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Summary. The Iterative Extraction approach (ITEX) extends the one-by-one ex-
traction techniques in Principal Component Analysis to other additive data models.
We describe additive models for clustering entity-to-feature and similarity data and
apply ITEX for deriving computationally feasible clustering solutions. Specifically,
two ITEX derived clustering methods, iK-Means and ADDI-S, are presented as well
as update results on theoretical, experimental and applicational aspects of these
methods.

6.1 Introduction

The iterative extraction approach emerged within the Principal Component
Analysis (PCA) framework. The PCA builds aggregated features, “hidden
factors” to score hidden capabilities of entities, relying on the Singular Value
Decomposition of the data matrix and its mathematical properties: The singu-
lar vectors, that underlie the principal components, are mutually orthogonal,
thus can be found and extracted one by one in the descending order of singu-
lar values. Moreover, the square of a singular value represents the share of the
data scatter taken into account by the corresponding principal component.

The author extended this approach to clustering in [30, 31, 32, 33, 34] by
extending the bilinear Singular Value Decomposition model to that of cluster-
ing. Specifically, the “scoring” principal components sought are compulsory
restricted to be binary, thus representing cluster memberships rather than
scores. This extension proved to be reasonable since it encompasses many a
popular method including K-Means clustering. An analogous extension, of the
spectral decomposition of a square symmetric semi-positive matrix applied to
similarity data also brings forward clusters that are provably tight.

The ITerative EXtraction approach applied in this setting finds clusters
one by one, which has a number of advantages as well as drawbacks. Among
advantages are the following: (i) computational efficiency, (ii) the possibility
of the additive decomposition of the data scatter in such a way that the
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contribution of each cluster, as well as of its elements, can be clearly evaluated,
(iii) the easiness of getting overlapping clusters by not bothering to take into
account the clusters already found. This approach will be abbreviated further
on as ITEX; in [32, 33] it was referred to as SEFIT. Some methods emerging
within ITEX, such as iK-Means and ADDI-S, are described in the further
text. The data scatter decompositions proved effective in extending clustering
methods to categorical and mixed scale data as well as for interpretation of
the results (see [34]). Here we concentrate on reviewing methods and some
applications, and do not consider usage of the decompositions.

The paper is organized as follows. Section 2 describes the ITEX approach
for the entity-to- feature data and methods of Anomalous Pattern and iK-
Means clustering following from it. Method iK-Means can be considered as a
version of the conventionalK-Means in which the number of clusters nor clus-
ter seeds are not pre-specified but found sequentially by extracting “principal”
clusters one by one. An experiment over generated data is described involving
a number of different approaches to choosing the “right” number of clusters
published in the literature. The experiment demonstrates that the iK-Means
is superior to other methods, especially if supplemented with Hartigan’s rule
for choosing the cluster “discarding threshold.” Section 3 describes the ITEX
applied to additive structuring and clustering models over similarity data.
The material clearly demonstrates that there have been a bunch of heuristic
similarity clustering methods proposed that nicely fit into the framework. A
concept that appears to be crucial in this models is the intercept that also can
be interpreted as a similarity scale shift or the similarity threshold. Within
the ITEX, its value becomes as important as the number of clusters in con-
ventional approaches. With the scale shift specified to be either user-defined
or optimal, the ITEX leads to intuitive and fast clustering methods. The final
method, ADDI-S, in which all parameters are least-squares adjusted, pro-
duces provably tight clusters involving a variable similarity threshold, equal
to half the average similarity within the cluster. This method proved useful
in applications, three of which are described in brief.

6.2 Clustering Entity-to-feature Data

6.2.1 Principal Component Analysis

The method of iterative extraction extends the process of a a major data
analysis tool, the Principal Component Analysis (PCA). Typically, PCA is
presented as a heuristic data extraction method [8, 22]. Observed data such
as marks of students i ∈ I at academic disciplines labelled by v = 1, ..., V con-
stitute a data matrixX = (xiv). This matrix is pre-processed by centering and
rescaling its columns, after which a normed |I|-dimensional “scoring” vector
z is sought such that the linear combination c = XT z takes into account the
maximum possible share of the data scatter Tr(XTX). This problem reduces
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to finding the maximum eigenvalue λ1 and corresponding normed eigenvector
c1 of the covariance matrix S = XTX , Sc1 = λ1c1, so that the solution is
z1 = Xc1/

√
λ1 and λ1 is the share of the data scatter taken into account by

it. Vectors z1 and c1 form what is referred to the first Principal Component
“scoring” and “loading” vectors, respectively. The second component is found
with the same process, but applied to the residual matrix S′ = S − λ1c1c

T
1

rather than matrix S = XTX itself. The second Principal Component corre-
sponds to the second largest eigenvalue, its eigenvector being orthogonal to
the first one. The process can be reiterated to find the third, the fourth, etc.
mutually orthogonal components. The Principal Components are interpreted
as “better” features, bearing the maximum possible share of the data scatter,
so that a few of them can approximate all the data.

In this narrative, PCA is but a heuristic method for the iterative extraction
of the principal components. In fact, as is rather well known, PCA can be
considered a method for fitting the model presented in equation (6.1) below.

Assume that each entry xiv reflects the i-th entity scores (the student’s
hidden abilities) zik (i ∈ I) along with feature v impact coefficients ckv, over
a number of hidden factors k = 1, ...,K, so that

xiv = c1vzi1 + ...+ cKvziK + eiv (6.1)

for all i ∈ I and v = 1, ..., V , or, in the matrix algebra notation,

X = ZKCK + E . (6.2)

We are interested in finding the least squares solution to equation (6.1) – (6.2),
that is, matrices ZK and CK minimizing the sum of squared elements of the
residual matrix E. What is nice in this formulation is that the components are
not defined as linear combinations of X columns, nor they are supposed to be
normed; and the criterion is but the conventional statistical approximation of
the observed data by the “ideal” data produced by the model.

The least-squares solution is defined only up to a K-dimensional linear
subspace of the space of N -dimensional vectors, whose base is formed by
columns of matrix ZK . The optimal linear subspace can be specified in terms
of the so-called singular value decomposition (SVD) of matrix X , typically
after it is standardized. In fact, matrices ZK and CK , whose columns are the
first K singular vectors of X , form orthonormal bases of the least-squares
optimal subspaces. They can be found by iterative application of the same
process of obtaining just one principal component of matrixX by least-squares
fitting the one-factor model

xiv = cvzi + eiv (6.3)

with respect to unknown vectors c and z. At each k-th step of the process,
matrix X is substituted by the residual data matrix calculated by subtraction
of the current component matrix μkz

T
k ck from the previous X . (The tradi-

tional assumptions of SVD are assumed here: μk is k-th singular value of X ;
zk, ck are the normed versions of the singular vectors corresponding to μk.)
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The conventional process of extracting eigenvectors from S = XTX de-
scribed above can be considered an implementation of this method since com-
putation of singular vectors can be performed not necessarily with the matrix
X but also with its derivative matrices: V × V matrix XTX or |I| × |I| ma-
trix XXT , because zk is an eigen vector of XXT and ck an eigen vector of
XTX corresponding to their respective k-th eigen-values, both equal to μ2

k

(k = 1, 2, ...,K).

