
Chapter 6 

Examples 

This chapter contains six examples that demonstrate the procedures on real and simulated 

data. We also introduce some ideas such as bootstrapping, robustness, and outlier detection. 

Example 6.1. Gold assay pairs. 

This real data example illustrates: 

l A principal curve in 2-space, 

l non-linear errors in variables regression, 

l co-ordinate function plots, and 

l bootstrapping principal curves. 

A California based company collects computer chip waste in order to sell it for its content 

of gold and other precious metals. Before bidding for a particular cargo, the company takes 

a sample in order to estimate the gold content of the the whole lot. The sample is split in 

two. One sub-sample is assayed by an outside laboratory, the other by their own inhouse 

laboratory. (The names of the company and laboratory are withheld by request). The 

company wishes to eventually use only one of the assays. It is in their interest to know 

which laboratory produces on average lower gold content assays for a given sample. 

The data in figure 6.la consists of 250 pairs of gold assays. Each point is represented 

by 
zli 

2; = 
( 1 3% 

where zji = log(1 + assay yield for ith assay pair for lab j) and where j = 1 corresponds 

to the inhouse lab and j = 2 the outside lab. The log transformation tends to stabilize the 

variance and produce a more even scatter of points than in the untransformed data. (There 

were many more small assays (1 oz per ton) than larger ones (> 10 oz per ton)). 
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Inhouse Laboratory 

Figure &la Plot of the log assays for the 
inhouse and outside labs. The solid curve is the 
principal curve, the dashed curve the scatter- 
plot smooth. 
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Figure 6.lb Estimated ‘coordinate func- 
tions. The dashed curve ia the outside lab, the 
solid curve the inhouse lab. 

A standard analysis might be a paired t-test for an overall difference in assays. This 

would not reflect local differences which can be of great importance since the higher the 

level of gold the more important the difference. 

The data was actually analyzed by smoothing the differences in log assays against the 

average of the two assays. This can be considered a form of symmetric smoothing and was 

suggested by Cleveland (1983). W e d iscuss the method further in chapter 7. 

The model presented here for the above data is 

(6.1) 

where ri is the unknown true gold content for sample i (or any monotone function thereof), 

fj(ri) is the expected assay result for lab j, and eji is measurement error. We wish to 

analyze the relationship between fr and fr for different true gold contents. 

This is a generalization of the errors in variables model or the structural model (if we 
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regard the r; themselves as unobservable random variables), or the functional model (if the 

ri are considered fixed). This model is traditionally expressed as a linear model: 

(1:;) = (rr:,?) + (1:) (6.2) 

where fz(ri) = zi and 

fl(G) = fl"fi-'(Zi) (assuming fz is monotone) 

=a+pZi 

It suffers, however, from the same drawback as the t-test in that only global inference is 

possible. 

We assume that the ej; are pairwise independent and that * 

Va(eli) = VFS(e*i) V i. 

The model is estimated using the principal curve estimate for the data and is repre- 

sented by the solid curve in figure 6.la. The dashed curve is the usual scatterplot smooth 

of zz against zi and is clearly misleading as a scatterplot summary. The curve lies above 

the 45” line in the interval 1.4 to 4 which represents an untransformed assay interval of 3 to 

15 oz/ton. In this interval the inhouse average assay is lower than that of the outside lab. 

The difference is reversed at lower levels, but this is of less practical importance since at 

these levels the cargo is less valuable. This is more clearly seen by examining the estimated 

coordinate function plots in figure 6.lb. 

A natural question arising at this point is wether the kink in the curve is real or not. 

If we had access to more data from the same population we could simply calculate the 

principal curves for each and see how often the kink is reproduced. We could then perhaps 

construct a 95% confidence tube for the true curve. 

