, V5t 0*~ + 80,
(2) Vi* O*~ + 80, V3* S0%-

(3) VE¥S02~ + 0, = VI*02 + SO,
(4) V5*802~ = Vit + 80,

N

n

!

and a one-route catalytic conversion of methane [51]
()CH, + Z 2 ZCH, + H,
(2) H,0 + ZCH, = ZCHOH + H,
(3) ZCHOH =« ZCO + H,
4)ZCO = Z + CO
with the brutto-equation
CH, + H,0 = CO + 3H,

We can also give examples of two-route mechanisms belonging to this class:
a detailed mechanism for vinyl chloride synthesis [17]

DZ+ CH, =2 Z-CyH,
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@2 7Z-CH, + HCl —» Z + C,H,Cl
(3 Z + HCl = Z-HCl
4)Z-HCl + C,H, - Z + C;H,CI
with the brutto-equation
C,H, + HCl = C,H,Cl
and a mechanism for the NO + CO interaction over silver [39]
1NO + Z =2 ZNO
(2) ZNO + NO -~ N,0 + ZO
B)YN,O+Z -» N, + ZO
4)Z0 + CO - Z + CO,
with the brutto-equations

2NO + CO = N,0 + CO
and
N,O + CO = N, + CO,

Every step of these mechanisms contains at least one observed substance
and in this case only one of its molecules reacts.

Mechanisms of class 2. A typical mechanism of this class is the model
mechanism for the catalytic isomerization treated previously

WA+7Z = AZ
(2) AZ = BZ

BBZ = B+ 1Z
with the brutto-equation A = B. A second step of this mechanism is the
mutual conversions of intermediates. It does not contain any observed
substances. Some examples for two-route mechanisms of this class can be
found in ref. 62. For an example of the multi-route mechanism, see eqn. (26),
Fig. 3(f).

The physico-chemical sense of the classification suggested is clear, If the
steps such as AZ = BZ involving no participation of the observed substan-
ces (“latent steps”) are fast compared with the rest of steps or are not present
at all, the mechanism must be attributed to class 1. Otherwise it will belong
to class 2,

In our opinion, as one starts studying some reaction mechanism for which
no data concerning the mutual conversions of intermediates are available
yet, it is reasonable to suggest that this mechanism belongs to class 1. Note
that the mechanisms known from the available literature that can be attri-
buted to class 2 are met much more rarely. :
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Using graph theory terminology presented in Sect. 3.4, mechanisms of
class 1 can be called “coloured”. It implies that every step has at least one
arc-reaction having a colour of the observed substance participating in the
reaction.

Mechanisms ascribed to class 2 can be called those with “colourless”
steps (i.e. those containing no observed substances).

8.5.1 Brutto-equation and the number of steps

Every graph’s cycle corresponds to its “natural” brutto-equation. We will
assume that the stoichiometric coefficients in this equation are minimum
integer-valued, i.e. for simplicity the multiplicity is taken to be equal to
unity (see Sects. 2.3 and 2.4). We suggest that, as in all the above examples,
only one molecule of each observed substance (either initial or product) is
either consumed or formed.

Then, for a mechanism of class 1, one can give a simple estimate of the
number of steps corresponding to a given brutto-equation

nmax(nin,nprod) < s = Rin + nprod (94)

where n;, and n,,, are the numbers of the initial substances and products in
the brutto-reaction, respectively, 7., (i, Mproe) 18 the maximum number
among them, and n;, + n,,, is the total number of molecules in the brutto-
equation.

Let us apply estimate (94) to the various mechanisms of class 1 given
above. For the Michaelis-Menten mechanism, the brutto-reaction is of the
form:S = P,n;, = 1,n,,4 = 1,ands = 1 + 1 = 2. For CO conversion, the
brutto-equation takes the form

H,0 + CO = CO, + H,

Ty = Nyoa = 2, § = 2. For hydrogen oxidation on Group IV transition
metals, we have s = 5. Indeed, for the brutto-equation

2H, + O, = 2H,0

we obtain s = ny, + Ny = 5. For the mechanism of SO, oxidation over
vanadium catalysts in the cycle we have s = 3 (a “buffer” step has not been
taken into account). Indeed, for the brutto-equation