6.2.2 Additive Clustering Model and ITEX

Assuming that the score vectors z1, z2, ..., zK are restricted to be 0/1 binary,
the model (6.1) can be reinterpreted as a clustering model [31, 32]. According
to this model, binary vector zk is the membership vector for cluster Sk ⊆ I
so that zik = 1 if i ∈ Sk and zik = 0 if i 	∈ Sk. Vector ck is a representation of
cluster k in the feature space so that every data row xi = (xiv) approximately
equals the sum of representative vectors ck over all such k that i ∈ Sk. In
the case when cluster sets Sk are mutually disjoint, that is, vectors zk are
mutually orthogonal, any row xi approximates just one representative vector
ck.

The clustering problem according to model (6.1) is similar to that of PCA:
given matrix X and number K, find binary zk and real ck minimizing a
prespecified monotonely growing function of the residuals eiv.

For the least-squares criterion, the one-by-one extracting strategy ITEX
here builds clusters Sk one by one, each time minimizing one-cluster criterion
of the model (6.3):

l =
∑
i∈I

∑
v∈V

(xiv − cvzi)2 (6.4)

over unknown cv and binary zi, index k being omitted. The membership vector
z is characterized by subset S = {i : zi = 1}. Criterion (6.4) can be rewritten
in terms of S:

W (S, c) =
∑
i∈S

d(xi, c) +
∑
i
∈S

d(xi, 0) , (6.5)

where d is the Euclidean distance squared, d(x, y) =
∑

j(xj − yj)2, and xi is
i-th row of the residual data matrix.

This is a conventional clustering square error criterion [20, 34] for a parti-
tion consisting of two clusters, S and its complement S̄ = I − S, with regard
to their respective centroids, c and 0. However, in contrast to conventional
clustering formulations, the centroid 0 here is not the gravity center of the
complementary set I − S, but is being kept constant and does not change
when S and I − S change.

Given S, the optimal c in (6.5) is obviously the center of gravity of S be-
cause the first sum is minimum at that c and the second sum does not depend
on c. Given c, a subset S to minimize (6.5) must include every i ∈ I such that
d(xi, c) < d(xi, 0). These properties immediately give rise to the following
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implementation of the alternating minimization algorithm for criterion (6.5)
[34].

1. Pre-processing. Specify a reference point a = (a1, ..., an) (this
can be the data grand mean) and standardize the original data
table using the reference point coordinates as shift parameters
av. (This way, the space origin is shifted into a.) In the case when
feature scales significantly differ, the standardization should also
involve rescaling the feature scales (see details in [34]).

2. Initial setting. Put a tentative centroid, c, as an entity which is
the most distant from the origin, 0. [This minimizes (6.5) with
respect to all singleton clusters.]

3. Cluster update. Determine cluster list S around c against the
only other “centroid” 0 with the Minimum distance rule so that
yi is assigned to S if d(yi, c) < d(yi, 0).

4. Centroid update. Calculate the within S mean c′ and check
whether it differs from the previous centroid c. If c′ and c do
differ, update the centroid by assigning c ← c′ and return to
Step 3. Otherwise, go to 5.

5. Output. Output list S and centroid c, with accompanying inter-
pretation aids, as the most anomalous pattern.

The process is illustrated on Figure 6.1.

Reference point

Farthest entity

1 / 2

Reference point

1 / 2

Anomalous cluster center

Fig. 6.1. Extracting an “Anomalous Pattern” cluster with the reference point in
the gravity center: the initial iteration is on the left and the final one on the right

The AP method is a reference-point based version of the popular clustering
method K-Means in which:

(i) the number of clusters K is 2;
(ii) centroid of one of the clusters is forcibly kept at the 0 reference point

through all the iterations;
(iii) the initial centroid of the anomalous cluster is taken as an entity point

which is the most distant from 0.
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6.2.3 Overlapping and Fuzzy Clustering Case

The ITEX can be easily applied to the case of overlapping clusters. After one
cluster has been found, the next one can be sought by applying the same AP
method to the matrix of residuals X − zcT , in a manner similar to that in
PCA.

When clusters in the feature space are well separated from each other
or the cluster structure can be thought of as a set of differently contributing
clusters, the clusters can be found with the iterative application of Anomalous
Pattern algorithm that would mitigate the need for pre-setting the number of
clusters and their initial centroids.

Consider, for example, the setting in Table 6.1 which represent a set of
entities of which one fourth are ideally located in c1, five eighths in c2, and
the remaining one eighth is assigned to the summary point c1 + c2. These
represent two clusters comprising 3n and 6n entities, respectively, in such
a way that their intersection consists of n entities. This setting, designed
according to [7], perfectly fits into model (6.1) with all residuals being zero.
The first three rows of the Table 6.1 can be considered a shortcut for a data
table comprising N = 8n entities and 2 features that may have only patterns
presented in its lines one (2n entities), two (5n entities) and three (n entities);
the fourth line represents the feature values at the grand mean of the data.

Table 6.1. Two overlapping ideal clusters presented by their centroids: c1, the first
cluster; c2, the second cluster; c1+ c2, their overlap; c, the grand mean. The column
on the right represents the relative numbers of entities 2:5:1, in the first cluster short
of the overlap, the second cluster short of the overlap, and the overlap, respectively

Notation Feature I Feature II Quantity
c1 12 2 2n
c2 -1 -2 5n
c1 + c2 11 0 n
Mean c 2.75 -0.75

To apply ITEX clustering to this data, let us pre-process each column by
subtracting the corresonding component of the grand mean c and dividing by
the range (13 for feature I, 4 for feature II) afterwards. This transforms 2n
entities at c1 to c1′ = (0.64, 0.69), 5n entities at c2 to c2′ = (−0.36,−0.31) and
n entities at c1 + c2 to c3′ = (0.56, 0.19), which is not the sum of the former
two anymore. Still c3′ lies not too far from c1′, which is picked up by AP as the
anomalous starting point. These two make the first AP cluster, which exactly
coincides with Cluster 1 in Table 6.1. The next cluster can be found using
the residual data matrix that can be computed by finding the centroid of the
first AP cluster, c′ = (2c1′ + c3′)/3 = (0.61, 0.52) and subtracting it from all
the elements in the AP cluster, thus leading to c1′′ = c1′ − c′ = (0.03, 0.17)
and c3′′ = c3′ − c′ = (−0.05,−0.33). Now the anomalous seed is c2′ that has
been remained intact. Of the two residual centroids, c1′′ and c3′′, the former
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is closer to 0 while the latter to c2′. This brings Cluster 2 as the second AP,
and leaves all the entries in the next residual matrix close to zero, accounting
for less than 5% of the initial standardized data scatter.

