
Chapter 2

Vector Quantization and Principal

Component Analysis

Most of the unsupervised learning algorithms originate from one of the two basic unsupervised

learning models, vector quantization and principal component analysis. In particular, principal

curves are related to both areas: conceptually, they are originated from principal component analysis

whereas practical methods to estimate principal curves often resemble to basic vector quantization

algorithms. This chapter describes these two models.

2.1 Vector Quantization

Vector quantization is an important topic of information theory. Vector quantizers are used in lossy

data compression, speech and image coding [GG92], and clustering [Har75]. Vector quantization

can also be considered as the simplest form of unsupervised learning where the manifold to fit to

the data is a set of vectors. Kohonen’s self-organizing map [Koh97] (introduced in Section 3.2.2)

can also be interpreted as a generalization of vector quantization. Furthermore, our new definition

of principal curves (to be presented in in Section 4.1) has been inspired by the notion of an optimal

vector quantizer. One of the most widely used algorithms for constructing locally optimal vector

quantizers for distributions or data sets is the Generalized Lloyd (GL) algorithm [LBG80] (also

known as the k-means algorithm [Mac67]). Both the HS algorithm (Section 3.1.1) and the polygonal

line algorithm (Section 5.1) are similar in spirit to the GL algorithm. This section introduces the

concept of optimal vector quantization and describes the GL algorithm.

12

2.1.1 Optimal Vector Quantizer

A k-point vector quantizer is a mapping q : R
d →R

d that assigns to each input vector x ∈R
d a code-

point x̂ = q(x) drawn from a finite codebook C = {v1, . . . ,vk} ⊂ R
d . The quantizer is completely

described by the codebook C together with the partition V = {V1, . . . ,Vk} of the input space where

V` = q−1(v`) = {x : q(x) = v`} is the set of input vectors that are mapped to the `th codepoint by q.

The distortion caused by representing an input vector x by a codepoint x̂ is measured by a non-

negative distortion measure ∆(x, x̂). Many such distortion measures have been proposed in different

areas of application. For the sake of simplicity, in what follows, we assume that ∆(x, x̂) is the most

widely used squared error distortion, that is,

∆(x, x̂) = ‖x− x̂‖2. (5)

The performance of a quantizer q applied to a random vector X = (X1, . . . ,Xd) is measured by

the expected distortion,

∆(q) = E[∆(X,q(X))] (6)

where the expectation is taken with respect to the underlying distribution of X. The quantizer q∗ is

globally optimal if ∆(q∗) ≤ ∆(q) for any k-point quantizer q. It can be shown that q∗ exists if X has

finite second moments, so the answer to Question 1 in Section 1.1.3 is yes. Interestingly, however,

the answers to Questions 2 and 3 are no in general. Finding a globally optimal vector quantizer for

a given source distribution or density is a very hard problem. Presently, for k > 2 codepoints there

seem to be no concrete examples of optimal vector quantizers for even the most common model

distributions such as Gaussian, Laplacian, or uniform (in a hypercube) in any dimensions d > 1.

Since global optimality is not a feasible requirement, algorithms, even in theory, are usually

designed to find locally optimal vector quantizers. A quantizer q is said to be locally optimal if ∆(q)

is only a local minimum, that is, slight disturbance of any of the codepoints will cause an increase

in the distortion. Necessary conditions for local optimality will be given in Section 2.1.3. We also

describe here a theoretical algorithm, the Generalized Lloyd (GL) algorithm [LBG80], to find a

locally optimal vector quantizer of a random variable.

In practice, the distribution of X is usually unknown. Therefore, the objective of empirical

quantizer design is to find a vector quantizer based on Xn = {X1, . . . ,Xn}, a set of independent and

identical copies of X. To design a quantizer with low distortion, most existing practical algorithms

attempt to implement the empirical loss minimization principle introduced for the general unsuper-

vised learning model in Section 1.1.3. The performance of a vector quantizer q on Xn is measured

by the empirical distortion of q given by

∆n(q) =
1
n

n

∑
i=1

∆(Xi,q(Xi)). (7)

13

The quantizer q∗n is globally optimal on the data set Xn if ∆n(q∗n)≤ ∆n(q) for any k-point quantizer q.

Finding an empirically optimal vector quantizer is, in theory, possible since the number of different

partitions of Xn is finite. However, the systematic inspection of all different partitions is computa-

tionally infeasible. Instead, most practical methods use an iterative approach similar in spirit to the

GL algorithm.