In the absence of such repeated samples, we use the bootstrap (Efron 1981, 1982) to 

simulate them. We would like to, but cannot, generate samples of size n from F, the true 

distribution of z. Instead we generate samples of size n from @, the empirical or estimated 

distribution function, which puts mass l/n on each of the sample points xi. Each such 

sample, which samples the points Zi with replacement, is called a bootstrap sample. 

* In the linear model one usually requires that Var(eji) = con~tantj. This assumption can be 
relaxed here. 
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Inhouse Laboratory 

Figure 6.1~ 25 bootstrap curves. The data X is sampled 25 times 

with replacement, each time yieldiig a bootstrap sample X’. Each 

curve is the principal curve of such a sample. 

Figure 6.1~ shows the principal curves obtained for 25 such bootstrap samples. The 

45” line is included in the figure, and we see that none of the curves cross the line in the 

region of interest. This provides strong evidence that the kink is indeed real. 

When we compute a particular bootstrap curve, we use the principal curve of the 

original sample as a starting value. Usually one or two iterations are all that is required 

for the procedure to converge. Also, since each of the bootstrap points occurs at one of the 

sample sites, we know where they project onto this initial curve. 

It is tempting to extract from the procedure estimates of ii, the true gold level for 

sample i. However, ii need not be the true gold level at all. It may be any variable that 

orders the pairs f(ii) along the curve, and is probably some monotone function of the true 

gold level. It is clear that both labs could consistently produce biased estimates of the true 

gold level and there is thus no information at all in the data about the true level. 

Estimates of ri do provide us with a good summary variable for each of the pairs, if 
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that is required: 

since we obtain Pi by projecting the point Zi onto the curve. Finally we observe that the 

above analysis could be extended in a straightforward way to include 3 or more laboratories. 

It is hard to imagine how to tackle the problem using standard regression techniques. 

Example 6.2. The helii in three-space. 

This is a simulated example illustrating: 

l A principal curve in Bspace, 

l co-ordinate plots, and 

l cross-validation and span selection. 

We looked at the bias of the principal curve procedure in estimating the helix in chapter 4. 

We now demonstrate the procedure by generating data from that model. We have 

I(4 = 

where X - U[O, l] and e .., U(0, .31). This situation does not present the principal curve 

procedure with any real problems. The reason is that the starting vector passes down the 

middle of the helix and the data projects onto it in nearly the correct order. Table 6.lshows 

the steps in the iterations as the procedure converges at each of the procedural spans shown. 

At a span of s = .2 we use cross-validation to find the minimum mae epan. 

Figure 6.2~ shows the CVRSS curve used to select the span, which is 0.1 with a 

value of CVRSS of 0.1644. One more step is performed and the procedure is terminated. 

Figure 6.2d shows the estimated coordinate functions for this choice of span. We see 

that the estimate of the linear co-ordinate is rather wiggly. It is clear that a small span 

was required to estimate the sinusoidal coordinates, but a large span would sui5c.e for 

the linear co-ordinate. This suggests a different scheme for cross-validationAoosing the 

spans separately for each co-ordinate. The results are shown in figures 6.2e and 6.2f. As 

predicted, a larger span is chosen for the linear co-ordinate, and its estimate is no longer 

wiggly. This is the final model referred to in the table and represented in figure 6.2. 
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Figure 6.2a Data generated from a he- 
lix with independent errors on each coordinate. 
The dashed curve is the original helix, the solid 
curve is the principal curve estimate. 

Figure 6.2b Another view of the helix, the 
data and the principal curve. 

Table 6.1. The steps in the iterations. Initially the procedure 
goes through a regimen of procedural spans. Then the final span is 
found by crow-validation. 

