
Nonlinear principal component analysis

�Ralf Der� �Ulrich Steinmetz� �Gerd Balzuweit� and �Gerrit Sch�u�urmann
� University of Leipzig� Institute of Informatics �

� Umweltforschungszentrum Leipzig�Halle GmbH

June ��� ����

Abstract

We study the extraction of nonlinear data models in high�dimensional
spaces with modi�ed self�organizing maps� We present a general algorithm
which maps low�dimensional lattices into high�dimensional data manifolds
without violation of topology� The approach is based on a new principle
exploiting the speci�c dynamical properties of the �rst order phase tran�
sition induced by the noise of the data� Moreover we present a second
algorithm for the extraction of generalized principal curves comprising dis�
connected and branching manifolds� The performance of the algorithm is
demonstrated for both one� and two�dimensional principal manifolds and
also for the case of sparse data sets� As an application we reveal cluster
structures in a set of real world data from the domain of ecotoxicology�

� Introduction

One of the major objectives of data analysis is the extraction and instructive represen�
tation of the relevant information contained in the data� In cases of practical interest�
data are given by high�dimensional vectors corrupted by noise� Dimension reduction
and elimination of noise then is the essential step in analyzing the data� Principal
component analysis �PCA� is one of the most prominent tools in this process� By
uncovering the principal components of the data distribution PCA creates a lower
dimensional subspace which contains the relevant information on the data�
Although highly successful in typical cases PCA su�ers from the drawback of being

a linear method� By way of example consider the globe with the locations of cities as
data points� PCA would discover in this data set three principal components so that
there is no complexity reduction in the description of the data� On the other hand a
topographic map of the globe provides a two dimensional representation which can be
analysed successfully using conventional methods like PCA�
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The location of cities on the globe forms a nonlinear data manifold� The above
example suggests a two�step treatment by �rst mapping the nonlinear data set onto
a linear lower�dimensional manifold and using conventional methods after� However
real�world data manifolds besides of being nonlinear often are corrupted by noise and
embed into high dimensional spaces� The present paper will present general procedures
for �nding the optimal mappings in this general case�
Looking into the opposite direction� the map can also be seen as embedding a

low�dimensional manifold M� a regular lattice� say� into the higher dimensional data
manifold� M is called a principal manifold �PM� of the data if it provides an op�
timized �in some sense� representation of the data� A convenient choice is de�ned
self�consistently by the requirement that each point on the PM is the average of the
data points projecting to it� cf� 	
�� Thus� it minimizes the mean square deviations of
the data from the PM subject to some smoothness constraint�
The present contribution provides general procedures for �nding such principal

manifolds for arbitrary data sets�

� Principal curves

Let us now consider the problem of �nding principal manifolds in some detail� We will
restrict to the case of principal curves� since this does already show the full complexity
of the problem�

��� De�nition of principal curves

Let us consider a data set X with data v � �v�� � � � � vn� � Rn� A principal component
P describes a data set X as linear function f of a single parameter � i�e� v � X
is represented by f�v� � ��v� c  c� � P� Given X � the vectors c and c� are
determined by minimizing the reconstruction error

c�� c �
�

�c�
E � ��

�

�c
E � � ���

where

E �

Z
X

kv � �c� c�k�P �v�dv� ���

P �v� being the probability distribution of the data� Eqs� ������� imply that the distance
kv � wk is minimal with respect to variations of w along P� In other words� the
projection of a data point v is given by its closest point on the principal component�
A principal curve PX is a generalized principal component in that a large class of

nonlinear smooth vector�valued function f���� � � R� is allowed for the representation
of the data� The projection ��v� of a data point v onto the curve is again de�ned by
the value of � for which f��� is closest to v

��v� � argmin
�
�v � f����� ���

In general each point �segment in the discrete case� of the curve is the projection of a
subset of data points called its projectors� In the linear case the projections agree with
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the center of gravity of the projectors� In this sense one may say that the principal
component is running through the middle of its data points� This de�nition can be
carried over to the nonlinear case� Hence a principal curve is de�ned as running through
the center of gravities of the points projecting to it� see Fig� �� One may also say that
each point on the PC is required to be the average of its projections� This can be
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Figure �� Principal component and principal curve� The gray region depicts a nonlinear
data manifold in data space X � The principal component �PCA� ignores the structure of
the data distribution� The principal curve �nonlinear principal component� provides a
faithful one�dimensional representation of the two�dimensional nonlinear data manifold�

formulated in terms of a variational principle� i� e� we de�ne the mean square deviation
between data points and its projections �reconstruction error�

E �

Z
dvP �v��v � f����� ���

and require its variation with respect to f��� to be zero�

�

�f
E � � ���

Note that we must not require the reconstruction error to be minimal as in the linear
case� Instead the weaker property of stationarity arises as implied by eq� ���� Why this
happens is best seen from the pathological case of a curve that runs through every point
of a noisy data set X so that it has a zero reconstruction error� However this curve
does not �t the purpose of a principal curve since it provides no elimination of noise� In
order to prevent such pathologies an additional condition is required for completing the
de�nition of a principal curve� Usually this is a smoothness condition which restricts
the curvature of the PC� Another condition is the requirement that the map v � �
should be topographic in the best possible way� It is the precise formulation of these
criteria which makes the problem highly nontrivial�
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��� The Hastie�Stuetzle algorithm

Hastie and Stuezle 	
� described an algorithm for the construction of principal curves
which works iteratively starting from the principal component of the data set� In each
iteration a new estimate of the PC is obtained from the calculation of the centers
of gravity of the data points with respect to the current estimate of the PC� This
procedure is combined with a smoothing operation controlled via cross validation in
order to avoid the over��tting catastrophe� The authors gave some evidence in favor of
the convergence to a stable solution� mainly by referring to the linear case� However�
so far there are no general criteria for the existence and uniqueness of the PC� Hastie
and Stuetzle succeeded in showing that under the smoothness constraint� with respect
to the reconstruction error� the PM is a stationary point in function space� However
no general results exists as to the stability of this solution�
In the Hastie�Stuetzle algorithm and other algorithms known so far the smoothness

and hence the stability are guaranteed by local averaging� the span of the average
being guided globally by cross validation� We will provide a new algorithm below
which avoids this restriction and moreover leads to a stable though possibly suboptimal
principal curve� Moreover the new algorithm is not restricted to the case of principal
curves�

� Self�organizing maps and principal manifolds

Topographic maps are a fundamental functional unit of neural information processing
systems� These maps are learned during individual development from the data stream�
There are several algorithms modeling this unsupervised learning process� Let us con�
sider Kohonen�s algorithm �rst which self�organizes topographic mappings between
manifolds embedded in spaces of di�erent dimensionality guaranteeing a good control
of the smoothness of the maps� The application to the problem of �nding principal
manifolds has been discussed before� cf� 	���� We present this approach �rst and intro�
duce subsequently a new method which is distinct by its self�regulating� local control
of smoothness�

��� Kohonen�s algorithm

Let us assume that the data embedded in d�dimensional space X may be viewed as a
data cloud scattering about some manifold of the lower dimension D � d�� Then Ko�
honen�s algorithm may be used to map the data topographically onto a D�dimensional
lattice A� where the lattice sites r � 	�� N �D may be considered as the physical positions
of ND neurons� see Fig� � for a generic example� Upon presentation of a data vector
v� the shift �wr for the synaptic vectors wr is

�wr � � hr�r� �v �wr� � ���

where the position r� of the winner �best match or closest� neuron is determined by

r� � argmax
r
kv �wrk � ���
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Figure �� Finding the nonlinear principal component by a self�organizing neural map�
The neuron space �consisting of a chain of neurons in the present case� is depicted in
the dashed box above� Neuron positions are at lattice sites rn where n � �� �� � � � � N �
The � � d input space X �bottom� contains the distribution �gray region� of the data
vectors v � �v�� v��� Each neuron n carries a synaptic vector wn � �wn�� wn�� which is
represented also in input space by a black dot called the projection or virtual position
of the neuron in input space� These �virtual� positions of the neurons are the supports
for the principal curve �solid line� running through the middle of the data distribution
� Data points are mapped to �virtual positions of� neurons by the principle of short�
est distance� The map obtained in the present case is a neighborhood preserving or
topographic one�

which means nothing else than that the distance between v and the virtual position
wr� of neuron at lattice site r� is not larger than the distance of v to any of the other
neurons� The neighborhood function