It is of both theoretical and practical interest to analyze how the expected loss of the empirically

best vector quantizer ∆(q∗n) relates to the best achievable loss ∆n(q∗), even though q∗ is not known

and q∗n is practically infeasible to obtain. Consistency (Question 4 in Section 1.1.3) of the estimation

scheme means that the expected loss of the q∗
n converges in probability to the best achievable loss

as the number of the data points grows, therefore, if we have a perfect algorithm and unlimited

access to data, we can get arbitrarily close to the best achievable loss. A good convergence rate

(Question 5) is important to establish upper bounds for the probability of error for a given data

size. We start the analysis of the empirical loss minimization principle used for vector quantization

design by presenting results on consistency and rate of convergence in Section 2.1.2.

2.1.2 Consistency and Rate Of Convergence

Consistency of the empirical quantizer design under general conditions was proven by Pollard

[Pol81, Pol82]. The first rate of convergence results were obtained by Linder et al. [LLZ94]. In

particular, [LLZ94] showed that if the distribution of X is concentrated on a bounded region, there

exists a constant c such that

∆(q∗n)−∆(q∗) ≤ cd3/2

√

k logn
n

. (8)

An extension of this result to distributions with unbounded support is given in [MZ97]. Bartlett et

al. [BLL98] pointed out that the
√

logn factor can be eliminated from the upper bound in (8) by

using an analysis based on sophisticated uniform large deviation inequalities of Alexander [Ale84]

or Talagrand [Tal94]. More precisely, it can be proven that there exists a constant c′ such that

∆(q∗n)−∆(q∗) ≤ c′d3/2

√

k log(kd)

n
. (9)

There are indications that the upper bound can be tightened to O(1/n). First, in (4) we showed

that if k = 1, the expected loss of the sample average converges to the smallest possible loss at a

rate of O(1/n). Another indication that an O(1/n) rate might be achieved comes from a result of

Pollard [Pol82]. He showed if X has a specially smooth and regular density, the difference between

the codepoints of the empirically designed quantizers and the codepoints of the optimal quantizer

obeys a multidimensional central limit theorem. As Chou [Cho94] pointed out, this implies that that

within the class of distributions considered by [Pol82], the distortion redundancy decreases at a rate

O(1/n). Despite these suggestive facts, it was showed by [BLL98] that in general, the conjectured

14

O(1/n) distortion redundancy rate does not hold. In particular, [BLL98] proved that for any k-point

quantizer qn which is designed by any method from n independent training samples, there exists a

distribution on a bounded subset of R
d such that the expected loss of qn is bounded away from the

optimal distortion by a constant times 1/
√

n. Together with (9), this result shows that the minimax

(worst-case) distortion redundancy for empirical quantizer design is asymptotically on the order of

1/
√

n. As a final note, [BLL98] conjectures that the minimax expected distortion redundancy is

some constant times

da

√

k1−b/d

n

for some values of a ∈ [1,3/2] and b ∈ [2,4].

2.1.3 Locally Optimal Vector Quantizer

Suppose that we are given a particular codebook C but the partition is not specified. An optimal

partition V can be constructed by mapping each input vector x to the codepoint v` ∈ C that mini-

mizes the distortion ∆(x,v`) among all codepoints, that is, by choosing the nearest codepoint to x.

Formally, V = {V1, . . . ,Vk} is the optimal partition of the codebook C if

V` = {x : ∆(x,v`) ≤ ∆(x,vm), m = 1, . . . ,k}. (10)

(A tie-breaking rule such as choosing the codepoint with the lowest index is required if more than

one codepoint minimizes the distortion.) V` is called the Voronoi region or Voronoi set associated

with the codepoint v`.

Conversely, assume that we are given a partition V = {V1, . . . ,Vk} and an optimal codebook

C = {v1, . . . ,vk} is needed to be constructed. To minimize the expected distortion, we have to set

v` = argmin
v

E[∆(X,v)|X ∈V`]. (11)

v` is called the centroid or the center of gravity of the set V`, motivated by the fact that for the

squared error distortion (5) we have v` = E[X|X ∈V`].

It can be shown that the nearest neighbor condition (10) and the centroid condition (11) must

hold for any locally optimal vector quantizer. Another necessary condition of local optimality is

that boundary points occur with zero probability, that is,

P{X : X ∈V`,∆(X,v`) = ∆(X,vm), ` 6= m} = 0. (12)

If we have a codebook that satisfies all three necessary conditions of optimality, it is widely be-

lieved that it is indeed locally optimal. No general theoretical derivation of this result has ever been

obtained. For the particular case of discrete distribution, however, it can be shown that under mild

restrictions, a vector quantizer satisfying the three necessary conditions is indeed locally optimal

[GKL80].

