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Summary. Auto-associative models have been introduced as a new tool for build-
ing nonlinear Principal component analysis (PCA) methods. Such models rely on
successive approximations of a dataset by manifolds of increasing dimensions. In
this chapter, we propose a precise theoretical comparison between PCA and auto-
associative models. We also highlight the links between auto-associative models,
projection pursuit algorithms, and some neural network approaches. Numerical re-
sults are presented on simulated and real datasets.

8.1 Introduction

Principal component analysis (PCA) is a well-known method for extracting
linear structures from high-dimensional datasets. It computes the subspace
best approaching the dataset from the Euclidean point of view. This method
benefits from efficient implementations based either on solving an eigenvalue
problem or on iterative algorithms. We refer to [27] for details. In a similar
fashion, multi-dimensional scaling [3, 35, 44] addresses the problem of find-
ing the linear subspace best preserving the pairwise distances. More recently,
new algorithms have been proposed to compute low dimensional embeddings
of high dimensional data. For instance, Isomap [46], LLE (Locally linear em-
bedding) [42] and CDA (Curvilinear distance analysis) [9] aim at reproducing
in the projection space the structure of the initial local neighborhood. These
methods are mainly dedicated to visualization purposes. They cannot produce
an analytic form of the transformation function, making it difficult to map
new points into the dimensionality-reduced space. Besides, since they rely on
local properties of pairwise distances, these methods are sensitive to noise
and outliers. We refer to [38] for a comparison between Isomap and CDA and
to [48] for a comparison between some features of LLE and Isomap.
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Finding nonlinear structures is a challenging problem. An important family
of methods focuses on self-consistent structures. The self-consistency concept
is precisely defined in [45]. Geometrically speaking, it means that each point
of the structure is the mean of all points that project orthogonally onto it.
For instance, it can be shown that the K-Means algorithm [23] converges to a
set of k self-consistent points. Principal curves and surfaces [8, 24, 37, 47] are
examples of one-dimensional and two-dimensional self-consistent structures.
Their practical computation requires to solve a nonlinear optimization prob-
lem. The solution is usually non robust and suffers from a high estimation
bias. In [31], a polygonal algorithm is proposed to reduce this bias. Higher
dimensional self-consistent structures are often referred to as self-consistent
manifolds even though their existence is not guaranteed for arbitrary datasets.
An estimation algorithm based on a grid approximation is proposed in [19].
The fitting criterion involves two smoothness penalty terms describing the
elastic properties of the manifold.

In this paper, auto-associative models are proposed as candidates to the
generalization of PCA. We show in paragraph 8.2.1 that these models are
dedicated to the approximation of the dataset by a manifold. Here, the word
”manifold” refers to the topology properties of the structure [39]. The ap-
proximating manifold is built by a projection pursuit algorithm presented in
paragraph 8.2.2. At each step of the algorithm, the dimension of the manifold
is incremented. Some theoretical properties are provided in paragraph 8.2.3.
In particular, we can show that, at each step of the algorithm, the mean resid-
uals norm is not increased. Moreover, it is also established that the algorithm
converges in a finite number of steps. Section 8.3 is devoted to the presentation
of some particular auto-associative models. They are compared to the classical
PCA and some neural networks models. Implementation aspects are discussed
in Section 8.4. We show that, in numerous cases, no optimization procedure
is required. Some illustrations on simulated and real data are presented in
Section 8.5.

8.2 Auto-Associative Models

In this chapter, for each unit vector a ∈ R
p, we denote by Pa(.) = 〈a, .〉 the

linear projection from R
p to R. Besides, for all set E, the identity function

E → E is denoted by IdE .

8.2.1 Approximation by Manifolds

A function F d: R
p → R

p is a d-dimensional auto-associative function if there
exist d unit orthogonal vectors ak, called principal directions, and d contin-
uously differentiable functions sk: R → R

p, called regression functions, such
that

Paj ◦ sk = δj,kIdR for all 1 ≤ j ≤ k ≤ d , (8.1)
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where δj,k is the Kronecker symbol and

F d =
(
IdRp − sd ◦ Pad

) ◦ . . . ◦ (IdRp − s1 ◦ Pa1

)
=

1∐
k=d

(
IdRp − sk ◦ Pak

)
.