280, + O, = 280,

we will have ny, = 3, Ny = 2, and 8 = ny, = 1y, = 3. For the one-route
conversion of methane with the brutto-equation

CH; + H,O = CO + 3H,

we obtain ny, = 2, n, = 4, and s = 4.
In the two-route mechanism of vinyl chloride synthesis, the number of
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steps in each route amounts to two. Indeed, the brutto-equation for each
route

C,H, + HCl = C,H,Cl

we have ny, = 2, n,,q = 1, and s = 2. In the two-route mechanism of NO
reaction with CO steps (1), (2), and (4) correspond to the brutto-equation

2NO + CO = N,0 + CO,

(i = 3, Nppoq = 2,8 = Ny, = Ny, = 3), whereas steps (3) and (4) correspond
to the brutto-equation

N,;O + CO = N, + CO,

(N = Nproa = 2and s = 2).

Thus egn. (94) is fulfilled in the mechanisms considered as an accurate
estimate for the number of steps. More often it is a lower bound (according
to the number of molecules either of the initial substances or of products)
and rarely will it be an upper bound (according to the number of the initial
substances and products).

Although all the mechanisms of class 1 are “coloured” (i.e. every step
contains the observed substances), certain reactions can be “colourless”,
For example, if the number of molecules of the initial substances is greater
than that of products (the reaction proceeds with decreasing volume) and
the estimate s = ng,, = n;, is fulfilled, then there must be (n;, — n,0a) of
“colourless” inverse reactions (see, for example, the SO, oxidation where
Rin = 3, Npea = 2, and there is one “colourless” inverse reaction). But if
Mot > My, (the reaction proceeds with increasing volume) and
§ = Npgx = Ny, there must be (n,..4 — ni,) of “colourless” direct reactions
(see, for example, the methane conversion where ny, = 2, n,,4 = 4, and there
are two “colourless” direct reactions). But if s = ny, + 7,4, then in princi-
ple there can be s “colourless’” reactions. Actually their number is lower
(see, for example, the oxidation of hydrogen over Group IV metal oxides
where s = ny, + Ny = 5 and there are two “colourless” reactions).

Certainly, for the mechanisms of class 2 the number of steps can be much
greater than that determined in accordance with egn. (94). Here this esti-
mate will play the role of the lower bound.

Note that if the reactions involve the participation of more than one
molecule of the observed substance, then eqn. (94) will need corrections.

3.5.2 Graph colours and kinetic equation structure

The brutto-equation depends on the structure of the kinetic equation and
its parameters, In Sect. 2.3 we have already spoken about cyclic characteris-
tics in the numerator of the steady-state kinetic eqn. (46). It is the kinetic
equation of the brutto-reaction as if it were a simple step. The form of the
cyclic characteristics is independent of the detailed mechanism. But under
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some suppositions both the structure of the denominator summands and
their type also depend on the brutto-equation. Let us first carry out an
analysis for a one-route mechanism.

It has already been shown that the denominator of eqn. (46) contains
weights of three types of spanning trees: direct, inverse, and mixed. Every
spanning tree has its own concentration characteristics and its own colour.
In the previous section, the problem of determining the number of indepen-
dent parameters was associated with estimating the number of variously
coloured spanning trees. -

As an example, let us consider the catalytic conversion of methane [51]
with the brutto-equation

CH, + H,0 = CO + 3H,

Let this reaction be realized through a one-route linear mechanism. Direct
spanning trees are formed by the combination of (n —~ 1) direct reactions of
n reactions. It can easily be understood that, irrespective of the reaction
mechanism, there must be spanning trees including [CH,] and those includ-
ing [H,O]. As far as the spanning tree including [CH,][H;0] is concerned, it
will be present in the case when “colourless” reactions exist among direct
reactions. In our case, as shown above, there are at least two “colourless”
direct reactions, 1.e. ny, = N, = 2.