15

2.1.4 Generalized Lloyd Algorithm

The nearest neighbor condition and the centroid condition suggest a natural algorithm for designing

a vector quantizer. The GL algorithm alternates between an expectation and a partition step until

the relative improvement of the expected distortion is less than a preset threshold. In the expectation

step the codepoints are computed according to (11), and in the partition step the Voronoi regions are

set by using (10). It is assumed that an initial codebook C (0) is given. When the probability density

of X is known, the GL algorithm for constructing a vector quantizer is the following.

Algorithm 1 (The GL algorithm for distributions)

Step 0 Set j = 0, and set C (0) =
{

v(0)
1 , . . . ,v(0)

k

}

to an initial codebook.

Step 1 (Partition) Construct V (j) =
{

V (j)
1 , . . . ,V (j)

k

}

by setting

V (j)
` =

{

x : ∆
(

x,v(j)
`

)

≤ ∆
(

x,v(j)
m

)

, m = 1, . . . ,k
}

for ` = 1, . . . ,k.

Step 2 (Expectation) Construct C (j+1) =
{

v(j+1)
1 , . . . ,v(j+1)

k

}

by setting

v(j+1)
` = argminv E

[

∆(X,v)
∣

∣

∣
X ∈V (j)

`

]

= E
[

X
∣

∣

∣
X ∈V (j)

`

]

for ` = 1, . . . ,k.

Step 3 Stop if

(

1− ∆(q(j+1))
∆(q(j))

)

is less than or equal to a certain threshold. Otherwise, let j = j +1

and go to Step 1.

Step 1 is complemented with a suitable rule to break ties. When a cell becomes empty in Step 1,

one can split the cell with the highest probability, or the cell with the highest partial distortion into

two, and delete the empty cell.

It is easy to see that ∆
(

q(j)
)

is non-increasing and non-negative, so it must have a limit ∆
(

q(∞)
)

.

[LBG80] showed that if a limiting quantizer C (∞) exists in the sense that C (j) → C (∞) as j → ∞
(in the usual Euclidean sense), then the codepoints of C (∞) are the centroids of the Voronoi regions

induced by C (∞), so C (∞) is a fixed point of the algorithm with zero threshold.

The GL algorithm can easily be adjusted to the case when the distribution of X is unknown but

a set of independent observations Xn = {x1, . . . ,xn} ⊂ R
d of the underlying distribution is known

instead. The modifications are straightforward replacements of the expectations by sample averages.

In Step 3, the empirical distortion

∆n(q) =
1
n

n

∑
i=1

∆(xi,q(xi)) =
1
n

k

∑̀
=1

∑
x∈V`

‖v`−x‖2

is evaluated in place of the unknown expected distortion ∆n(q). The GL algorithm for constructing

a vector quantizer based on the data set Xn is the following.

16

Algorithm 2 (The GL algorithm for data sets)

Step 0 Set j = 0, and set C (0) =
{

v(0)
1 , . . . ,v(0)

k

}

to an initial codebook.

Step 1 (Partition) Construct V (j) =
{

V (j)
1 , . . . ,V (j)

k

}

by setting

V (j)
` =

{

x : ∆
(

x,v(j)
`

)

≤ ∆
(

x,v(j)
m

)

, m = 1, . . . ,k
}

for ` = 1, . . . ,k.

Step 2 (Expectation) Construct C (j+1) =
{

v(j+1)
1 , . . . ,v(j+1)

k

}

by setting

v(j+1)
` = argminv ∑

x∈V (j)
` ∩Xn

∆(x,v) =
1

∣

∣V (j)
`

∣

∣

∑
x∈V (j)

` ∩Xn

x for ` = 1, . . . ,k.

Step 3 Stop if

(

1− ∆n(q(j+1))
∆n(q(j))

)

is less than a certain threshold. Otherwise, let j = j +1 and go to

Step 1.

For a finite training set, the GL algorithm always converges in a finite number of iterations since

the average distortion is non-increasing in both Step 1 and Step 2 and there is only a finite number

of ways to partition the training set into k subsets.

