
Chapter 7 

Discussion and conclusions 

In this chapter we discuss some of the existing techniques for symmetric smoothing, as well 

as the various generalizations of principal components and factor analysis. We compare 

these techniques with the methodology developed here. The chapter concludes with a 

summary of the uses of principal curves and surfaces. 

7.1. Alternative techniques. 

Other non-linear generalizations of principal components exist in the literature. They can 

be broadly classified according to two dichotomies. 

l We can estimate either the non-linear manifold or the non-linear constraint that defines 

the manifold. In linear principal components the approaches are equivalent. 

l The non-linearity can be achieved by transforming the space or by transforming the 

model. 

The principal curve and surface procedures model the non-linear manifold by transforming 

the model. 

7.1.1. Generalized linear principal components. 

This approach corresponds to modeling either the nonlinear constraint or the manifold by 

transforming the space. The idea here is to introduce some extra variables, where each new 

variable is some non-linear transformation of the existing co-ordinates. One then seeks a 

subspace of this non linear co-ordinate system that models the data well. The subspace 

is found by using the usual linear eigenvector solution in the new enlarged space. This 

technique was first suggested by Gnanadesikan & Wilk (1966,1968), and a good description 

can be found in Gnanadesikan (1977). They suggested using polynomial functions of the 

original p coordinates. The resulting linear combinations are then of the form ( for p = 2 

and quadratic polynomials) 

4 = aljzl + a2jz2 + WjZlZ2 + a4jZ: + asjzi (7.1) 
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and the oi will be eigenvectors of the appropriate covariance matrix. 

This model has appeal mainly as a dimension reducing tool. Typically the linear 

combiiation with the smallest variance is set to zero. This results in an implicit non-linear 

constraint equation as in (7.1) where we set X = 0. We then have a rank one reduction 

that tells us that the data lies close to a quadratic manifold in the original coordinates. 

The model has been genera&ed further to include more general transformations of 

the co-ordinates other than quadratic, but the idea is essentially the same es the above; a 

linear solution is found in a transformed space. Young, Takane & de beeuw (1978) and later 

Friedman (1983) suggested different forms of this generalization to include non-parametric 

transformations of the co-ordinates. The problem can be formulated as follows: Find o and 

S’(2) = (81(21),“’ , s,,(z,,)) such that 

E 118(Z) - 00’8(~)~~~ = min! (7.2) 

or alternatively such that 

Var [o’s(z)] = max! (7.3) 

where ESj(Zj) = 0, 0’0 = 1 and ES;(q) = 1. The idea is to transform the coordinates 

suitably and then find the linear principal components. If in (7.3) we replaced mar by min 

then we would be estimating the constraint in the transformed space. 

The estimation procedure alternates between finding the Sj(.) and finding the linear 

principal components in the transformed space. 

. For a fixed vector of functions s(e), we chose o to be the first principal component of 

the covariance matrix Es(z)r(z)‘. 

l For a known, (7.2) can be written in the form 

k E[Sl(c?Jl) - ~bljSj(Zj)]'-i- b?rlllS ill 82(‘),-*-,Sp(*), (7.4) 
j=2 

and bji are functions of o above. If 82,. . . , sP are known, equation (7.4) is minimized 

by 

j=P 

This is true for any Sj, and suggests an inner iterative loop. This inner loop is very 

similar to the ACE algorithm (Breiman and Friedman, 1982), except the normalization 
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is slightly different. Breiman and Friedman proved that the ACE algorithm converges 

under certain regularity conditions in the distributional case. 

The disadvantages of this technique are: 

l The space is transformed, and in order to understand the resultant fit, we usually 

would need to transform back to the original space. This can only be achieved if the 

transformations are restricted to monotone functions. In the transformed space the 

estimated manifold is given by 

h(a) (4 = m's(2). 

444 

Thus if the Sj(*) are monotone, we get untransformed estimates of the form 

where t = o’s(z). Equation (7.5) defines a parametrized curve. The curve is not 

completely general since the cc+ordinate functions are monotone. For the same reason, 

Gnanadesikan (1978) expressed the desirability of having procedures for estimating 

models of the type proposed in this dissertation. 

l We are estimating manifolds that are close to the data in the transformed co-ordinates. 

When the transformations are non-linear this can result in distortion of the error 

variances for individual variables. What we really require is a method for estimating 

manifolds that are close to the data in the original p co-ordinates. Of course, if the 

functions are linear, both approaches are identical. 