Hence, among the direct spanning trees there will be spanning trees of
two colours, i.e. their number will be exactly equal to that of the initial
substances. There will be one more two-coloured spanning tree formed due
to the fact that the reaction sequence includes a reaction that does not
involve the participation of the observed substance. A sum of the weights of
direct spanning trees can be written as

K [CH,] + K,[H,0] + ! K,[CH,][H,0] (95)

-
O . e e -

The complex K; appears to be the sum of two products of constants (non-
Arrhenius complex). The reason for this fact is that the mechanism includes
two “‘colourless” steps. It can be shown similarly that, irrespective of the
mechanism, inverse spanning trees must necessarily contain those including
[H,]® and [COJ[H,J*. The presence of the inverse spanning tree including
[CO][H, P’ shows that the sequence of inverse reactions contain “colourless”
reactions. Among inverse spanning trees there are also those of two colours
and their number will equal the number of products and probably one more
spanning tree (if there are “colourless” reactions). In the general form, the
sum of the inverse spanning tree weights will be written as

K([H,]* + K[COJH,F + ! K;[COIH,J'! (96)

The complex K; is non-Arrhenius and is the sum of three products. The
reason for this is that the brutto-equation involves three molecules of H,,
and the three steps of the detailed mechanism must be subject to the same
type of kinetic law. It is due to this fact that such spanning trees appear.



247

Equations (95) and (96) contain concentration characteristics [CH,],
[H,0], [H, ], and [CO][H,F. It is nothing else than a combination of (n — 1)
concentrations of the initial substances (products) of n possible ones. In
addition, eqgns. (95) and (96) contain summands outlined by broken lines.
They appear due to the fact that the reaction sequence also contains “col-
ourless” reactions. For the direct sequence the presence of these reactions
is obligatory, whereas in the inverse one it is probable.

Let us consider mixed spanning trees. The weight sum can be written here
as [see eqn. (81)] ’

1[He] + KY[COJ[H,] + Ky [H,0][CO] + KV[CH,][H,] +
+ K{[H] + K{[CH,H,]* + K7[H,0][H,][CO] +
+ K{[CH,][H,O0][H,] 97)

This expression is apparently considerably dependent on the specificity of
the four-step detailed mechanism [51]. It contains several “crossing” terms
that depend on the concentrations of both initial substances and products.

Equations of type (97) can also comprise a summand including concentra-
tions of the whole of the brutto-reaction participants, i.e. Ky [{CH,][H,0]-
[COJ[H,]®. It is evident that, in this case, the reaction mechanism must be
attributed to class 2 and contains a sufficiently large number of “‘colourless”
reactions. The number of steps here amounts tos > n;, + n,,.. The analysis
performed using this example can readily be generalized. For a one-route
catalytic reaction with one-route linear mechanism the following conclu-
sions can be drawn.

(1) In the denominator of the steady-state kinetic equation (46), several
summands generated by direct and inverse spanning trees do not depend on
the detailed mechanism. For the inverse case their number is equal to the
overall number of the brutto-reaction participants. The form of these sum-
mands is defined by the combinations of the (n — 1) concentrations of the
initial substances (products) of n possible ones.

For example, for the brutto-equation

mA +nB = pC + ¢D

the denominator must contain four térms that are independent of the de-
tailed mechanism of the form K,[A]"~'[B]", K,[A]"[B]*"?, K,[CP~*[D]?, and
K,[CP[D]".

(2) If the denominator of eqn. (46) has a term corresponding to the kinetic
relationship of the direct (inverse) reaction, it implies that the direct (in-
verse) sequence of reactions involves steps including no observed substan-
ces.

For example, for the brutto-equation

mA+nB = pC+ ¢D
such terms will be of the form K;[A]"[B]*, K;[CP[D}?. In principle it is
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possible that the term K,[A])"[B]"[CF[D]? will appear. The presence of such
terms whose appearance is, apparently, rare, is the criterion for the mechan-
ism to be attributed to class 2 (mechanisms here include steps containing no
observed substances at all).

(3) Coefficients for the terms in the denominator of eqn. (46) can be sums
of the constants’ products (non-Arrhenius complex).