Iteration # Span Da d.o.f. Comments 
I I I 1 

procedural spans 
I I t 

1.0 

0.4 0.740 4.2 
0.4 0.565 4.6 
0.4 0.550 4.7 
0.4 0.549 4.7 

1.110 1 2.0 1 principal component line 1 

initial span 

converged 

0.3 
0.3 
0.3 

0.376 

I 

5.1 

I 

reduce span 

0.361 5.4 0.360 5.4 converged 

0.2 
0.2 
0.2 

mse spans 

0.222 7.3 
0.217 6.9 
0.217 6.9 

0.07, 0.09, 0.35 0.162 9.7 
0.189 

reduce span 

crowvalidated I 
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Figure 6.2~ The cross-validation curve Figure 6.2d The estimated co-ordinate 
shows CVRSS(s) as a function of the span s. functions for the helix, using the span found in 
One span is used for all 3 co-ordinates. figure 6.2~. 
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Figure 6.2e The cross-validation curve Figure 6.2f The estimated co-ordinate func- 
shows CVRSSi(a) as a function of the span s. 
A separate span is found for each co-ordinate. 

tions for the helix, using the spans found in fig- 
ure 6.2f. 
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The entry labelled d.o.f. in table 6.lis an abbreviation for degrees of freedom. In 

linear regression the number of parameters used in the fit is given by tr (H) where H is the 

projection or hat matrix. If the response variables w are iid with variance a’, then 

i=l i=l 
= o*tr (H’H) 

= o*tr (H) 

We can do the same calculation for a linear smoother matrix C, and in fact for the local 

straight lines smoother we even have tr (C’C) = tr (C). As the span decreases, the diagonal 

entries of C get larger, and thus the variance of the estimates increases, as we would expect. 

One can also approach this from the other side by looking at the residual sum of squares. 

In the absence of bias we have 

ERSS = E I[(1 - C)yl[* 

= Ey’(Z - C)‘(Z - C)y 

= tr [(I - C)‘(Z - C) Cov (y)] 
(6.3) 

= (fl - tr (C))a* 

if tr (C’C) = tr (C). * More motivation for regarding tr (C) ss the number of parameters or 

d.o.f. can be found in Cleveland (1979) and Tibshirani (1984). Some calculations similar to 

those in 3.5.1 show that the expected squared distance of X from the true f is D* w 2u*, or 

more precisely D* M 20’ -cr’/(4p*) where p is the radius of curvature, which in our example 

is 1 + l/r’. Thus D* = 0.18. The cross validated residual estimate c CVRSSj was found 

to be 0.189. The orthogonal distance from the final curve is D*(“) = 0.162. This is deflated 

due to overfitting. The average value of d.o.f for the final curve is (one for each co-ordinate) 

9.7, or a total of 29.1. Some simple heuristics show that the we should scale this value up by 

by 2n/(2n - d.o.f) = 300/(300 - 29.1) = 1.11. We then get 2n/(2n - d.o.f)D*(“) = 0.179 

which is back in the correct ballpark. 

It is more convenient to view the 3 dimensional examples on a color graphics system 

(such as the Chromatics system of the Orion group, Stanford University). This allows one 

to rotate the points in real time and thus see the 3rd dimension. 

* For our smoothers, each row of C is the row of a projection matrix, and hence c:ci = cii. 
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Example 6.3. Geological data. 

This real data example illustrates: 

l Data modelling in 3 dimensions, 

l non-linear factor analysis, and 

l outlier detection and robust fitting. 

The data in this example consists of measurements of the mineral content of 64 core samples, 

each taken at different depths (Chernoff, 1973). M easurements were made of 10 minerals 

in each sample. We simply label the minerals Xl, * *. , Xro, and analyze the first three. 

Mineral X, 

Figure 6.3a The principal curve for the mineral data. (Variable 
Xe is into the page). The spikes join the points to their projection 
on the curve. The 4 ontliers are joined to the curve with the broken 

lines. 

Figure 6.3a shows the data and the solution curve. (A final span of 0.35 was manually 

selected.) In 3-D the picture looks like a dragon with its tail pointing to the left and the 
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Depth order of core 

Figure 6.3b The values Xi(Zi) are plotted against the depth 
order of the core samples. 

long (outlier) spikes could be a mane. The linear principal component explains 55% of the 

variance, whereas this solution explains 82%. 