An advantage of the technique is that it can easily be generalized to take care of higher 

dimensional manifolds, although not in an entirely general fashion. This is achieved by 

replacing a with A where A is p x q . We then get a q dimensional hyperplane in the 

transformed space given by AAIr( H owever, we end up with a number of implicit 

constraint equations which are hard to deal with and interpret. Despite the problems 

associated with generalized principal components, it remains a useful tool for performing 

rank 1 dimensionality reductions. 
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7.1.2. Multi-dimensional scaling. 

This is a technique for finding a low dimensional representation of high dimensional data. 

The original proposal was for data that consists of (;) d issimilarities or distances between n 

objects. The idea is to find a m (m small, 1, 2 or 3) dimensional euclidean representation for 

the objects such that the inter-object distances are preserved as well as possible. The idea 

wss introduced by Torgerson (1958), and followed up by Shepard (lQ62), Kruskal (lQ64a 

,1964b), Shepard & Kruskal (1961) and Shepard C Carroll (1966). Gnanadesikan (1978) 

gives a concise description. 

The procedures have also been suggested for situations where we simply want a lower 

dimensional representation of high dimensional euclidean data. The lower dimensional 

representation attempts to reproduce the interpoint distances in the original space. We 

fit a principal curve to the color data in example 6.5; these data were originally analyzed 

by Shepard and Carroll (1966) using MDS techniques. Although there have been some 

intriguing examples of the technique in the literature, a number of problems exist. 

l The solution consists of a vector of m co-ordinates representing the location of points 

on the low dimensional manifold, but only for the n data points. What we don’t get, 

and often desire is a mapping of the whole space. We are unable, for example, to find 

the location of new points in the reduced space. 

l The procedures are computationally expensive and unfeasible for large n (nm > 300 

is considered large). They are usually expressed as non-linear optimization problems 

in nm parameters, and differ in the choice of criterion. 

The principal curve and surface procedures partially overcome both the problems listed 

above; they are unable to find structures as general as those that can be found by the MDS 

procedures due to the averaging nature of the scatterplot smoothers, but they do provide 

a mapping for the space. We have demonstrated their ability to model MDS type data in 

examples 6.4 and 6.5. They do not, however, provide a model for dissimilarities which was 

the original intention of multidimensional scaling. 

7.1.3. Proximity models. 

Shepard k Carroll (1966) suggested a functional model similar in form to the model we 

suggest. They required only to estimate the n vectors of m parameters for each point, and 

considered the data to be functions thereof. The parameters (nm altogether) are found 
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by direct search as in h4DS, with a different criterion to be minimized. Their procedure, 

however, was geared towards data without error, as in the ball data in example 6.4. This 

becomes evident when one examines the criterion they used, which measures the continuity 

of the data as a function of the parameters. When the data is not smooth, as is usually the 

case, we need to estimate functions that vary smoothly with the parameters, and are close 

to the data. 

7.1.4. Non-linear factor analysis. 

More recently, Etezadi-Amoli and McDonald (1983) approached the problem of non-linear 

factor analysis using polynomial functions. They use a model of the form 

X = f(X) + e 

where f is a polynomial in the unknown parameters or factors. Their procedure for esti- 

mating the unknown factors and coefficients is similar to ours in this restricted setting. * 

Their emphasis is on the factor analysis model, and once the appropriate polynomial terms 

have been found, the problem is treated as an enlarged factor analysis problem. They do 

not estimate the X’s as we do, using the geometry of the problem, but instead perform a 

search in nq parameter space, where q is the dimension of X and n is the number of obser- 

vations. Our emphasis is on providing one and two dimensional summaries of the data. In 

certain situations, these summaries can be used as estimates of the appropriate non-linear 

functional and factor models. 

7.1.5. Axis interchangeable smoothing. 

Cleveland (1983) describes a technique for symmetrically smoothing a scatterplot which he 

calls ati.9 interchangeable smoothing ( which we will refer to as AI smoothing). We briefly 

outline the idea: 

l standardize each coordinate by some (robust) measure of scale. 

l rotate the coordinate axes by 45’. (if the correlation is positive, else rotate through 

-457. 

l smooth the transformed y against the transformed z. 

* Their paper was published in the September, 1983 issue of Psychometrika, whereaz Hastie 
(1983) appeared iu July. 
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. rotate the axes back. 

l unstandardize. 