(8.2)
The main feature of auto-associative functions is mainly a consequence
of (8.1):

Theorem 1. The equation F d(x) = 0, x ∈ R
p defines a differentiable d-

dimensional manifold of R
p.

We refer to [16] for a proof. Thus, the equation F d(x) = 0 defines a space in
which every point has a neighborhood which resembles the Euclidean space
R

d, but in which the global structure may be more complicated. As an ex-
ample, on a 1-dimensional manifold, every point has a neighborhood that
resembles a line. In a 2-manifold, every point has a neighborhood that looks
like a plane. Examples include the sphere or the surface of a torus.

Now, let X be a square integrable random vector of R
p. Assume, without

loss of generality, that X is centered and introduce σ2(X) def= E[‖X‖2]. For all
auto-associative function F d, let us consider ε = F d(X). Note that, from the
results of Subsection 8.2.3 below, ε is necessarily a centered random vector.
In this context, σ2(ε) is called the residual variance. Geometrically speaking,
the realizations of the random vector X are approximated by the manifold
F d(x) = 0, x ∈ R

p and σ2(ε) represents the variance of X ”outside” the
manifold.

Of course, such random vector X always satisfies a 0-dimensional auto-
associative model with F 0 = IdRp and σ2(ε) = σ2(X). Similarly, X always
satisfies a p-dimensional auto-associative model with F p = 0 and σ2(ε) = 0.
In practice, it is important to find a balance between these two extreme cases
by constructing a d-dimensional model with d � p and σ2(ε) � σ2(X).
For instance, in the case where the covariance matrix Σ of X is of rank d,
then X is located on a d-dimensional linear subspace defined by the equation
F d

PCA(x) = 0 with

F d
PCA(x) = x−

d∑
k=1

Pak(x)ak , (8.3)

and where ak, k = 1, . . . , d are the eigenvectors of Σ associated to the positive
eigenvalues. A little algebra shows that (8.3) can be rewritten as F d(x) = 0,
where F d is a d-dimensional auto-associative function with linear regres-
sion functions ak(t) = tak for k = 1, . . . , d. Moreover, we have σ2(ε) = 0.
Since (8.3) is the model produced by a PCA, it straightforwardly follows that
PCA is a special (linear) case of auto-associative models. In the next section,
we propose an algorithm to build auto-associative models with non necessarily
linear regression functions, small dimension and small residual variance. Such
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models could also be called ”semi-linear” or ”semi-parametric” since they in-
clude a linear/parametric part through the use of linear projection operators
and a non-linear/non-parametric part through the regression functions.

8.2.2 A Projection Pursuit Algorithm

Let us recall that, given an unit vector a ∈ R
p, an index I: R → R is a func-

tional measuring the interest of the projection Pa(X) with a non negative real
number. The meaning of the word ”interest” depends on the considered data
analysis problem. For instance, a possible choice of I is the projected variance
I ◦ Pa(.) = Var[Pa(.)]. Some other examples are presented in Section 8.4.2.
Thus, the maximization of I ◦ Pa(X) with respect to a yields the most in-
teresting direction for this given criteria. An algorithm performing such an
optimization is called a projection pursuit algorithm. We refer to [26] and [28]
for a review on this topic.

Let d ∈ {0, . . . , p}, and consider the following algorithm which consists
in applying iteratively the following steps: [A] computation of the Axes, [P]
Projection, [R] Regression and [U] Update:

Algorithm 1 Define R0 = X.
For k = 1, . . . , d:

[A] Determine ak = arg max
x∈Rp

I ◦Px(Rk−1) s.t. ‖x‖ = 1, Paj (x) = 0, 1 ≤ j < k.
[P] Compute Y k = Pak(Rk−1).
[R] Estimate sk(t) = E[Rk−1|Y k = t],
[U] Compute Rk = Rk−1 − sk(Y k).