Unfortunately, when cluster contributions are less different, ITEX may be
not as successful and fail to properly identify the clusters, even in a similarly
“ideal” situation when all residuals are zero [7]. For example, with the same
data entries as in Table 6.1 but proportions of the entities being equal to
1:1:1 rather than 2:5:1 as in the Table, the ITEX with AP clustering will find
not two but three clusters, corresponding to each of the three parts under
consideration: the overlapping part of two clusters and the clusters’ parts
short of the overlap.

In general, the ITEX AP may tend to produce non-overlapping parts of
clusters rather than those in the data structure. This may suggest that this
method should be used for disjoint rather than overlapping clustering, which
is described in next section. Nonetheless, even in the overlapping case, the
ITEX method can provide a useful intialization for other algorithmic strategies
such as based on the follow-up iterations of centroid and cluster updates [7].
On the other hand, one may think that the situation may be alleviated if
fuzzy rather than crisp belongingness vectors zk are involved. Indeed, this
would make the summary centroid more similar to the averaged one, since the
individual cluster centroids would be weighted by memberships that should
sum up to unity over the set of centroids. Such a possibility was considered by
Mirkin and Satarov [35, 32]. The model (6.1) considered with fuzzy vectors
zk leads to an interesting concept of ideal types. Indeed, with the condition
that vectors zk are not negative and sum up to unity (k = 1, 2, ...,K), all
entity points should be convex combinations of centroids c1, c2, ..., cK , which
are thus supposed to be the extreme points of a convex polytope covering the
entity set rather than within cluster averages. Applied as is, this may lead
to rather wild “ideal type” centroids possibly located quite far away from
the entities. A reasonable modification of model (6.1) leading to better fitting
fuzzy clusters was proposed and experimentally explored in [42]; this however,
utilizes finding all clusters in parallel rather than sequentially. As shown in
[42], the modified model retains, in a weaker form, the “ideal type” property,
which can be useful in some applications.

6.2.4 K-Means and iK-Means Clustering

K-Means is one of the most popular clustering methods. It iteratively up-
dates a set of cluster centroids by assigning to them their closest entities and
finding the gravity centers of thus obtained clusters. An issue of K-Means is
a mandatory setting of the K and initial seeds for the centroids. Properties
of the Anomalous Pattern algorithm mitigate the issue of determining ap-
propriate initial seeds, which allows using it for finding an initial setting for
K-Means.
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Some other potentially useful features of the method relate to its flexibility
with regard to dealing with outliers and the “swamp” of inexpressive, ordinary,
entities situated around the grand mean.

iK-Means
0. Setting. Put k = 1 and Ik the original entity set. Specify a threshold

of resolution to discard all AP clusters whose cardinalities are less
than the threshold.

1. Anomalous pattern. Apply AP to Ik to find Sk and ck.
2. Control. If Stop-condition (see below) does not hold, put

Ik+1 ← Ik − Sk and k ← k + 1 ,

and go to Step 1.
3. Removal of small clusters. Remove all of the found clusters that

are smaller than a pre-specified cluster discarding threshold for the
cluster size. Denote the number of remaining clusters byK and their
centroids by c1,..., cK .

4. K-Means. Do K-Means with c1,..., cK as initial seeds.

The Stop-condition in this method can be any or all of the following:

1. All clustered. SK = IK so that there are no unclustered entities left.
2. Large cumulative contribution. The total contribution of the first K

AP clusters to the data scatter has reached a pre-specified threshold such
as 60 %.

3. Small cluster contribution. Contribution of k-th AP cluster is too
small, say, compared to the order of average contribution of a single entity,
1/N , where N denotes the total number of entities.

4. Number of clusters reached. Number of clusters, k, has reached a
pre-specified value K.

The first condition is natural if the data consists of “natural” clusters, that
indeed differ in their contributions to the data scatter. The second and third
conditions can be considered as imposing certain degrees of resolution, re-
flected in the contribution thresholds, with which the user looks at the data.

At step 4, K-Means can be applied to either the entire dataset or to the
set from which the smaller clusters have been removed. This may depend
on the application domain: in some problems, such as structuring of a set of
settlements for better planning or monitoring, no entity should be left out
of the consideration, whereas in other problems, such as developing synoptic
descriptions for text corpora, some deviant texts should be left out of the
coverage.

An extensive set of experiments to test how well iK-Means recovers the
“true” number of clusters have been described in [28, 29]. These experiments
involved the data generated according to a mixture of Gaussians distributions,
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several other methods for finding the “right” number of clusters, and a number
of evaluation criteria, that are briefly described below.

1. Data generation.
The Gaussian mixture distribution data are generated as random samples
using the functions in Neural Network NetLab, which are applied as im-
plemented in a MATLAB Toolbox freely available on the web [13]. Our
sampling scheme is based on a modified version of that proposed in Wasito
and Mirkin (2006) utilizing two geometrically meaningful parameters: the
clusters spread (the average distance between cluster centroids) and spa-
tial cluster size which is proportional to the norm of the covariance matrix.
We use either of two types of covariance structure: the ordinary spherical
shape or the probabilistic principal component analysis (PPCA) shape
[49]. The spatial cluster sizes are taken constant at the spherical shape,
and variant at the PPCA shape. We maintain two types of the spatial
cluster size by scaling covariance matrices using factors that are either
proportional to the clusters index k (the linear distribution of sizes) or
its square k2 (the quadratic distribution of sizes) (k = 1, 2, ...,K). Cluster
centroids are generated randomly from a normal N(0, 1) distribution with
the follow-up scaling them by a factor expressing spread of the clusters.
In the experiments, we generate data sets of size 1000× 15 with the hid-
den dimension 6 involving two K settings (7 and 9 clusters), two spreads
(small and large) and three types of distributions of cluster “diameters”
(equal, k-proportional and k2 proportional).

2. Methods involved.
We distinguish between four different approaches to the problem of deter-
mining the “right” number of clusters of which one is our ITEX approach
and the other three involve statistics calculated at random trials of K-
Means at different K in a prespecified range, typically from K = 2 to
K = 12 − 20. Given K value, a random initialization of K centroids is
generated (within the features’ ranges) and K-Means applies until con-
vergence. After a number of runs, set to 100 in our experiments, for a
specified statistic s, the statistic’s value sK is calculated. Then the best
K, according to the statistic, is selected. The three approaches we found in
the literature involve statistics based on variance, structure and consensus
as follows.
a) Variance based statistics.