If the standardization uses regular standard deviations, then the rotation is simply a change 

of basis to the principal component basis. The resulting curve minimizes the distance from 

the points orthogonal to this principal component. It has intuitive appeal since the principal 

component is the line that is closest in distance to the points. We then allow the points 

to tug in the principal component line. It is simple and fast to compute the AI Smooth, 

and for many scatterplots it produces curves that are very similar to the principal curve 

solution. This is not surprising when we consider the following theorem: 

Theorem 7.1 

If the two variables in a scatterplot are standardized to have unit standard deviations, 

and if the smoother used is linear and reproduces straight lines exactly, then the axis 

interchangeable smooth is identical to the curve of the first iteration of the principal curve 

procedure. 

Proof 

Let the variables z and y be standardized as above. The AI Smooth transforms to two 

new variables 
=* _ (2 + u) 

g _ c.5, . 
(7.6) 

t/z 
Then the AI Smooth replaces (z’, v’) by (z’, Smooth(y* 12’)). But Smooth(z’ 12”) = 

2’ since the smoother reproduces straight lines exactly.* Thus the AI Smooth transforms 

p = ( Smooth (2’ ) z’) + Smooth (y’ ) 2’) 

4 

$= 
( Smooth (2’ ( 2’) - Smooth (y’ ( 2”)) 

\/z 
Since the smoother is linear, and in view of (7.6) , (7.7) becomes 

4 = Smooth (2 12’) 

0 = Smootb(y Iz‘)’ 

(7.7) 

* Any weighted local linear smoother has this property. Local averages, however, do not unless 
the predictors are evenly spaced. 
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This is exactly the curve found after the first iteration of the principal curve procedure, 

since i(O) = 2.. I 

Williams and Krauss (1982) extended the AI smooth by iterating the procedure. At 

the second step, the residuals are calculated locally by finding the tangent to the curve at 

each point and evaluating the residuals from these tangents. The new fit at that point is 

the smooth of these residuals against their projection onto the tangent. This procedure 

would probably get closer to the principal curve solution than the AI smooth (we have 

not implemented the Williams and Krauss smooth). Analytically one can see that the 

procedures differ from the second step on. 

This particular approach to symmetric smoothing (in terms of residuals ) suffers from 

several deficiencies : 

l the type of curves that can be found are not as general as those found by the principal 

curve procedure. 

l they are designed for scatterplots and do not generalize to curves in higher dimensions. 

l they lsck the interpretation of principal curves as a form of conditional expectation. 

7.2. Conclusions. 

In conclusion we summarize the role of principal curves and surfaces in statistics and data 

analysis. 

l They generalize the one and two dimensional summaries of multivariate data usually 

provided by the principal components. 

l When the principal curves and surface are linear, they are the principal component 

summaries. 

l Locally they are the critical points of the usual distance function for such summaries; 

this gives an indication that there are not too many of them. 

l They are defined in terms of conditional expectations which satisfies our mental image 

of a summary. 

l They provide the least squares estimate for generalized versions of factor analysis, 

functional models and the errors in variables regression models. The non-linear errors 
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in variables model has been used successfully a number of times in practical data 

analysis problems (notably calibration problems). 

l In some situations they are a useful alternative to MDS techniques, in that they provide 

a lower dimensional summary of the space as opposed to the data set. 

l In some situations they can be effective in identifying outliers in higher dimensional 

space. 

l They are a useful data exploratory tool. Motion graphics techniques have become 

popular for looking at 3 dimensional point clouds. Experience shows that it is often 

impossible to identify certain structures in the data by simply rotating the points. A 

summary such as that given by the principal curve and surfaces can identify structures 

that would otherwise be transparent, even if the data could be viewed in a real three 

dimensional model. 

Acknowledgements 

My great appreciation goes to my advisor Werner Stuetzle, who guided me through all 

stages of this project. I also thank Werner and Andreas Buja for suggesting the problem, 

and Andreas for many helpful discussions. Rob Tibshirani helped me a great deal, and some 

of the original ideas emerged whilst we were suntanning alongside a river in the Californian 

mountains. Brad Efron, as usual, provided many insightful comments. Thanks to Jerome 

Friedman for his ideas and constant support. In addition I thank Persi Diaconis and Iain 

Johnstone for their help and comments, and Roger Chaffee and Dave Parker for their 

computer assistence. Finally I thank the trustees of the Queen Victoria, the Sir Robert 

Kotze and the Sir Harry Crossley scholarships for their generous assistence. 