The spikes join the observations to their closest projections on the curve. This is a 

useful device for spotting outliers. A robust version of the principal curve procedure was 

used in this example. After the first iteration, points receive a weight which is inversly 

proportional to their distance from the curve. In the smoothing step, a weighted smooth 

is used, and if the weight is below a certain threshhold, it is set to 0. Four points were 

identified as outliers, and are labelled differently in figure 6.3~3 . We would really consider 

them model outliers, since in that region of the curve the model does not appear to fit very 

well. 

Figure 6.3b shows the relationship between the order of the points on the curve, and 

the depth order of the core samples. The curve appears to recover this variable for the most 

part. The area where it does not recover the order is where the curve appears to fit the 

data badly anyway. So here we have uncovered a hidden variable or factor that we are able 

to validate with the additional information we have about the ordering. The co-ordinate 
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Estimated h 

Figure 6.3~ The estimated co-ordinate functions or factor loading 

curves for the three minerals. 

plots would then represent the mean level of the particular mineral at different depths (see 

figure 6.3~ ). Usually one would have to use these coordinate plots to identify the factors, 

just as one uses the factor loadings in the linear case. 

Example 6.4. The uniform ball. 

This example illustrates: 

l A principal surface in 3 space, and 

l a connection to multidimensional scaling. 

The data is artificially constructed, with no noise, by generating points uniformly from the 

surface of a sphere. It is the same data used by Shepard and Carroll (1966) to demonstrate 

their parametric mapping algorithm. (see reference and chapter 7). We simply use it here 

to demonstrate the ability of the principal surface algorithm to produce surfaces that are 

not a function of the starting plane (in analogy to the circle example in chapter 3). 

There are 61 data points, as shown in figure 6.48. One point is placed at each 

intersection of 5 equally spaced parallels and 12 equally spaced meridians. The extra point 
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f 

Figure 6.4a The data points are placed 
in a uniform pattern on the surface of a sphere. 
The south pole is missing. 

*. . . 
**. . . :* 

Figure 6.4~ An intermediate stage in the 
iterations. 

Figure 6.4b The second iteration of the 
principal surface procedure finds a surface that 
is a function of the first iteration. 

Figure 6.4d The final surface produced by 
the principal surface routine. 
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Estimated X, 

Figure 6.4e Another view of the final prin- 
cipal surface. 

Figure 6.4f The X map is a two dimensional 
summary of the data. It resembles a stereo 
graphic map of the world. 

is placed at the north pole. (If we placed a point at the south pole the principal surface 

procedure would never move from the starting plane, which is in fact a principal surface.) 

Figures 6.4b to 6.4d show various stages in the iterative procedure, and figure 6.4e shows 

another view of the final surface. Figure 6.4f is a parameter map of the two dimensional A. 

It resembles a stereographic map of the earth. (A stereographic map is obtained by placing 

the earth, or a model thereof, on a piece of paper. Each point on the surface is mapped 

onto the paper by extrapolating the line segment joining the north pole to the point until 

it reaches the paper.) Points in the southern hemisphere are mapped on the inside of a 

circle, points in the northern hemisphere on the outside, and there is a discontinuity at the 

north pole. Points close together on this map are close together in the original space, but 

the converse is not necessarily true. This map provides a two dimensional summary of the 

original data. If we are presented with any new observations, we can easily locate them on 

the map by finding their closest position on the surface. 

Example 6.5. One dimensional color data. 

This almost real data example illustrates: 
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First principal axis 
-2OYJ.1 

Estimated h (wavelength) 

Figure 6.5a The 4 dimensional color data Figure 6.5b The estimated co-ordinate 
projected onto the iirst principal component plane. functions plotted against the arc length of the 
The principal curve, found in the original four- principal curve. This i will be monotone with 
space, is also projected onto this plane. the true wavelength. 

l A principal curves in 4space, and 

l a one dimensional MDS example. 