These are formulated in terms of the clustering criterion

W =
K∑

k=1

∑
i∈Sk

d(i, ck) ,

where Sk is the k-th cluster, ck its centroid and d(i, ck) the Euclid-
ean distance squared between i-th row of the data matrix and ck.
Obviously, W is the summary weighted within-cluster variance of the
features.
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Probably the earliest was Hartigan’s criterion H = (WK/WK+1 −
1)(N −K − 1), where WK is the minimum value of W at the results
of a number of runs of the algorithm at given K and random initial
settings. The criterion is based on the following intuition. Let there
be a natural clustering of K0 clusters in data. Then, at K < K0,
K-Means would tend to produce a clustering that aggregates some of
the ‘natural’ clusters so that increasing K by 1 would just separate
a cluster or cluster aggregate from the K-cluster clustering so that
the relative change (WK−WK+1)/WK+1 would be relatively small. If
however K > K0, then the clusterings will tend to be the K ‘natural’
clusters randomly subdivided into smaller chunks. Thus, the very first
K at which the relative difference becomes large enough, making H ≥
10 [16], should be the right number K0. Somewhat similar reasoning
lies behind the Calinski and Harabasz’s Fisher-like criterion [6]. We
also utilize the so-called Jump statistic based on the maximum jump
in value ofMV/2

K whereMK is K-Means criterion computed according
to Mahalanobis distances and divided by V ; this is proven to be the
case if the data are generated according to a mixture of Gaussian
distributions (see [48]).

b) Structure based statistic.
We utilize the popular average silouette width introduced in [24] to
reflect, for every entity, the difference between its within cluster dis-
tances and distances to the closest of other clusters.

c) Concensus based statistics.
In contrast to the other approaches, this one utilizes results of all, say
M , runs of K-Means from random initialisations at a given K, not
just the best of them. Monti et al. [40] proposed using the distribu-
tion of entries in the so-called consensus matrix that can be defined
after a set of M runs of K-Means. This is an entity-to-entity simi-
larity matrix, whose (i, j)-th entry is the number of those of the M
clusterings in which i and j belong to the same cluster. In the ideal
case, all clusterings coincide, which would make the distribution of
the consensus matrix entries to be binomial. We use the jumps of two
related indexes, one measuring the area under the cumulative distri-
bution function proposed in [40] and the other, the average distance
between clusterings that can be expressed in terms of the distribu-
tion’s variance [34].

The ITEX clustering, in our experiments, was represented by two algo-
rithms, one based on the least-squares criterion described above, the other
based on the least modules criterion, thus differing in that the median is
taken instead of the average, and the citi-block distance instead of the
Euclidean squared distance. The cluster discarding threshold is taken to
be 1.

3. Evaluation criteria.
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The number of clusters generated is fixed at K = 7 or 9, which is easy to
compare with the number of clusters found at any method utilized. We
also evaluate two aspects of a clustering, the intensional and extensional
ones, by measuring the differences between cluster centroids and cluster
contents.
To compare centroids of found clusters with those generated, in the sit-
uation when the numbers of clusters may differ, we utilize the following
strategy. Let the generated clustering have K clusters and that found one
K ′ clusters so that K < K ′. We first one-to-one assign each of the K clus-
ters with the closest one from the K ′ clusters, using the between-centroid
distance as the criterion; after that we assign each of the remainingK ′−K
clusters to that of the K clusters that are closest in terms of the between-
centroid distances. Then we calculate the average distance between linked
centroids either weighted by the cluster cardinalities or not. The weighted
distance, in our experiments, appears to be orthogonal to other evaluation
measures and thus, dropped off as an unworthy one.
To compare cluster contents between two partitions, we utilize four dif-
ferent measures of (dis)similarity between partitions: the distance [34],
the adjusted Rand index [18], the Tchouproff coefficient and the averaged
relative cluster-to-cluster overlap [34]. The four are highly correlated and
they all support the general findings in [28, 29].

According to the experiments, the Hartigan statistics based method shows the
best performance in terms of the number of clusters, though not in terms of
centroids and cluster contents. In terms of the similarities between generated
and found centroids and partitions, in most cases, the ITEX based methods
performed better then the rest, and the least-squares ITEX somewhat better
than that least-modules ITEX. Further analysis suggests that, most likely,
ITEX results are inferior to those by other methods (typically, these are the
silouette width or jump statistics based methods that can be superior some-
times) in the cases in which ITEX based methods produce too many clusters.

This has led us to the following ajustment of the ITEX clustering methods.
First, produce theH based evaluation of the number of clustersKH . Second, if
iK-Means leads to much more clusters thanKH , increase the cluster discarding
threshold until the number of iK-Means clusters becomes reasonably close to
KH . In further experiments, with this adjustment, iK-Means clustering results
on average were superior to all other methods in consideration [29].

6.3 ITEX Structuring and Clustering for Similarity Data

6.3.1 Similarity Clustering: a Review

The following review of the subject is reminiscent to that in [38].
Let A = (aij) be a symmetric matrix of similarities (or, synonymously,

proximities or interactions) between entities i, j ∈ I. The greater the value of
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aij , the greater is the similarity between i and j. A cluster is a set of highly
similar entities whose similarity to entities outside of the cluster is low.

Similarity clustering emerged quite early in graph theory, probably before
the discipline of clustering itself. A graph may be thought of as a structural
expression of similarity data, its nodes corresponding to entities with edges
joining similar nodes. Cluster related graph-theoretic concepts include: (a)
connected component (a maximal subset of nodes in which every pair of nodes
is connected by a path), (b) bicomponent (a maximal subset of nodes in which
each pair of nodes belongs to a cycle), and (c) clique (a subset of nodes in
which each pair of nodes is connected by an edge).

Other early clustering concepts include the B-coefficient method for clus-
tering variables using their correlation matrix [17] and the Wrozlaw taxonomy
[9]. These are precursors to the ADDI and ADDI-S methods [31], described
later, and the single linkage method [15, 14], respectively.

Two more recent graph-theoretic concepts are also relevant: maximum
density subgraph [11] and min-multi-cut in a weighted graph [12].

The density g(S) of a subgraph S ⊂ I is the ratio of the number of edges in
S to the cardinality of S. For an edge weighted graph with weights specified
by the matrix A = (aij), the density g(S) is equal to the Raleigh quotient
sTAs/sT s, where s = (si) is the characteristic vector of S, viz. si = 1 if
i ∈ S and si = 0 otherwise. A subgraph of maximum density represents a
cluster. After removing such a cluster from the graph, a maximum density
subgraph of the remaining graph can be found. This may be repeated until
no “significant” clusters remain. Such an incomplete clustering procedure is
natural for many types of data, including protein interaction networks. How-
ever, to our knowledge, this method has never been applied to such problems,
probably because it involves rather extensive computations. A heuristic ana-
logue can be found in [2]. We consider that the maximum density subgraph
problem is of interest because it is a reasonable relaxation of the maximum
clique problem and fits well into data recovery clustering (see section 6.3.3).
The maximum value of the Raleigh quotient of a symmetric matrix over any
real vector s is equal to the maximum eigenvalue and is attained at an eigen-
vector corresponding to this eigenvalue. This gives rise to spectral clustering,
a method of clustering based on first finding a maximum eigenvector s∗ and
then defining the spectral cluster by si = 1 if s∗i > t and si = 0 otherwise,
for some threshold t. This method may have computational advantages when
A is sparse. Unfortunately, it does not necessarily produce an optimal cluster
[33], but empirically it produces good clusters in most cases.