The reason for the non-Arrhenius type of complex lies in the fact that the
brutto-equation comprises several molecules of one or the other substance. For
example, for the brutto-equation

mA +nB = pC + ¢D

the factor K, in the term K,[A]J"![B]" is the non-Arrhenius complex, i.e. the
sum of the products of m constants. If m = 1 the complex is always Arr-
henius. The coefficient of the term K[A]"[B]" can also be non-Arrhenius if the
number of “colourless” reactions in the spanning tree is greater than unity.

(4) Mixed spanning trees generate several terms. It is these terms that are
responsible for the detailed mechanism specificity. They can contain mixed
products of the concentrations of the initial product substances. Exponen-
tial factors for these concentrations will differ from those in the terms
generated by direct and inverse spanning trees. For example, for the same
brutto-equation

mA +nB = pC + ¢D

mixed spanning trees can generate the terms K[A]*[BY[CT'[D]’, where
a<m-2,<n-2,9y<p-—2andd < q —2. Each of these terms depends
on the specificity of the reaction sequence. Their interpretation must pro-
mote our understanding of the detailed mechanism,

Hence one must understand the importance of special kinetic experiments
with mixtures containing high concentrations of products. But the available
experimental data here are very limited in number. Note that mixed span-
ning trees appear only when the number of steps is s > 3.

(5) The number of parameters of eqn. (46) under determination, N,,4, can
be found using the estimate

iy + n’pmd < Npud (98)

It is interesting that this estimate coincides with that for the number of steps
[eqn. (94)].

But if the sequence of direct (or inverse) reactions contains at least one
“colourless” reaction, then eqn. (98) takes the form

ny, + Mprod +1 < Npud (98&)

In the case in which both of the sequences have “colourless” reactions, we
have

Nin + n‘prod + 2 < Npud ' (98b)
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(6) All that has been said above refers to the case in which all the
mechanism steps are reversible. But if the steps are irreversible we will have

]vpud = Ny (993)
when no “colourless” reactions are present or
Nug = M + 1 (99b)

when they are present.

Hence, in the irreversible case, the number of parameters under deter-
mination is equal to that of graph’s colours (including the colour of “colour-
less” reactions).

(7) For the irreversible case, the kinetic equation (46) can be written in a
very simple form

W o= —-L (100a)
2. kG
i=1
or
W = ———K——— (100b)
1+ Y k/C
i=1

In the case in which two reactants react (n;, = 2), eqn. (100a) will take the
form

KC,C,

V= ko KG 1
KICI + KZCZ ( OOC)
For three reactants (n,, = 3), eqn. (100a) is represented as
- KC GG,y
W= K,C.C, + K,C,C, + K,C,C, (100d)
and so on.

It is important to understand that the type of eqns. (100) corresponding to
the irreversible case depends neither on the detailed mechanism nor even on
the type of the brutto-equation. It is dependent only on the number of
substances taking part in the brutto-conversion. Note that sometimes it is
said that a two-step mechanism is realized if the kinetic relationships satisfy
eqn. (100c).

Let us demonstrate the way in which the above considerations can be
applied to interpret the detailed mechanism according to the observed kinet-
ic dependences. Let the reaction rate for hydrogen oxidation over oxides be
described by eqn. (54) rewritten as

) KIH,P[0,]
K[H,F + K[HJO,] + KA 0] + K [H P[H,0] + K [H,]0,][H,0]
(101)
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For the brutto-equation
2H, + 0, = 2H,0

we have n, = 3 and Moos = 2. In accordance with eqn. (94), the number of
steps for the mechanism must be 3 < s < 5.

Since the denominator contains the term K, [HZ]2 [O,], the direct sequence
of the reactions must also contain a “‘colourless” reaction (one or two).
Hence s = 4 or 5.

The steps of water production can be treated as reversible since there are
terms containing [H, O]. But as there is no term with [H, 07, itis evident that
these two steps are separated by some irreversible step. If s = 4, every one
of the terms in the denominator of eqn. (101) must be a product of three
reaction weights. The terms K| [HZ]2 and K [H ][O,] are sure to contain a
weight of the “colourless” reaction since their exponential factor is two.
This is still more valid at s = 5, when these terms will include the weights
of two “colourless” reactions.