The random variables Y k are called principal variables and the random vec-
tors Rk residuals. Step [A] consists in computing an axis orthogonal to the
previous ones and maximizing a given index I. Step [P] consists in projecting
the residuals on this axis to determine the principal variables, and step [R] is
devoted to the estimation of the regression function of the principal variables
best approximating the residuals. Step [U] simply consists in updating the
residuals. Thus, Algorithm 1 can be seen as a projection pursuit regression
algorithm [14, 32] since it combines a projection pursuit step [A] and a regres-
sion step [R]. The main problem of such approaches is to define an efficient
way to iterate from k to k+1. Here, the key property is that the residuals Rk

are orthogonal to the axis ak since

Pak(Rk) = Pak(Rk−1)− Pak ◦ sk(Y k)
= Pak(Rk−1)− E[Pak

(Rk−1)|Y k]
= Y k − E[Y k|Y k]
= 0 . (8.4)

Thus, it is natural to iterate the model construction in the subspace orthogonal
to ak, see the orthogonality constraint in step [A]. The theoretical results
provided in the next paragraph are mainly consequences of this property.
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8.2.3 Theoretical Results

Basing on (8.4), it is easily shown by induction that both the residuals and
the regression functions computed at the iteration k are almost surely (a.s.)
orthogonal to the axes computed before. More precisely, one has〈

aj , Rk
〉

= 0 , a.s. for all 1 ≤ j ≤ k ≤ d , (8.5)〈
aj , sk(Y k)

〉
= 0, a.s. for all 1 ≤ j < k ≤ d . (8.6)

Besides, the residuals, principal variables and regression functions are cen-
tered:

E[Rk] = E[Y k] = E[sk(Y k)] = 0 ,

for all 1 ≤ k ≤ d. Our main result is the following:

Theorem 2. Algorithm 1 builds a d-dimensional auto-associative model with
principal directions {a1, . . . , ad}, regression functions {s1, . . . , sd} and residual
ε = Rd. Moreover, one has the expansion

X =
d∑

k=1

sk(Y k) +Rd , (8.7)

where the principal variables Y k and Y k+1 are centered and non-correlated
for k = 1, . . . , d− 1.

The proof is a direct consequence of the orthogonality properties (8.5)
and (8.6). Let us highlight that, for d = p, expansion (8.7) yields an exact
expansion of the random vector X as:

X =
p∑

k=1

sk(Y k) ,

since Rp = 0 (a.s.) in view of (8.5). Finally, note that the approximation prop-
erties of the conditional expectation entails that the sequence of the residual
norms is almost surely non increasing. As a consequence, the following corol-
lary will prove useful to select the model dimension similarly to the PCA
case.

Corollary 1. Let Qd be the information ratio represented by the d-dimensional
auto-associative model:

Qd = 1− σ2(Rd)
/
σ2(X) .

Then, Q0 = 0, Qp = 1 and the sequence (Qd) is non decreasing.

Note that all these properties are quite general, since they do not depend either
on the index I, nor on the estimation method for the conditional expectation.
In the next section, we show how, in particular cases, additional properties
can be obtained.
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8.3 Examples

We first focus on the auto-associative models which can be obtained using
linear estimators of the regression functions. The existing links with PCA
are highlighted. Second, we introduce the intermediate class of additive auto-
associative models and compare it to some neural network approaches.

8.3.1 Linear Auto-Associative Models and PCA

Here, we limit ourselves to linear estimators of the conditional expectation in
step [R]. At iteration k, we thus assume

sk(t) = tbk, t ∈ R , bk ∈ R
p .

Standard optimization arguments (see [18], Proposition 2) shows that, neces-
sarily, the regression function obtained at step [R] is located on the axis

bk = Σk−1a
k/(takΣk−1a

k) , (8.8)

with Σk−1 the covariance matrix of Rk−1:

Σk−1 = E[Rk−1 tRk−1] , (8.9)

and where, for all matrix M , the transposed matrix is denoted by tM . As a
consequence of Theorem 2, we have the following linear expansion:

X =
d∑

k=1

Y kΣk−1a
k

takΣk−1ak
+Rd .

As an interesting additional property of these so-called linear auto-associative
models, we have E[YjYk] = 0 for all 1 ≤ j < k ≤ d. This property is established
in [18], Proposition 2. Therefore, the limitation to a family of linear functions
in step [R] allows to recover an important property of PCA models: the non-
correlation of the principal variables. It is now shown that Algorithm 1 can
also compute a PCA model for a well suited choice of the index.

Proposition 1. If the index in step [A] is the projected variance, i.e.

I ◦ Px(Rk−1) = Var[Px(Rk−1)] ,

and step [R] is given by (8.8) then Algorithm 1 computes the PCA model of
X.