hr�r� �
�
�	
�

�
�D��

exp
�
��r� r������
��

�
�
�

de�nes the range of cooperativity between neurons� The map is initialized by choosing
random values for the synaptic vectors� see Fig� ��
The neighborhood function� cf� eq� 
 controls the smoothness of the map� The

argument is that the curve in input space of maximum curvature that can be formed
by a set of neurons which are situated in a region of length �
 on the chain is essentially
a semi�circle� Hence the local radius of curvature is obtained by �nding two neurons
which are a distance kr�� r�k � 
 apart in the neuron space A� Then the local radius
� of curvature is not less than �min � �kwr�

�wr�
k�

However� in practical applications one does not know the appropriate smoothness
for an optimal principal manifold� Moreover the smoothness is controlled only globally
in Kohonen�s algorithm� This is a serious drawback with locally varying widths of the
scattering of noisy data points around the principal manifolds� The latter situation
would require the smoothness of the map to be controlled locally as a function of the
scattering of the data�

�



Input space 

1 2 N
r

v
1

v
2

1-d lattice of neurons (neuron space)

.
.

.

.
.

.

Figure �� The initial map obtained by choosing random values for the components of the
synaptic vectors� The picture shows both the virtual positions and the corresponding
lattice bonds for the �rst and last three neurons on the chain�

��� Local self�control of smoothness

Local control of smoothness may be achieved by an individual neighborhood 
r for
each neuron� so that

hr�r� �

�
�p
�	�
r

�D
exp

�
��r� r���

��
�
r

�
���

where �
r � min �
r� 
r�� with the additional constraints � � �
r � 
max�
�

The crucial point now is the determination of the local values 
r� For this purpose
we exploit the dynamics of the phase transition from the topographic map to the over�
�tting situation� cf� 	��� ��� For a discussion consider the case of mapping a chain of
neurons into a data manifold of dimension higher than one as demonstrated in Fig� ��
The algorithm tries to adapt the �image of� the chain to the data points as close as
possible under the smoothness constraint de�ned by the value of 
� While gradually
shrinking 
 the chain adapts closer and closer to the data points ending up with a
complete match to all the data points which is the over��tting catastrophe�
The point now is that there is a sharp phase transition to the over��tting regime

which occurs at a critical value 
c of the neighborhood width� 
c depending on the
scattering of the data points about the principal curve� At the phase transition point
the quality of the map changes in that characteristic oscillations form� These are
signaled by topology violations� Although the question of measuring the topographic
properties of the map is not trivial� cf� 	�� ��� �
� we have found a simple criterion
which proved reliable in practical applications� We consider the distance  � kr� � r��k
which is the distance between the �rst and second closest neuron to the current data

�The normalization factor
�
����

r

	
�
D

� was introduced in order that the average force exerted

on wr is independent on the local values of ��
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point where �  � �� �� � � �� If for any data point  � � meaning that the �rst and
second winner are not neighbors than there is a violation of topology in the region of
the data point which means that 
 has fallen below its critical value� In other words
 � � signals the onset of the phase transition to the over��tting �topology violating�
regime�
Consequently� our approach consists in keeping 
r �uctuating around its �unknown�

critical value 
crit
r
� i� e� we decrement 
r at each step as

�
r � � �

NT�

r �r ����

and reset whenever  � � the local values of 
 as


r �� max

�

r�  exp

�
�� �r�R��

�

��
� where R �

�

�

�
r�  r��
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Figure �� The map of a two�dimensional data distribution of varying scattering width
onto a one�dimensional chain of �� neurons �left�� Final values of 
r along the neural
chain produced by enforcing topology preservation �right��
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Figure �� Mapping a noisy distorted sin�wave onto a chain of neurons� The noise is
largely ampli�ed and clipped in the center of the data distribution�

As a result� the map �uctuates around the PM due to the phase transition taking
place each time the phase barrier corresponding critical value 
c is crossed� In order to
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average over the �uctuations each neuron keeps a second pointer wr obtained by the
moving average