Some information about the detailed mechanism must be provided by the
mixed terms K4[H2]2[H20] and K, [H,][O,][H,0]. Judging by their form, one
can suggest first that water is not liberated in the step consuming oxygen,
and second that in the two steps that consume hydrogen, water is not
liberated either. Hence water is liberated in those steps of the decomposition
of intermediates that do not involve the participation of the initial gaseous
substances.

In our case the catalyst is oxide. It is natural to suggest that the first step
in the catalytic cycle is the interaction of an oxide species with hydrogen
and that the last step is the reduction of species.

Hence the mechanism can be characterized as follows.

(1) Step 1 is the interaction of the initial catalytic species with hydrogen.
In this case water is not formed.

(2) Step 2 is the decomposition of an intermediate formed in step 1 with the
liberation of water. The step is reversible.

(3) Step 3 is the interaction of the intermediate formed in step 2. Water is
not formed.

(4) Step 4 is similar to step 2.

{(5) Step 5 is the reduction of the initial catalytic species (by interaction
with oxygen),

The sequence of steps 2 and 3 cannot be reversed since, in this case, two
reversible steps of water liberation will become adjacent. As has been shown
above, this is not admissible since the denominator of eqn. (101) has no
K[H,00® term.

The mechanism suggested has five steps including two “colourless” reac-
tions [steps (2) and (4)]. Note that to interpret data it would be useful to have
information concerning the temperature dependence of the complexes. One
can say in advance that K and K, are the Arrhenius complexes, whereas K,
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is the non-Arrhenius complex. If we had information indicating that K, was
the non-Arrhenius complex and K, and K; the Arrhenius complexes, it would
further promote the data interpretation. For example, if K, is the non-
Arrhenius complex, it implies that the direct sequence of reactions has two
“colourless” reactions rather than one as has been suggested from the
beginning.

Hence in this case, on the basis of the detailed analysis of only the
steady-state kinetic equation, we have managed to formulate a reaction
mechanism. This mechanism is similar to that suggested in ref. 38.

We believe analysis such as has been demonstrated above will also prove
to be useful in more general cases. It must be noted that this analysis places
heavy demands on the inverse kinetic problem whose result is to restore
summands of the steady-state kinetic equation.

4. Graphs to analyze relaxations. General form of
characteristic polynomial

A non-steady-state kinetic model for a complex catalytic reaction with a
linear mechanism is described as '

x = Be)x (102)

where # and ¢ are the vector-columns for the concentration of the inter-
mediate and observed substances, reepectively, and B(¢) is the matrix of the
reaction weights.

In addition, a conservation law of the total catalyst amount must be
fulfilled

Z xX; = (]
a1

Equation (102) is the non-steady-state kinetic model for the conversion of
intermediates (for heterogeneous catalysis, for the conversion of surface
substances) assuming that the concentrations of the observed substances are
constant. As is known, the solution of eqn. (102) is of the form

x(t) = 3 x} exp(d;t) (103)
=i
where /; are the roots of the characteristic equation (eigen-values).

Note that a characteristic polynomial of the square matrix A = lla;ll of
the order n is called a determinant for a set of linear homogeneous equations

=

(@ ~ Splx, = 0 Ly..o,n (104)

k=1

I

where J;, is the Kronecker symbol and 1 is the scalar
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1 ifi =k
0p = .
0 in the opposite case

The analysis of the characteristic polynomial (primarily of its roots) is
absolutely necessary when studying the non-steady-state behaviour of a
complex chemical system. A traditional problem is to study the spectrum of
relaxation times 1, = 1/|Rel;| [63]. A characteristic polynomial can be writ-
ten as

P = (mD"A" — d A" + AP+ L+ (—1)dy) (105)

where every coefficient d; ¢ = 1, 2, . . ., n) is equal to the arithmetic sum of
the whole of the ith order minors from the matrix determinant.