The concept of min-multi-cut is an extension of the max-flow min-cut
concept in capacitated networks, and essentially seeks a partition of nodes into
classes having minimum summary similarities between classes or, equivalently,
maximum summary similarities within classes. When similarities are non-
negative, this criterion may often lead to a highly unbalanced partition with
one huge class and a number of singleton classes. This line of research has
led to using the normalized cut, proposed in [45], as a meaningful clustering
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criterion. The normalized cut criterion assumes that the set I should be split
into two parts, S and S̄, so that the normalized cut

nc(S) = a(S, S̄)/a(S, I) + a(S, S̄)/a(S̄, I)

is minimized. Here a(S, T ) denotes the summary similarity between subsets
S and T . The criterion nc(S) can be expressed as a Raleigh quotient for a
generalized eigenvalue problem [45], so the spectral clustering approach may
be applied to minimizing the normalized cut too.

It should be noted that the user typically finds it meaningful, in the frame-
work of domain knowledge, to define a similarity threshold α, such that entities
i and j should be aggregated if aij > α but not if aij < α. When this is the
case, the data should be pre-processed to take the threshold into account.
There are two different ways of implementing this idea: (i) by zeroing all sim-
ilarities aij that are less than α, or (ii) by shifting the zero similarity to α by
subtracting α from each similarity aij . The former is popular, for example,
in image analysis because it makes the similarity data sharper and sparser.
However, we favour the latter as better fitting in with the additive structure
recovery models presented later. In fact, the similarity shift originated from
these models (see, for example, [30, 31]).

6.3.2 The Additive Structuring Model and ITEX

To represent a set of structures assumed to underly the similarity matrix A,
we use the terminology of binary relations. A binary relation on the set I can
be defined by a (0,1) matrix R = (rij) such that rij = 1 if i and j are related
and rij = 0 otherwise. Partitions, rankings and subsets can be represented by
equivalence, order and square relations, respectively. A quantitative expression
of the intensity of a relation can be modelled by a real value λ. So a relation
of intensity λ is represented by the product λR.

Given a set of binary relations R defined by a general property (for exam-
ple, equivalence or order relations), an additive structuring model for a given
N ×N matrix A = (aij) is defined by the equations

aij =
K∑

k=0

λkr
k
ij + eij , for all i, j ∈ I , (6.6)

where Rk = (rkij) ∈ R and λk is the intensity of Rk; the number of relations
K+1 in (6.6) is typically assumed to be much smaller than |I|, the cardinality
of I. The goal is to minimize the residuals eij with respect to the unknown
relations Rk and intensities λk. In some problems, the intensities λk may be
given, based on substantive or model considerations.

To minimize the residuals in (6.6), the least-squares criterion can be ap-
plied again. This criterion brings in an important property. The data matrix A
is not necessarily symmetric. However, in the situations in which all relations
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in R are symmetric the matrix A can be equivalently substituted by symmet-
ric matrix Ã = (A+ AT )/2 where AT denotes A transposed. Indeed, for any
given set Rk ∈ R (k = 1, ...,K) let us take any pair i, j ∈ I and denote the
sum in (6.6) by λ. Then the contribution of the pair i, j to the sum of squared
residuals,

∑
e2ij , will be equal to (aij−λ)2 +(aji−λ)2 = f−2λ(aij +aji)+λ2

where f = a2ij + a2ji. If we change aij in (6.6) for ãij = (aij + aji)/2,
then the contribution of i, j to the summary quadratic criterion will be
2(ãij−λ)2 = f̃−4λãij +λ2 where f̃ = 2ã2ij ≤ f . Since ãij = (aij +aji)/2, both
expressions have the same variable parts, which proves that any least-squares
solution to (6.6) remains a least-squares solution after aij is changed for ãij

at all i, j ∈ I.
In certain cases, we may require one of the relations Rk to be the universal

relation, for which rkij = 1 for all i, j ∈ I. The corresponding intensity λk

then plays a role in the model (6.6) similar to that of the intercept in linear
regression. Conventionally, we relabel the universal relation as R0 and denote
its matrix by 1. The intercept value λ0 may be interpreted as a similarity
shift, with the shifted similarity matrix A′ = (a′ij) defined by a′ij = aij − λ0.
Equation (6.6) for the shifted model has a′ij on the left and the sum on the
right starting from k = 1.

With the least-squares criterion, we can employ again the greedy heuristic
of extracting the relations Rk one by one in order to reduce the amount of
computation and have a useful decomposition of the data scatter over found
relations. This may be particularly useful if the relations Rk contribute very
unequally to the data, for example, when the λk vary significantly. At step k,
for k = 0, 1, 2, ...,K, we find Rk using an algorithm for minimizing

L2(R) =
∑
i,j∈I

(ak
ij − λrij)2 (6.7)

over R ∈ R and λ (unless pre-specified). The residual similarity matrix Ak =
(ak

ij) is updated after step k by subtracting λkR
k from it. At the start, A0 = A

and, at the end, AK+1 = (eij), the matrix of residuals.
Given R, the optimal value of λ is equal to the average similarity ak

ij over
all related pairs (i, j), i.e. those for which rij = 1. The complexity of this
minimization problem depends on the type of relations in R. Therefore, in
some cases, we only find a local minimum of (6.7).

When the λk are not pre-specified, then, at each step, the residual similar-
ity matrix is orthogonal to the relation extracted. This implies the following
Pythagorean decomposition [32, 33]:

∑
i,j∈I

(aij)2 =
K∑

k=0

λ2
k

∑
i,j∈I

rkij +
∑
i,j∈I

e2ij . (6.8)

This equation additively decomposes the data scatter into the contribu-
tions of the extracted relations Rk (“explained” by the model) and the min-
imised residual square error (the “unexplained’ part). The decomposition (6.8)
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makes it possible to prove that the residual part converges to zero under rel-
atively mild and easily checked assumptions on the solutions found at each
iteration [32, 33].

Obviously, our convention implies that, when the ITEX is to be applied
to the shifted model, the universal relation R0 must be extracted first. In this
case, the optimal value of λ0 will be equal to ā, the average of the similarities
in A.

Also, the property that matrix A can be equivalently substituted by its
symmetrized version Ã = (A + AT )/2 if R consists of symmetric relations,
holds when the ITEX is utilized.

6.3.3 Additive Clustering Model

A square relation r = (rij) is defined by a subset S ⊆ I in such a way that
rij = 1 if both i and j belong to S and rij = 0, otherwise. In other words,
rij = sisj where s = (si) is the membership vector so that for any i ∈ I, si is
1 or 0 depending on whether i ∈ S or not.

By restricting R to consist of all square relations, the shifted version of
the model (6.6) becomes what is referred to as the additive clustering model
[44]. The universal relation R0 = 1, used in the shifted model, is the square
relation corresponding to the universal cluster I.

When we assume that the similarities in A are generated by a set of “addi-
tive clusters” Sk ⊆ I, k = 0, 1, ...,K, in such a way that each aij approximates
the sum of the intensities of those clusters that contain both i and j, the shifted
version of (6.6) becomes:

aij =
K∑

k=1

λks
k
i s

k
j + λ0 + eij , (6.9)

where sk = (ski ) are the membership vectors of the unknown clusters Sk, k =
1, 2, ...,K, and eij are the residuals to be minimised. In this model, introduced
in [44], the intensities λk, k = 1, 2, ...,K, and the shift λ0 also have to be
optimally determined. In the more general formulation of the “categorical
factor analysis” [30, 31], these values may be user specified.