Indeed, the solution ak of step [A] is the eigenvector associated to the maxi-
mum eigenvalue ofΣk−1. From (8.8) it follows that bk = ak. Replacing in (8.2),
we obtain, for orthogonality reasons, F d = F d

PCA.
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8.3.2 Additive Auto-Associative Models and Neural Networks

A d-dimensional auto-associative function is called additive if (8.2) can be
rewritten as

F d = IdRd −
d∑

k=1

sk ◦ Pak . (8.10)

In [17], the following characterization of additive auto-associative functions is
provided. A d-dimensional auto-associative function is additive if and only if

Paj ◦ sk = δj,kIdR for all (j, k) ∈ {1, . . . , d}2 .

As a consequence, we have:

Theorem 3. In the linear subspace spanned by {a1, . . . , ad}, every d-dimensional
additive auto-associative model reduces to the PCA model.

A similar result can be established for the nonlinear PCA based on a neural
network and introduced in [29]. The proposed model is obtained by introduc-
ing a nonlinear function g : R → R, called activation function, in the PCA
model (8.3) to obtain

F d
KJ (x) = x−

d∑
k=1

g ◦ Pak(x)ak . (8.11)

Note that (8.11) is an additive auto-associative model as defined in (8.10) if
and only if g = IdR, i.e. if and only if it reduces to the PCA model in the
linear subspace spanned by {a1, . . . , ad}. Moreover, in all cases, we have

{F d
KJ(x) = 0, x ∈ R

p} ⊂ {F d
PCA(x) = 0, x ∈ R

p} ,

which means that this model is included in the PCA one. More generally, the
auto-associative Perceptron with one hidden layer [7] is based on multidimen-
sional activation functions σk : R → R

p:

F d
AAP (x) = x−

d∑
k=1

σk ◦ Pak(x) . (8.12)

Unfortunately, it can be shown [10] that a single hidden layer is not suffi-
cient. Linear activation functions (leading to a PCA) already yield the best ap-
proximation of the data. In other words, the nonlinearity introduced in (8.12)
has no significant effect on the final approximation of the dataset. Besides,
determining ak, k = 1, . . . , d is a highly nonlinear problem with numerous
local minima, and thus very dependent on the initialization.
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8.4 Implementation Aspects

In this section, we focus on the implementation aspects associated to Algo-
rithm 1. Starting from a n-sample {X1, . . . , Xn}, two problems are addressed.
In Subsection 8.4.1, we propose some simple methods to estimate the regres-
sion functions sk appearing in step [R]. In Subsection 8.4.2, the choice of the
index in step [A] is discussed. In particular, we propose a contiguity index
whose maximization is explicit.

8.4.1 Estimation of the Regression Functions

Linear auto-associative models

To estimate the regression functions, the simplest solution is to use a linear
approach leading to a linear auto-associative model. In this case, the regression
axis is explicit, see (8.8), and it suffices to replace Σk−1 defined in (8.9) by its
empirical counterpart

Vk−1 =
1
n

n∑
i=1

Rk−1
i

tRk−1
i , (8.13)

where Rk−1
i is the residual associated to Xi at iteration k − 1.

Nonlinear auto-associative models

Let us now focus on nonlinear estimators of the conditional expectation
sk(t) = E[Rk−1|Y k = t], t ∈ R. Let us highlight that sk is a univariate
function and thus its estimation does not suffer from the curse of dimension-
ality [1]. This important property is a consequence of the ”bottleneck” trick
used in (8.2) and, more generally, in neural networks approaches. The key
point is that, even though sk ◦ Pak is a p- variate function, its construction
only requires the nonparametric estimation of a univariate function thanks to
the projection operator.

For the sake of simplicity, we propose to work in the orthogonal basis Bk

of R
p obtained by completing {a1, . . . , ak}. Let us denote by Rk−1

j the j-th
coordinate of Rk−1 in Bk. In view of (8.5), Rk−1

j = 0 for j = 1, . . . , k − 1.
Besides, from step [P], Rk−1

k = Y k. Thus, the estimation of sk(t) reduces to
the estimation of p− k functions

skj (t) = E[Rk−1
j |Y k = t], j = k + 1, . . . , p .