Calculation of the coefficients d; for a given matrix is a very laborious
process. We will give a method to calculate these coefficients proceeding
directly from the complex reaction graph. Like a steady-state kinetic equa-
tion, a characteristic polynomial will be represented in the general (struc-
turalized) form:

A A A L+ (~ 1), = (= 1P (106)

Let us give a determination for the k-spanning tree (& is a positive in-
teger). A k-spanning tree for the graph G(x,u) will be called an unconnected
partial graph* containing all the points, i.e. a rooted forest (a set of rooted
trees) all of whose arcs are directed towards the roots, i.e. the given graph
points x. A rooted tree can also be degenerated, i.e. consisting of one point.
When speaking of trees, spanning trees and graphs, here and hereafter we
imply that they are directed. The weight of the spanning tree is the product
of the weights of its arcs. The weight for the degenerated component is
assumed to be equal to unity.

Evstigneev and Yablonskii [64] proved the following theorem: coefficient
of A* (k is the exponential factor) for the characteristic polynomial P(1)
amounts to the sum of the weights for all the k-spanning trees of the reaction
graph at £ 5 0 and is equal to zero at & = 0.

Proof: It suflices to prove that the sum of all the kth order minors amount-
ing to the coefficient of A% is at the same time equal to the sum of the weights
for all the (n — k)-spanning trees of the reaction graphs. At & = 0 the
coefficient of 1° amounts to the B(¢) matrix determinant. Since, according to
the conservation law, any diagonal element of B(¢) satisfies the equality

n

by = Z bji

J=Lj#i
the rows of this matrix are linearly dependent and the coefficient equals zero.
Let us give relationships for various coefficients.

* A partial graph of the graph G(x, u) is the graph H = (y, v) wherey < x and v < u.
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(a) B = 1. The coeflicient of 1 is equal to the sum of all the principal
(n — 1)th order minors. As has been proved in ref. 6, every minor of this type
equals the sum of the weights for the spanning trees entering into the point
X

(b) 1 < k < n —1. The coefficient of 4* amounts to the sum of the prin-
cipal (n — &)th order minors. It can be shown that every uncancelled term
will correspond to the n-point graph having no contours and exactly (n — k)
arcs, i.e. a forest consisting of 2 components. In this case a forest is a
non-connected graph whose every ¢onnected component is a tree (probably
consisting of one point).

(c) k = n —1. The coefficient of A"~ ! is equal to the spur of a matrix, i.e.
to the sum of the weights for all the reaction graph arcs.

(d) £ = n. The coefficient of 1" amounts to the weight of the empty (i.e.
having no arcs) n-point graph. According to the determination, its weight
equals unity.

Taking into account the above remarks about the characteristic equation
coefficients, its general form can be represented as

n oy
At (Z b,~> TR+ <Z D,.> ARl 4D =0 (107
P=1 i=1

where 7 is the number of the graph’s arcs and n,, is the number of k-spanning
trees. The same type of general form of the characteristic equation can also
be obtained from ref. 65 using the concept of the * Coates flow graph” [66].
Example. Let us consider the known mechanism for catalytic isomeriza-

tion

MA+Z =2 AZ

2)AZ = BZ

B3)BZ 2 B+ Z
with the reaction weights b = kf[A]l, b7 = k;, b5 = ky, b, = ky,
by = ki, b; = k;[B]. A characteristic equation will be

2+ di+D =0

where
dy = X b = EI[A] + ki + k3 + ky + kJ + ki [B]
D = kf[Alky + ki + ky) + ky [Bl(k; + Ry + k) + (108)

+ ki ki + Riky + Rik;
If all its steps are irreversible, we obtain
dy = k{[A] + kf + kf
D = Ekf[AlNky + k) + ks k3
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Corollaries. (1) Coefficients of the characteristic equation cannot contain
terms having simultaneously direct and inverse weights (e.g. they cannot
have b b; ) and the terms containing weights of two reaction-arcs emanat-
ing from the same point.