We note that the role of the intercept λ0 in (6.9) is three-fold: it can be
considered as

1. an intercept of the bilinear model, similar to that in the linear regression
or

2. the intensity of the universal cluster I or
3. a ‘soft’ similarity threshold in the sense that it is the shifted similarity

matrix a′ij , rather than the original A, is used to determine the clusters Sk,
k = 1, 2, ...,K. This role is of a special interest when λ0 is user specified.

When the one-by-one ITEX strategy is applied to fitting (6.9) with none
of the λs pre-specified, the data scatter decomposition (6.8) holds for the
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optimal values of λk. In this case, λk is equal to āk, the average of the residual
similarities ak

ij for i, j ∈ Sk. Substituting ski s
k
j for rkij and āk for λk, (6.8) can

be written in the form:

(A,A) =
K∑

k=0

[skTAksk/skT sk]2 + (E,E) . (6.10)

The inner products (A,A) and (E,E) denote the sums of the squares
of the elements of the matrices, considering A and E as vectors; these are
conventionally expressed as the traces (sums of diagonal elements) of the
products ATA and ETE, respectively.

6.3.4 Approximate Partitioning

In this section, we restrict the additive clustering model to nonoverlapping
clusters.

If clusters Sk, k = 1, ...,K, are mutually disjoint (so the membership
vectors sk are mutually orthogonal), the optimal intensity λk depends only
on the elements a′ij , i, j ∈ Sk, of the shifted matrix A′ = A− λ01 and not on
the residual matrix Ak. The following decomposition of A′ corresponding to
(6.10) then holds and is independent of the the order of the clusters.

(A′, A′) =
K∑

k=1

[skTA′sk/skT sk]2 + (E,E) . (6.11)

Although similar in form to the decomposition for A in (6.10), this decompo-
sition for A′ differs in that: (i) the terms in the summation involve the original
matrix A′, not the residual matrix, and (ii) the summation starts from 1, not
0.

Since A′ = A− λ01, it follows that

(A,A) = 2λ0(ā− λ0/2)(1,1) +
K∑

k=1

[skTA′sk/skT sk]2 + (E,E) . (6.12)

When λ0 is not pre-specified and must be found according to the least-
squares criterion, its optimal value, found by differentiating (6.12) with respect
to λ0, is:

λ0 =

∑
i,j∈I aij(1− sij)∑

i,j∈I(1− sij)
, (6.13)

where sij =
∑K

k=1 s
k
i s

k
j (so sij = 1 if both i and j belong to Sk for some

k = 1, 2, ...,K and sij = 0 otherwise).
Thus, the optimal λ0 is the average of similarities aij for i and j belonging

to different clusters.
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Equation (6.11) is analogous to the representation of the trace of A′TA′ as
the sum of the squares of the eigenvalues of A′ because the terms are squares
of the Raleigh quotients

g(sk) = skTA′sk/skT sk . (6.14)

which are attained at zero/one rather than arbitrary vectors sk.
According to (6.11), an optimal partition with weights λk adjusted ac-

cording to the least-squares criterion must maximize the sum of the cluster
contributions g2(sk), that is,

K∑
k=1

g2(sk) =
K∑

k=1

⎛⎝ ∑
i,j∈Sk

a
′
ij/Nk

⎞⎠2

, (6.15)

where Nk = |Sk|, the cardinality of Sk.
An “unsquared” version of this criterion comes from applying the data

recovery approach to an entity-to-feature data matrix in section 1, which
leads to

K∑
k=1

g(Sk) =
K∑

k=1

∑
i,j∈Sk

aij/Nk , (6.16)

as the contribution of the clusters to the entity-to-feature data scatter. The
similarity aij is defined, in this approach, as the inner product of the feature
vectors corresponding to entities i and j. In matrix terms, if Y is an entity-
to-feature data matrix then A is defined as A = Y Y T . The difference between
criteria (6.15) and (6.16) is somewhat similar to that between the spectral
decomposition of A = Y Y T and singular-value decomposition of Y .

In contrast to (6.16), criterion (6.15) has never been analysed, neither
theoretically nor experimentally.

To illustrate the difference between preset and optimal values of the shift
λ0 when model (6.9) is used for approximate partitioning, let us consider the
similarity data between eight entities in Table 6.2.

For λ0 = 2, the only positive values of a′ij = aij − λ0 are within clusters
1-2-3, 4-5, and 6-7-8 plus similarities between entity 4 and both 6 and 7. These
positive extra-cluster similarities lead to differences in the clustering if λ0 is
changed. At the average similarity shift λ0 = ā = 1.49, these three clusters
with respective intensities 3.46, 3.13 and 3.70 form the optimal partition.
This partition contributes 37.1% to the original data scatter. For the globally
optimal partition, the λ0 = 0.49 and entity 4 joins the cluster 6-7-8. The
optimal partition then consists of clusters 1-2-3 (with intensity 4.47), 4-6-7-8
(with intensity 3.17), and singleton 5 (since self-similarity is not defined, the
intensity has no meaning). This contributes 65.6% of the data scatter. The
rather large difference between the two contributions to the data scatter is
mainly due to the difference in the first term on the right-hand side of (6.12)
involving λ0.
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Table 6.2. Illustrative similarities between eight entities; self-similarity is not de-
fined

Entity 1 2 3 4 5 6 7 8
1 - 4.33 5.60 -0.20 -0.16 -0.21 -0.49 0.17
2 4.33 - 4.93 0.79 0.06 1.22 -0.10 -0.45
3 5.60 4.93 - 0.21 0.79 -1.20 -0.15 0.80
4 -0.20 0.79 0.21 - 4.62 3.29 2.80 0.32
5 -0.16 0.06 0.79 4.62 - -1.00 0.25 -0.08
6 -0.21 1.22 -1.20 3.29 -1.00 - 5.96 4.38
7 -0.49 -0.10 -0.15 2.80 0.25 5.96 - 5.23
8 0.17 -0.45 0.80 0.32 -0.08 4.38 5.23 -

6.3.5 One Cluster Clustering

Applying ITEX to the additive clustering involves extracting a single cluster
from, possibly residual, similarity data presented in the form of a symmetric
matrix A, assuming that any requred shift λ0 has already been made. As noted
above, if A is not symmetric, it can be equivalently changed for symmetric
Ã = (A + AT )/2. For the sake of simplicity, in this section, we assume that
the diagonal entries aii are all zero.