�wr �
�

KNT�
�wr �wr� ����

over the �uctuations� where K is of the order of ��� The wr provide in most cases a
very good �rst order data model� Further improvements depend on the task� In the
case of modeling a functional relationship �see introduction� one may use the wr to
investigate the properties of the noise � in order to improve the model� For the PM
case� an essential improvement consists in using the wr as starting positions for a �nal
step in the sense of the iterative HS algorithm� This can be implemented more easily
by monitoring directly the averages over the data in each domain� Hence� instead of
wr each neuron gets a second pointer vr updated if the neuron is the winner as

�vs �
�

KT�
�v � vs� ����

The set fvr j r � �� ���� Ng are the �nal result of the algorithm� i� e� they represent the
PM in input space� Several toy applications of the present algorithm may be found in
the Figures � and ��

��� Sparse data sets

The above algorithm hinges on the abundance of data points which signal the folding
via the topology violations� This may fail if the number of data points is small� For
this case� a very sensitive criterion for the emergence of the critical �uctuations was
found to be a wavelet transform 	�� �� of the map� For a one�dimensional SOM we use
the Gabor transform

gr� �
�p
�	ur�







NX
k��

wr� exp

�
��k � r���

�u�r�

�
exp ��i k�r��






 ����

where both the frequency �r� of the kernel and the width are functions of the current
values of 
r� so that the kernel is always in resonance with potential foldings� At the
critical point 
 � 
crit the wavelength of the emerging folds is � � ����
l� where l is the
average distance between the neurons in that region� cf� 	���� Choosing �r� � ur� � �
r�

causes gr� to jump by an order of magnitude when 
r� drops below 
critr� � Hence� gr� is
the desired sensitive criterion for detecting the onset of the phase transition�

��	 Principal manifolds

So far� we have considered mainly the case of principal curves� However nothing in
the algorithm presented above for the self�regulation of the smoothness parameter 
 is
restricted to the case of a principal curve� i� e� a chain of neurons� We have applied the
algorithm to several higher dimensional tasks� one toy example being given in Fig� ��
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Figure �� Embedding a two�dimensional lattice into a three�dimensional data set �left��
Values of the neighborhood widths 
r as a function of the lattice sites r �right��

� Adaptive topologies

In important applications data sets are multiply connected� Here a generalization of
the above de�nition lead to generalized principal curves� which are allowed to possess a
number of branching points� but do observe � except in the vicinity of the branching
points � the same conditions as PCs considered so far� Since it is hard both to specify
an appropriate topology and to later match it to the data� we have chosen a di�erent
approach based on the neural gas algorithm� It allows to �rst represent the data
structure by virtual positions of neurons and later to observe phase transitions very
similar to that present in Kohonen maps� Thus� the adaptive�topology maps resemble
locally the SOM�approach� but provides greater generality if necessary�

	�� Generalized principal curves

We are now going to present an algorithm for the extraction of a nonlinear data model
so that non� or multiply connected data structures can be represented without any
prior knowledge of the number of components and their respective structure� We will
consider pseudo one�dimensional data manifolds so that the task is to �nd generalized
principal curves� The algorithm presented above rested on the self�organizing feature
map which requires the topology of the net �lattice� to be speci�ed beforehand� In the
present section we describe an algorithm which �nds the correct topology automatically�

	�� The neural gas algorithm

An �intelligent� algorithm� instead of relying on a prespeci�ed topology for the manifold
in the output �neuron� space A� must be capable to infer this topology from the data�
The neural gas algorithm 	��� ��� ��� �� is suitable for this purpose while otherwise
exhibiting similar properties as Kohonen�s learning rule �see below�� The only di�erence
is in the de�nition of the neighborhood function which relies on the rank R�r� in
the ordered sequence of distances kwr � vk� For the best matching unit s� we have
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R�s�� � �� the second�best has R�s�� � � and so on� Thus�

hr�v�w� � exp ��R�r��
� ����

and the weights are learned according to

�wr � �hr��v�wr��v �wr� ����

while decreasing 
� Eventually� the topology is represented in terms of a connectivity
matrix arising from a simple Hebbian learning rule� cf� eq� ��
� below�
However� the topology learned in this way is that of the noisy data and not of the

generalized principal curve to be constructed� A principal curve is obtained from the
neural gas by keeping the interaction width 
 su ciently high so that the weights �vir�
tual positions of the neurons� are forced into chain�like structures� The algorithm given
below will self�consistently adapt these widths locally to obtain the desired generalized
principal curve representation of the data set�

	�� Phase transitions in the neural gas

Phase transitions to the over��tting regime are observed also in the neural gas� although
there is no �xed topology� The point is that for su ciently large 
 the neurons are
mapped chain�like into the rectangular input space� This is an immediate consequence
of the cooperativity in learning introduced by the neighborhood function� What is the
analog of the topology violations observed in the Kohonen map when 
 � 
c! What
one observes is that in the over��tting regime the �rst and second winner are no longer
neighbors in input space� There are further neurons lying between the two in the sense
that their �Euclidean� distance from both the �rst and the second winner is smaller
than the distance between the �rst and second winner themselves� The number of
these neurons �in between� may be used for �xing the local value of the neighborhood
function optimally�

	�	 The algorithm

For each input signal v drawn from a distribution P �v� the �rst and second winner s��
s� are calculated� The neighborhood parameter 
 is initialized at e� g� N�� �with N
being the number of units� and is decreased slowly later on�


r �� maxf
r � ��
r� �g� ����

The strength Crs of the links develop by weakening in each step all links simultaneously�
followed by a strengthening the link between the �rst two winners�

�Cij � � �
N
�cCij �i� j and �Cs�s� � �c ��
�

If in this way a new link has been created �i� e� has grown across the threshold� the
neighborhood parameter 
r is increased for all neurons with pointers �virtual positions�
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wr between ws� and ws� � counteracting to the persistent decrease of 
� We consider
those neurons as situated between the �rst and second winner for which

kwr � ws�k � kws� �ws�k and kwr � ws�k � kws� � ws�k� ����


 is increased towards an estimated optimal "
opt which is proportional to the number
of neurons satisfying ���� with a global proportionality constant�

�
r � ���"
opt � 
r� if 
r � "
opt ����

Further� the 
r must not exceed their initial value�

Figure �� A multiply connected data set represented by a generalized principal curve�
obtained with the algorithm described in Sec� ���� Smoothness of the principal curve
was adapted locally by controlling the transition to the over�tting regime�

Next� sort the list of distances kwr � ws�k in an ascending order and de�ne a
modi�ed neighborhood function hr�v� fwg� by assigning ranks Rr � � to all units which
are directly connected to the winning neuron� while using the usual ranks otherwise�
The update rule of the algorithm �nally reads

�wr � � exp

�
� �R�

r

�
r  
s��
�

�
�v � wr� � ����
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Figure 
� Same as Fig� � for a Y�shaped branching data distribution�
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Figure �� Solution of a two�spirals problem by the algorithm of the present paper� Note
that the data manifold is disconnected and that the smoothness of the generalizxed
principal curve is self�controlled�

��



This algorithm solves the principal curve problem in a quite general way� exam�
ples may be found in Figs� �� 
� and � further details being given in Ref� 	��� Our
algorithm combines learning at di�erent levels� in particular of the network structure�
while retaining the capabilities of the learning mechanisms at the other levels� The
algorithm is relatively e cient since the most time consuming stage is the averaging
process� Forthcoming work will address the case of generalized principal manifolds of
dimension greater than one�

� Revealing cluster structures in nonlinear data

sets

The methods given above allow the construction of principal manifolds �PMs� in a
reliable way� Once the PM is obtained� it may form the basis of further data analy�
sis� One application is the visualization of the cluster structure of high dimensional
nonlinear data sets� In fact� the projections of the data points on the PM faithfully
re�ect the cluster structure of the high dimensional data manifold� If the PM is one�
or two�dimensional the cluster structure can be found by immediate visual inspection�
For a discussion we consider two examples� Fig� �� presents a nonlinear clustered

data set in three dimensional space� A set of real world data is shown in Fig� ��� In
both cases the PM shown was constructed by means of Kohonen�s algorithm� Obviously
the projection of data points from the ���dimensional input space onto the principal
manifold �given explicitly in Fig� ��� reveals the cluster structure of the data�

Figure ��� Principal manifold for a nonlinear set of data� The data points �dots� form
three clusters� a square �top right�� a circle �bottom�� and an ellipse �right� mapped
noisily onto a sphere �dashed��
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Figure ��� Principal manifold for a set of real world data and their projections� The
data points are ���dimensional vectors representing a biomarkers sampled both over
time and over groups of individuals�
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Figure ��� Map of the cluster structure of the real world data of Fig� ��� The gray
values mark the average distance taken in the input space of a neuron to its neighbors
�according to position in the lattice A�� Black corresponds to largest distances� Note
that the distance between data points is given mainly by the blackness of barriers
between the points�
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However the Figures reveal also a serious drawback of this method arising from
the density dependent resolution of the self�organizing map� This means that the
concentration of neurons inside the clusters is high whereas the region between clusters
is only scarcely populated� On the map this means that the regions between the
clusters are shrinked whereas the clusters appear magni�ed� This is a counterintuitive
representation of the cluster structure�
In order to overcome this drawback one may either use the methods given in 	�� ��

for the control of the magni�cation exponent of the map or one tries to reintroduce the
distance between the clusters into the representation� This can be done conveniently
by a method given by Ultsch et al� 	��� ���� It essentially consists in displaying as a
landscape the average distance taken in the input space of a neuron to its neighbors
�according to position in the lattice A��
Fig� �� shows an application to a real world data set� One may clearly recognize

the cluster structure by notifying the dark walls which mark the boundaries between
clusters�
The real world data to some extent demonstrate the superiority of the nonlinear

principal component analysis �NPCA� over the normal PCA� The latter yields three
large eigenvalues for the data set considered namely �� � ������ �� � ����� �� � ����
in the one case and �� � ����� �� � ����� �� � ���� This suggests a three�dimensional
space for the embedding of the data� The reason for this behavior becomes obvious
from Figs� �� and ��� The ��dimensional principal manifold �PM�� while still smooth
is shaped roof like which is registered as a three�dimensional object by the PCA�
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Figure ��� One set of biomarkers characterizing the Aich�s and Koersch�s population�
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Figure ��� Another set of biomarkers characterizing the Aich�s and Koersch�s popula�
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��



aikoer2.pca

05F1_A
05F2_A

07F1_A
07F2_A

14F3_A

14F4_A

16F3_A

05S1_A
07S2_A

16S3_A

16S4_A

05F1_K

05F2_K

07F1_K07F2_K

14F3_K

14F4_K

16F3_K

05S1_K

07S2_K

16S3_K

16S4_K

-4
-3

-2
-1

0
1

2
3

-3

-2

-1

0

1

-4

-3

-2

-1

0

1

2

Figure ��� The PCA for the data set generating the NPCA of Fig� ���

The di�erence becomes also prominent if we compare the clustering of the data
as seen by both PCA and NPCA� We depict the data as projections into the two�
dimensional space spanned by the �rst two eigenvectors� see Fig� �� and as projections
onto the two�dimensional PM� cf� Fig� ��� respectively� For a discussion we compare
the cluster structures� There is a correspondence for the two data points ��S� A and
��S� K which form a cluster in both the PCA and NPCA analysis� However the data
points ��S� A� ��S� K� and ��S� K cluster according to the NPCA but not in the
PCA representation� On the other hand the cluster consisting of ��F� A� ��S� K�
and ��F� K form a cluster in the PCA representation whereas in the NPCA they are
widely separated� In view of the large errors in the representation by the �rst two
PCA components it is not too surprising that the linear cluster analysis fails� We have
observed better agreement between the linear and nonlinear analysis for other cases
where the error in the PCA representation is not so large�
The results obtained so far are encouraging� However there are still some obvious

shortcomings of the method� Above all this concerns the treatment of the data points
populating the boundaries of the data set� Both Kohonen�s and the neural gas algorithm
tend to concentrate the lattice in the inner regions of the data cloud� This is clearly
seen in Figs� �� and �� as well as in 
� The problem is considered in 	��� ��� but so far
there is no feasible tool for circumventing this problem in the general case�

� Concluding remarks

We developed two new algorithms for the general task of extracting nonlinear principal
manifolds from high�dimensional and noisy data sets� We have demonstrated that the
method is applciable to real world data sets and that in the case of nonlinear data

��



manifolds the method allows to extract informations not visible from the conventional
linear methods of data analysis� The self�regulation of the parameters of the algorithm
is a major step towards the establishment of the method as a general tool of nonlinear
data analysis�
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