These data were used by Shepard and Carroll (1966) (who cite the original source as Boynton 

and Gordon (1965)) to illustrate a version of their parametric data representation techniques 

called proximity analysis. We give more details of this technique in chapter 7. 

Each of the 23 observations represents a spectral color at a specific wavelength. Each 

observation has 4 psychological variables associated with it. They are the relative frequen- 

cies with which 100 observers named the color blue, green, yellow and red. As can be seen in 

figure 6.5a, there is very little error in this data, and it is one dimensional by construction. 

Since the color changes slowly with wavelength, so should these relative frequencies, and 

they should thus fall on a one dimensional curve, as they do. The data, by construction lies 

in a 3 dimensional simplex since the four variables add up to 1. The pictures we show are 

projections of this simplex onto the 2-D subspace spanned by the first two linear principal 

components. Figure 6.5a shows the solution curve and figure 6.5b shows the recovered 

parameters and co-ordinate functions. This solution is in qualitative agreement with the 

data and with the solution produced by Shepard and Carroll. 



Chapter 6: Ezamplee 85 

Example 6.6. Lipoprotein data. 

This real data example illustrates: 

l A principal surface in 3 space with some interpretations, 

l a principal curve suggested by the surface, and 

l coordinate plots for surfaces. 

Williams and Krauss (1982) conducted a study to investigate the inter-relationships between 

the serum concentrations of lipoproteins at varying densities in sedentry men. We focus 

on a subset of the data, and consider the serum concentrations of LDL 3-4 (Low Density 

Lipoprotein with flotation rates between 513 - 4), LDL 7-8, and HDL 3 (High Density 

Lipoprotein) in the sample of 81 men. Figures 6.6a-d are different views of the principal 

surface found for the data. Quantitively this surface explains 97.4% of the variability in the 

data, and accounts for 89% of the residual variance unexplained by the principal component 

plane. Qualitatively, we see that the surface has interesting structure in only two of the 

co-ordinates, namely LDL 3-4 and LDL 7-8. We can infer from the the surface that the 

bow shaped relationship between these two variables does not change for varying levels of 

HDL 3. It exhibits an independent behaviour. We have included a co-ordinate plot (figure 

6.6e) of the estimated co-ordinate function for the variables LDL 7-8 which helps confirm 

this claim. The relationship between LDL 7-8 and (Ai, &) depends mainly on the level of 

1,. Similar information is conveyed by the other coordinate plots, or can be seen from the 

estimated surface directly. This suggests a model of the form 

As specified X2 is confounded with HDL 3, and is thus unidentifiable. We need to estimate 

the first two components of the model. This is a principal curve model, and figure 6.6f 

shows the estimated curve. It exhibits the same dependence between LDL 7-8 and LDL 3-4 

as did the surface. The curve explains 92.6% of the variance in the two variables, whereas 

the principal component line explains only 89%. 

Williams and Krauss performed a similar analysis looking at pairs of variables at a 

time. We discuss their techniques in chapter 7. Their results are qualitatively the same as 

ours for the LDL pair. 
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Figure 6.6a The principal surface for the 
serum concentrations LDL 7-8, LDL 3-4 and 
HDL 3 in a sample of 81 sedentary men. Vari- 
able HDL 3 is into the page. 
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Figure 6.6~ The principal surface as in 
figure 6.6a from a different viewpoint. Variable 
LDL 3-4 is into the page. 

Figure 6.6b The principal surface ae in 
figure 6.6a from a d&rent viewpoint. Variable 
LDL 7-8 is into the page. 

Figure 6.6d The principal surface as in 

figure 6.6, from a slightly oblique perspective. 
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Figure 6.6e The estimated cwordmate Figure 6.6f The principal curve for the 
function for LDL 7-8 versus i. 12 has little serum concentrations LDL 7-8 and LDL 3-4 in 
effect. a sample of 81 sedentry men. 