Pre-specified intensity

We first consider the case in which the intensity λ of the cluster to be found is
pre-specified. Noting that s2i = si for any 0/1 variable si, criterion (6.7) can
be expressed as

L2(S) =
∑
i,j∈I

(aij − λsisj)2 =
∑
i,j∈I

a2ij − 2λ
∑
i,j∈I

(aij − λ/2)sisj . (6.17)

Since
∑

i,j a
2
ij is constant, for λ > 0, minimizing (6.17) is equivalent to maxi-

mizing the summary within-cluster similarity after subtracting the threshold
value π = λ/2:

f(S, π) =
∑
i,j∈I

(aij − π)sisj =
∑

i,j∈S

(aij − π) . (6.18)

This criterion implies that, for an entity i to be added to or removed from
the S under consideration, the difference between the value of (6.18) for the
resulting set and its value for S, f(S ± i, π)− f(S, π), is equal to ±2f(i, S, π)
where

f(i, S, π) =
∑
j∈S

(aij − π) =
∑
j∈S

aij − π|S| .

This gives rise to a local search algorithm for maximizing (6.18): start with
S = {i∗, j∗} such that ai∗j∗ is maximum element in A, provided that ai∗j∗ > π.
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An element i 	∈ S may be added to S if f(i, S, π) > 0; similarly, an element
i ∈ S may be removed from S if f(i, S, π) < 0. The greedy procedure ADDI
[31] iteratively finds an i 	∈ S maximising +f(i, S, π) and an i ∈ S maximizing
−f(i, S, π), and takes the i giving the larger value. The iterations stop when
this larger value is negative. The resulting S is returned along with its contri-
bution to the data scatter, 4π

∑
i∈S f(i, S, π). The following version of ADDI

reducing the dependence on the initial S proved successful in experiments.
The computations here start from the singleton S = {i}, for each i ∈ I, so
that N ADDI based results are generated; of these, that cluster S is selected
that contributes most to the data scatter, i.e., that minimizes the square error
L2(S) (6.17). In fact, the set of resulting clusters should be of interest on its
own since many of them coincide or almost coincide and the structure of not
coinciding clusters represents an overlapping structure of the similarity data.

The heuristic algorithm CAST [3], popular in bioinformatics, is in fact a
version of the ADDI algorithm, because it uses the same iterative process of
adding or removing an entity by utilizing criterion

∑
j∈S aij > π|S|, for the

case of adding, with the
∑

j∈S aij referred to as the affinity of i to S – which
is equivalent to criterion f(i, S, π) > 0.

Another property of the criterion is that f(i, S, π) > 0 if and only if the
average similarity between a given i ∈ I and the elements of S is greater than
π, which means that the final cluster S produced by ADDI/CAST is rather
tight: the average similarities between i ∈ I and S is at least π if i ∈ S and
no greater than π if i 	∈ S [31].

Intuitively, changing the threshold π should lead to corresponding changes
in the optimal S. Indeed, it has been proven that the greater π is, the smaller
S will be [31].

Optimal intensity

When λ in (6.17) is not fixed but chosen to further minimize the criterion, it
is not difficult to prove that

L2(S) = (A,A)− [sTAs/sT s]2 , (6.19)

in line with the decomposition (6.11), with K = 1 and L2(S) = (E,E). The
proof is based on the fact that the optimal λ is the average similarity a(S)
within S, i.e.,

λ = a(S) = sTAs/[sT s]2 , (6.20)

since sT s = |S|.
The decomposition (6.19) implies that the optimal cluster S must maxi-

mize the criterion

g2(S) = [sTAs/sT s]2 = a2(S)|S|2 . (6.21)

According to (6.21), the maximum of g2(S) may correspond to either posi-
tive or negative value of a(S). The latter case may emerge when the similarity
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Fig. 6.2. A pattern of clustering depending on the subtracted similarity shift λ0

shift λ0 is large and corresponds to S being the so-called anti-cluster [33]. In
this paper, we do not consider this case, but focus on maximizing (6.21) for
positive a(S) only. This is equivalent to maximizing the Raleigh quotient,

g(S) = sTAs/sT s = a(S)|S| . (6.22)

To maximize g(S), one may utilize the ADDI-S algorithm [31], which is
the same as the algorithm ADDI/CAST, described above, except that the
threshold π is recalculated after each step as π = a(S)/2, corresponding to
the optimal λ in (6.20).

A property of the resulting cluster S, similar to that for the constant
threshold case, holds: the average similarity between i and S is at least half
the within-cluster average similarity a(S)/2 if i ∈ S, and at most a(S)/2 if
i 	∈ S.

To obtain a set of (not necessarily disjoint) clusters within the framework
of the additive clustering model, one may use ITEX by repeatedly extracting
a cluster S using ADDI-S and then replacing A by the residual matrix A −
a(S)ssT .

We can apply this method to the partitioning problem, by repeatedly using
ADDI-S to find a cluster S and then removing from consideration all the
entities in S. The process stops when the similarity matrix on the remaining
entities has no positive entries. The result is a set of non-overlapping clusters
Sk, k = 1, ...,K, each assigned with its intensity a(Sk) and contribution to
the data scatter g2(Sk), and also the remaining unclustered entities in I.

ADDI-S utilizes no ad hoc parameters, so the number of clusters is de-
termined by the process of clustering itself. However, changing the similarity
shift λ0 may affect the clustering results, which can be of advantage in con-
trasting within- and between- cluster similarities. Figure 6.2 demonstrates the
effect of changing a positive similarity aij to a′ij = aij − λ0 for λ0 > 0; small
similarities aij < λ0 are transformed into negative similarities a′ij .

6.3.6 Some Applications

For the similarity data, the ITEX may lead to relevant overlapping clusters
using similarity data. In our experience, the ITEX produced meaningful over-
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lapping clusters in the situations in which the model of additive similarities
was applicable. Here we briefly review three applications.

Elementary meanings in sorting experiments

A sorting experiment, in psycho-linguistics, goes as follows [43]. A number of
nouns expressing concepts related to an aspect of the real world, such as the
“kin” or “kitchenware” are put down on a separate card each, and respondents
are requested to sort the cards into groups according to subjective similarity
of the concepts. The extent of similarity between two concepts is expressed
then by the number of respondents who put the concepts into the same group
(“consensus” similarity). These similarities reflect the semantic similarities
within the community represented by the respondents. Considering that an
elementary meaning can be expressed as a cluster of certain intensity, it is
reasonable to suggest that the similarity between two concepts should be equal
to the sum of the intensities of those clusters that contain both of them. For
example, the similarity between kinship concepts “son” and “father” should
sum up intensities of elementary meanings such as “Nuclear family” and “Male
relatives”. Therefore, the additive clustering model should be applicable here.

The iterative one-by-one extraction with ADDI-S algorithm has been ap-
plied for finding out additive clusters underlying a sorting consensus similarity
matrix several times. In the analysis of similarities between 72 kitchenware
terms, it was found that none of the clusters reflected logical or structural
similarities between the kitchenware items; all the clusters related to the us-
age. Specifically, three types of communality were represented by the clusters:
(i) a common process, such as frying or boiling; (ii) a common consumption
use, such as drinking or eating, and (iii) a common situation such as a banket
[10].