(2) In accordance with the Vieta formulas, coefficients of the characteris-
tic equation are related to its roots by the equations

-d = Z/'Li

D = H}’l

(109)

For an arbitrary j, the equation
ny n
4 = Z ( 11 ii(k))
ES1 \iw=1

is valid where n; = C;~' is the number of combinations of (n — 1) elements
taken from j.
In the irreversible case, for the above example we will have

—d; = —RI[A]l — kK — k]
= A+ A
P (110)
D = kf[Alk + k3) + ki kP
= lxlz

(3) A useful corollary follows from the comparison of steady-state kinetic
and characteristic equations. For example, as has been shown above, for a
one-route reaction with a linear mechanism the equation

w oo [EfTE) - K7 @©)IC w11

)

will be valid where

K+t = ki+

—

It
—

—a

il
-

K- =[]k

i
The expressions f* (@) and f~ (¢) correspond to the “natural” brutto-reaction
and C is the overall number of active centres per unit catalyst surface.
The denominator of eqn. (111) is the determinant for the weights’ matrix
B(¢). But the same determinant is also a free term of the characteristic
equation D that equals the product of the roots, i.e. D = I 4, (n is the
number of independent intermediate substances).
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It 1s evident that

wy - wil 4
= [K'f*@) - K f~@®)]IC (112)
or
W _ K@) - K@) (113)
Cl]

where 7; is the relaxation time and is equal to 1/|Red;].

The expression on the right-hand side of eqns. (112) and (113) is usually
written down as a kinetic law for a simple step consisting of two elementary
(direct and inverse) reactions satisfying the law of mass action. As a rule, the
steady-state rate for a complex reaction does not fit this expression®. It
appears that this natural type is satisfied by W/(I1;7;) rather than the steady-
state rate W. This value is experimentally observed (W and t; from the
steady-state and non-steady-state experiments, respectively). This value
must have been given some special term.

After differentiating eqn. (113) we obtain

oW g K@
dlng; dlnc; "KYfr@) - K f (@)
= m@ - ¢) (114)

where m; is the total number of jth reactant molecules taking part in all the
reactions of the detailed mechanism (or the amount of this reactant mole-
cules in the “natural” brutto-reaction)

s KF® _ 11®
K+f+@) Keq}”(%)

in which K, is the equilibrium constant of the brutto-reaction.

The value JlnW/dInc; is the observed order for the reaction rate found
from the monoparametric dependences in the non-steady-state experiment. If
both the order and the value of m;(1 — ¢) are known, we can find the value
dIn(ITz;) "' /dln ¢; from eqn. (114). This value can be called the observed relaxa-

* In early works on kinetics, this equation was also assumed to fit the steady-state rate of
composite reaction (see ref. 41).
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tion order. For the irreversible case (¢ = 0) we will have
n-1 -1
8ln<i=1—[1 ‘ci> oW

= ™7 G ¢ (15

dln ¢

A general form of the characteristic equation in combination with a
steady-state kinetic equation will provide additional possibilities for the
interpretation of the observed kinetic relationships.

5. Conclusion

Graph theory provided various fields of physical chemistry and chemical
physics with a technique that has been extensively used in theoretical
physics (the well-known Feynman diagram technique). It also appeared to be
extremely effective in both chemical kinetics and chemical polymer physics.
The major advantage of this technique is the extremely simple derivation of
equations and the possibility of their direct physical interpretation.

In terms of graph theory, it is convenient to represent several non-empiri-
cal and semi-empirical methods of quantum chemistry. Energy and charge
characteristics of molecules are treated as various structural characteris-
tics of molecular graphs.

In chemical kinetics, the graph technique is used to obtain steady-state
kinetic equations for multi-route linear mechanisms, to analyze the number
of independent model parameters and to determine the stability of steady
states for open chemical systems. We believe that, in the near future, the
possibilities of the “graph analytical” methods will be ever increasing. We
are facing a period for a wide application of algorithmic languages intended
for operation with graphs. There are two probable ways: (1) the development
of special-purpose computers or processors based on microprocessing de-
vices and (2) the application of analytical computation systems. Already at
present there exist programs to derive and analyze complex steady-state
kinetic equations and characteristic polynomials (see, for example, refs. 60
and 67-69).

The concepts of “graph-molecule” and “graph-reaction” are natural for
chemistry, which is a science which pays much attention to the order of
arrangement, bonds, and sequences of transformations.

It is possible that in future chemists will develop concepts about a univer-
sal dynamic graph accounting for the evolution of complex chemical sys-
tems. But already graph theory can give much to chemists. In our opinion,
it is quite possible that this theory will become a “chemical esperanto”
understandable by chemists of various specialities.
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