This standard problem [22, 12] can be tackled either by kernel [2] or projec-
tion [20] estimates.
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Kernel estimates

Each coordinate j ∈ {k+1, . . . , p} of the estimator can be written in the basis
Bj as:

ŝkj (t) =
n∑

i=1

Rk−1
j,i K

(
t− Y k

i

h

)/ n∑
i=1

K

(
t− Y k

i

h

)
, (8.14)

where Rk−1
j,i represents the j-th coordinate of the residual associated to the

observationXi at the (k−1)-th iteration in the basis Bk, Y k
i is the value of the

k-th principal variable for the observation Xi and K is a Parzen-Rosenblatt
kernel, that is to say a bounded real function, integrating to one and such
that tK(t)→ 0 as |t| → ∞. For instance, one may use a a standard Gaussian
density. The parameter h is a positive number called window in this context.
In fact, ŝkj (t) can be seen as a weighted mean of the residuals Rk−1

j,i which are
close to t:

ŝkj (t) =
n∑

i=1

Rk−1
j,i w

k
i (t) ,

where the weights are defined by

wk
i (t) = K

(
t− Y k

i

h

)/ n∑
i=1

K

(
t− Y k

i

h

)
,

and are summing to one:
n∑

i=1

wk
i (t) = 1 .

The amplitude of the smoothing is tuned by h. In the case of a kernel with
bounded support, for instance if supp(K) = [−1, 1], the smoothing is per-
formed on an interval of length 2h. For an automatic choice of the smoothing
parameter h, we refer to [25], Chapter 6.

Projection estimates

Each coordinate j ∈ {k + 1, . . . , p} of the estimator is expanded on a basis of
L real functions {b�(t), ! = 1, . . . , L} as:

s̃kj (t) =
L∑

�=1

α̃k
j,�b�(t) .

The coefficients α̃k
j,� appearing in the linear combination of basis functions are

determined such that s̃kj (Y k
i )  Rk−1

j,i for i = 1, . . . , n. More precisely,

α̃k
j,. = arg min

αk
j,.

n∑
i=1

(
L∑

�=1

αk
j,�b�(Y

k
i )−Rk−1

j,i

)2

,
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and it is well-known that this least-square problem benefits from an explicit
solution which can be matricially written as

α̃k
j,. = (tBkBk)−1 tBkRk−1

j,. , (8.15)

where Bk is the n × L matrix with coefficients Bk
i,� = b�(Y k

i ), i = 1, . . . n,
! = 1, . . . , L. Note that this matrix does not depend on the coordinate j.
Thus, the matrix inversion in (8.15) is performed only once at each iteration
k. Besides, the size of this matrix is L×L and thus does not depend either on
the dimension of the space p, nor on the sample size n. As an example, one can
use a basis of cubic splines [11]. In this case, the parameter L is directly linked
to N the number of knots: L = N + 4. Remark that, in this case, condition
N + 4 ≤ n is required so that the matrix is tBkBk is regular.

8.4.2 Computation of Principal Directions

The choice of the index I is the key point of any projection pursuit problem
where it is needed to find ”interesting” directions. We refer to [26] and [28]
for a review on this topic. Let us recall that the meaning of the word ”in-
teresting” depends on the considered data analysis problem. As mentioned in
Subsection 8.2.2, the most popular index is the projected variance

IPCA ◦ Px

(
Rk−1

)
=

1
n

n∑
i=1

P 2
x (Rk−1

i ) (8.16)

used in PCA. Remarking that this index can be rewritten as

IPCA ◦ Px

(
Rk−1

)
=

1
2n2

n∑
i=1

∑
j 
=i

P 2
x (Rk−1

i −Rk−1
j ) ,

it appears that the ”optimal” axis maximizes the mean distance between
the projected points. An attractive feature of the index (8.16) is that its
maximization benefits from an explicit solution in terms of the eigenvectors
of the empirical covariance matrix Vk−1 defined in (8.13). Friedman et al [15,
13], and more recently Hall [21], proposed an index to find clusters or use
deviation from the normality measures to reveal more complex structures of
the scatter-plot. An alternative approach can be found in [4] where a particular
metric is introduced in PCA so as to detect clusters. We can also mention
indices dedicated to outliers detection [40]. Similar problems occur in the
neural networks context where the focus is on the construction of nonlinear
mappings to unfold the manifold. It is usually required that such a mapping
preserves that local topology of the dataset. In this aim, Demartines and
Herault [9] introduce an index to detect the directions in which the nonlinear
projection approximatively preserves distances. Such an index can be adapted
to our framework by restricting ourselves to linear projections:
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IDH ◦ Px

(
Rk−1

)
=

n∑
i=1

∑
j 
=i

(∥∥Rk−1
i −Rk−1

j

∥∥− |Px|(Rk−1
i −Rk−1

j )
)2

H ◦ |Px|(Rk−1
i −Rk−1

j ) .