Kim and Rosenberg data of sorting 15 kinship terms, observed six times
[43], have been analyzed with the iterative ADDI-S adapted to the three-way
data type in [33], p. 223. The clusters, in general, supported previously pub-
lished findings such as clusters of “male relatives” or “female relatives”, but
also added more subtle groupings such as “aunt, uncle”. The group “brother,
daughter, father, mother, sister, son” that had been interpreted as “nuclear
family” was further divided into “daughter, father, mother, son” and “brother,
sister”, which some might view as more elementary groupings expressing the
concepts of “nuclear family” and “siblings”, respectively.

Subject clusters in profiling a research organization

Profiling is a relatively new activity in computation, related to finding such
features in data that are relevant to a pre-specified list of properties. The
data may be rather unstructured, such as a text or set of texts. Profiling
can be done rather conveniently with respect to a taxonomy or ontology in
which all properties of interest are clearly delineated and well structured. The
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paper [39] specifically refers to the ACM classification of Computer Sciences
(ACMC) [1] that can be used for profiling a Computer Science department.
The ACM classification is organized as a three layer tree. The first layer items
are: A. General Literature, B. Hardware, C. Computer Systems Organiza-
tion, D. Software, E. Data, F. Theory of Computation, G. Mathematics of
Computing, H. Information Systems, I. Computing Methodologies, J. Com-
puter Applications, and K. Computing Milieux. They are further subdivided
into the second layer items such as I.5 Pattern Recognition. The third layer
comprises further divisions such as I.5.3. Clustering.

The method proposed in [39] maps the set of subjects that are investigated
in a research department onto the ACM classification and involves:

1. Selecting the level of classification to be used as the baseline.
2. Measuring similarities between selected ACMC topics according to the

research activities of the department in question.
3. Decomposing the similarity structure by finding topic clusters that are not

necessarily disjoint. Here the additive cluster model seems appropriate,
thus ADDI-S applicable.

4. Mapping topic clusters to the ACM classification and highlighting the head
subjects, offshoots and gaps revealed. A head subject of a topic cluster is
the ACMC subject of a higher layer, whose “children” in the classification
tree belong to the cluster, with gaps being those children that do not
belong to the topic cluster.

As an example, we considered all 59 specific topic items of the second layer
of the ACM classification, of which 26 have been covered by the research going
on in the department under consideration [39]. The similarity between two
topics was measured as just the number of academics pursuing both topics
in their research. Application of ADDI-S to the similarity matrix leads to
six clusters with contributions not less than 1/N = 1/26 = 4%. Five of the
clusters mainly fall within the corresponding five head sujects, with very few
gaps and offshoots to other ACMC nodes. One of the clusters, however, covers
two of the head subjects which come on top of two other subject clusters, each
pertaining to just one of the head subjects, D. Software or H. Information
Systems. This can be interpreted as an indication that the two-headed cluster
signifies a new direction in Computer Sciences, combining D and H into a
single new direction, which seems to be a feature of the current developments
in Computer Sciences unifying software and information systems indeed.

Aggregate protein families

This is an example in which a partition, not a set of potentially overlapping
clusters, is sought, with the concept of similarity used to analyze complex
objects, such as protein families. Proteins belonging to different organisms are
combined into a family if they perform the same function and are considered
as orthologous, that is, inherited from a common ancestor and being similar
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because of that. Two features of general interest should be noted in the relation
to this application: (i) using similarity between neighbourhoods rather than
the objects themselves, and (ii) interplay with knowledge domain for getting
a “right” similarity shift value [38].

The usage of neighbourhoods is convenient for complex objects. Similarity
between complex objects is relatively straightforward to measure when they
are similar indeed: the differences can be captured by superpositioning one
object over another. When the similarity decreases, however, finding a correct
superposition becomes rather tricky and subject to local search and arbitrary
parameter values. This is why it is convenient to represent a complex object
by its neighbourhood, which is the set of entities that are similar to the object
(the idea first proposed in [47]). When the neighbourhoods are defined, two
objects, i, j ∈ I, can be compared by comparing their neighbourhoods L(i)
and L(j) with a convenient similarity measure between sets. The most popular
between-set similarity measure is the Jaccard coefficient, sometimes referred
to as Tanimoto’s coefficient, equal to n/(n1 + n2 − n) where n1, n2 and n
are cardinalities of the neigbourhoods and their intersection, respectively. The
ratio relates the cardinalities of the overlap and the set theoretic union of the
neighbourhoods. This coefficient, however, suffers from an intrinsic flaw of
systematically underestimating the similarity [36].

The most natural indexes would be the relative sizes of the overlap n
n1 and

n
n2 , but they are not symmetric and are avoided by the researchers because of
this. However, in the context of additive clustering, these can be used anyway
because they can be equivalently converted to their average,mbc = 1

2 ( n
n1+ n

n2 ),
as proven in section 3.2. The use of mbc index alleviates the issues of Jaccard-
Tanimoto’s coefficient [36].

To define an appropriate similarity shift value, families with known func-
tion have been selected and, of those, family pairs have been put into two
categories: (I) those whose function is clearly the same (86 pairs), and (II)
those whose function clearly differ (279 pairs) [37, 38]. The pair-wise similar-
ities should be high in the category (I) and low in the category (II), so that
any intermediate value could be taken as the scale shift. It appears, the two
distributions of similarities in this application are not disjoint; some proteins
with the same function have very weak similarities. Therefore, two most likely
shift values have been chosen: (i) that at which the distributions overlap (0.42)
thus minimizing the rate of error in deciding which pairs should have positive
and which negative similarity, and (ii) that at which none of the proteins have
different functions (0.67). The final decision is made by comparing scenarios of
evolution of the aggregate families with the knowledge of gene arrangement.
It appears, both the shift values lead to similar clusterings, but the shift of
0.42 provides a cluster whose reconstructed history is more consistent with
other knowledge than does the shift of 0.67.
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Conclusion

Iterative extraction in clustering is a powerful approach from both theoretical
and practical points of view. We tried to demonstrate that with two data for-
mats, quantitative entity-to-feature data and similarity data, and two cluster
structures, overlapping clusters and non-overlapping clusters.

The ITEX approach has been applied to other data formats, such as co-
occurrence or mixed scale data, too; and a number of other cluster sructures
were utilzed in different applications; the hierachical cluster structures have
been shown to be treatable with ITEX as well [33]. Applying the approach to
other, yet not tried, data formats such as temporal and/or spatial data could
be of interest.

The Pythagorean decomposition of the data scatter into explained and
unexplained parts, pro-intuitive cluster properties, and fast computation are
among advantages of the ITEX. Its shortcomings are related to: (i) the com-
pulsory additive structure of the underlying model and (ii) unequal contri-
butions of the underlying clusters. The former is probably behind the lack
of intersection among ITEX clusters at the entity-to-feature data. Indeed,
the idea of summing up centroids to represent intersections of corresponding
clusters may be somewhat odd in some contexts.

The mentioned shortcomings suggest a number of directions for the the-
oretical and experimental investigation into the ITEX: (i) extending it to
non-additive clustering models, (ii) characterization of data structures that
are reliably treatable with the ITEX, (iii) development of different criteria for
the ITEX, not necessarily based on minimizing residuals in the one-cluster
models.
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