The function H is assumed to be positive and non increasing in order to
favor the local topology preservation. According the authors, the application
of this function to the outputs PxR

k−1
i instead of the inputs Rk−1

i allows to
obtain better performances than the Kohonen’s self-organizing maps [33, 34].
Similarly, the criterion introduced in [43] yields in our case

IS ◦ Px(Rk−1) =
n∑

i=1

∑
j 
=i

(∥∥Rk−1
i −Rk−1

j

∥∥− |Px|(Rk−1
i −Rk−1

j )
)2

/
n∑

i=1

∑
j 
=i

P 2
x (Rk−1

i −Rk−1
j ) .

However, in both cases, the resulting functions are nonlinear and thus difficult
to optimize with respect to x.
Our approach is similar to Lebart one’s [36]. It consists in defining a contiguity
coefficient whose minimization allows to unfold nonlinear structures. At each
iteration k, the following Rayleigh quotient [41] is maximized with respect
to x:

I ◦ Px(Rk−1) =
n∑

i=1

P 2
x (Rk−1

i )

/
n∑

i=1

n∑
j=1

mk−1
i,j P

2
x (Rk−1

i −Rk−1
j ) . (8.17)

The matrix Mk−1 = (mk−1
i,j ) is a first order contiguity matrix, whose value

is 1 when Rk−1
j is the nearest neighbor of Rk−1

i , 0 otherwise. The upper
part of (8.17) is proportional to the usual projected variance, see (8.16). The
lower part is the distance between the projection of points which are near-
est neighbor in R

p. Then, the maximization of (8.17) should reveal directions
in which the projection best preserves the first order neighborhood structure
(see Figure 8.1). In this sense, the index (8.17) can be seen as a first order
approximation of the index proposed in [6]. Thanks to this approximation,
the maximization step benefits from an explicit solution: The resulting prin-
cipal direction ak is the eigenvector associated to the maximum eigenvalue of
(V �

k−1)
−1Vk−1 where

V �
k−1 =

1
n

n∑
i=1

n∑
j=1

mk−1
i,j (Rk−1

i −Rk−1
j ) t(Rk−1

i −Rk−1
j )

is proportional to the local covariance matrix. (V �
k−1)

−1 should be read as
the generalized inverse of the singular matrix V �

k−1. Indeed, since Rk−1 is
orthogonal to {a1, . . . , ak−1} from (8.5), V �

k−1 is, at most, of rank p − k + 1.
Note that this approach is equivalent to Lebart’s one when the contiguity
matrix M is symmetric.
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Fig. 8.1. Left: axis a such that the associated projection Pa preserves the first-order
neighborhood structure. The regression function s correctly fits the dataset. Right:
axis a for which Pa does not preserve the first-order neighborhood structure. The
regression function s cannot yield a good approximation of the dataset

8.5 Illustration on Real and Simulated Data

Our first illustration is done on the ”DistortedSShape” simulated dataset in-
troduced in [30], paragraph 5.2.1 and available on-line3. The dataset consists
of 100 data points in R

2 and located around a one-dimensional curve (solid
line on Figure 8.2). The bold dashed curve is the one-dimensional manifold
estimated by the principal curves approach [24]. The estimated curve fails to
follow the shape of the original curve. Using the auto-associative model, the
estimated one-dimensional manifold (dashed curve) is closer to the original
one. In this experiment, we used one iteration of Algorithm 1 with the conti-
guity index (8.17) in combination with a projection estimate of the regression
functions. A basis of N = 4 cubic splines was used to compute the projection.

Our second illustration is performed on the ”dataset I - Five types of
breast cancer” provided to us by the organizers of the ”Principal Manifolds-
2006” workshop. The dataset [49] is available on-line4. It consists of micro-
array data containing logarithms of expression levels of p = 17816 genes in
n = 286 samples. The data is divided into five types of breast cancer (lumA,
lumB, normal, errb2 and basal) plus an unclassified group. Before all, let
us note that, since n points are necessarily located on a linear subspace of
dimension n− 1, the covariance matrix is at most of rank n− 1 = 285. Thus,
as a preprocessing step, the dimension of the data is reduced to 285 by a
classical PCA, and this, without any loss of information. Forgetting the labels,
i.e. without using the initial classification into five types of breast cancer,
the information ratio Qd (see Corollary 1) obtained by the classical PCA
and the generalized one (basing on auto-associative models), are compared.
Figure 8.3 illustrates the behavior of Qd as the dimension d of the model

3 http://www.iro.umontreal.ca/∼kegl/research/pcurves
4 http://www.ihes.fr/∼zinovyev/princmanif2006/
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Fig. 8.2. Comparison of one-dimensional estimated manifolds on a simulated
dataset. solid line: original curve, dashed line: curve estimated from the auto-
associative model approach, bold dashed line: principal curve estimated by the ap-
proach proposed in [24].
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Fig. 8.3. Forgetting the labels, information ratio Qd as a function of d on a
real dataset. solid line: classical PCA, bold line: generalized PCA based on auto-
associative models
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Fig. 8.4. One-dimensional manifold estimated on a real dataset with the auto-
associative models approach and projected on the principal plane.
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Fig. 8.5. One-dimensional manifolds estimated on each type of cancer of the real
dataset with the auto-associative models approach, and projected on the principal
plane
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Fig. 8.6. Two-dimensional manifold estimated on a real dataset with the auto-
associative models approach and projected on the three first principal axes

increases. The bold curve, corresponding to the auto-associate model, was
computed with the contiguity index (8.17) in combination with a projection
estimate of the regression functions. A basis of N = 2 cubic splines was used
to compute the projection. One can see that the generalized PCA yields far
better approximation results than the classical one.

As an illustration, the one-dimensional manifold is superimposed to the
dataset on Figure 8.4. Each class is represented with a different gray level.
For the sake of the visualization, the dataset as well as the manifold are
projected on the principal plane. Similarly, the two-dimensional manifold is
represented on Figure 8.6 on the linear space spanned by the three first prin-
cipal axes. Taking into account the labels, it is also possible to compute the
one-dimensional manifold associated to each type of cancer and to the unclas-
sified points, see Figure 8.5. Each manifold then represents a kind of skeleton
of the corresponding dataset.

Other illustrations can be found in [5], Chapter 4, where auto-associative
models are applied to some image analysis problems.
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9. Demartines, P. and Hérault, J.: Curvilinear component analysis: A self-
organizing neural network for nonlinear mapping of data sets. IEEE Trans.
on Neural Networks, 8 (1), 148–154 (1997)

10. Diamantaras, K.L. and Kung, S.Y.: Principal component neural networks.
Wiley, New-York (1996)

11. Eubank, R.L.: Spline smoothing and non-parametric regression. Decker (1990)
12. Ferraty, F. and Vieu, P.: Nonparametric modelling for functional data. Springer

(2005)
13. Friedman, J.H.: Exploratory projection pursuit. Journal of the American

Statistical Association, 82(397), 249–266 (1987)
14. Friedman, J.H. and Stuetzle, W.: Projection pursuit regression. Journal of the

American Statistical Association, 76 (376), 817–823 (1981)
15. Friedman, J.H. and Tukey, J.W.: A projection pursuit algorithm for exploratory

data analysis. IEEE Trans. on Computers, C23 (9), 881–890 (1974)
16. Girard, S.: A nonlinear PCA based on manifold approximation. Computational

Statistics, 15 (2), 145–167 (2000)
17. Girard, S., Chalmond, B., and Dinten, J.-M.: Position of principal compo-

nent analysis among auto-associative composite models. Comptes-Rendus de
l’Académie des Sciences, Série I, 326, 763–768 (1998)

18. Girard, S. and Iovleff, S.: Auto-associative models and generalized principal
component analysis. Journal of Multivariate Analysis, 93 (1), 21–39 (2005)

19. Gorban, A. and Zinovyev, A.: Elastic principal graphs and manifolds and their
practical applications. Computing, 75 (4), 359–379 (2005)

20. Green, P.J. and Silverman, B.W.: Non-parametric regression and generalized
linear models. Chapman and Hall, London (1994)

21. Hall, P.: On polynomial-based projection indices for exploratory projection
pursuit. The Annals of Statistics, 17 (2), 589–605 (1990)
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