2.2 Principal Component Analysis

Principal component analysis (PCA), which is also known as the Karhunen-Loève transformation,

is perhaps the oldest and best-known technique in multivariate analysis. It was first introduced by

Pearson [Pea01], who used it in a biological context. It was then developed by Hotelling [Hot33] in

work done on psychometry. It appeared once again quite independently in the setting of probability

theory, as considered by Karhunen [Kar47], and was subsequently generalized by Loève. For a full

treatment of principal component analysis, see, e.g., [JW92].

Principal component analysis can be considered one of the simplest forms of unsupervised learn-

ing when the manifold to fit is a linear subspace. Principal components are also used for initializa-

tion in more sophisticated unsupervised learning methods.

The analysis is motivated by the following two problems.

1. Given a random vector X ∈ R
d , find the d′-dimensional linear subspace that captures most of

the variance of X. This is the problem of feature extraction where the objective is to reduce

the dimension of the data while retaining most of its information content.

2. Given a random vector X ∈ R
d , find the d′-dimensional linear subspace that minimizes the

expected distance of X from the subspace. This problem arises in the area of data compression

where the task is to represent the data with only a few parameters while keeping low the

distortion generated by the projection.

17

It turns out that the two problems have the same solution, and the solution lies in the eigenstructure

of the covariance matrix of X. Before we derive this result in Section 2.2.2, we introduce the

definition and show some properties of curves in the d-dimensional Euclidean space in Section 2.2.1.

Concepts defined here will be used throughout the thesis. After the analysis, in Section 2.2.3, we

summarize some of the properties of the first principal component line. In subsequent definitions

of principal curves, these properties will serve as bases for generalization. Finally, in Section 2.2.4

we describe a fast algorithm to find principal components of data sets. The significance of this

algorithm is that it is similar in spirit to both the GL algorithm of vector quantization and the HS

algorithm (Section 3.1.1) for computing principal curves of data sets.

2.2.1 One-Dimensional Curves

In this section we define curves, lines, and line segments in the d-dimensional Euclidean space.

We also introduce the notion of the distance function, the expected Euclidean squared distance of a

random vector and a curve. The distance function will be used throughout this thesis as a measure

of the distortion when a random vector is represented by its projection to a curve. This section also

contains some basic facts on curves that are needed later for the definition and analysis of principal

curves (see, e.g., [O’N66] for further reference).

Definition 1 A curve in d-dimensional Euclidean space is a continuous function f : I → R
d , where

I = [a,b] is a closed interval of the real line.

The curve f can be considered as a vector of d functions of a single variable t, f(t) = (f1(t), . . . , fd(t)),

where f1(t), . . . , fd(t) are called the coordinate functions.

The Length of a Curve

The length of a curve f over an interval [α,β] ⊂ [a,b], denoted by l(f,α,β), is defined by

l(f,α,β) = sup
N

∑
i=1

‖f(ti)− f(ti−1)‖, (13)

where the supremum is taken over all finite partitions of [α,β] with arbitrary subdivision points

α = t0 ≤ t1 < · · · ≤ tN = β, N ≥ 1. The length of f over its entire domain [a,b] is denoted by l(f).

Distance Between a Point and a Curve

Let f(t) = (f1(t), . . . , fd(t)) be a curve in R
d parameterized by t ∈ R, and for any x ∈ R

d let tf(x)

denote the parameter value t for which the distance between x and f(t) is minimized (see Figure 2).

18

More formally, the projection index tf(x) is defined by

tf(x) = sup
{

t : ‖x− f(t)‖ = inf
τ
‖x− f(τ)‖

}

, (14)

where ‖ · ‖ denotes the Euclidean norm in R
d . Accordingly, the projection point of x to f is f(tf(x)).

The squared Euclidean distance of f and x is the squared distance of x from its projection point to f,

that is,

∆(x, f) = inf
a≤t≤b

‖x− f(t)‖2 = ‖x− f(tf(x))‖2. (15)

��

��

��

��

�	

�

�
�����
�����
�����
�����

�����
�����
�����
�����

�
�
�
�
�
�

�
�
�
�
�
�

�����
�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����

���
���
��� ���

���
���
���

���
���
���
���

�����
�����
�����
�����

�����
�����
�����
�����

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

x1

f f 1 (t (x))
f f 2 (t (x))

2
f f 3

x4

f f 4 (t (x))
x5

f f 5 (t (x))x3

x6

f f 6 (t (x))
f f 7 (t (x))

x7

 (t (x))x

Figure 2: Projecting points to a curve.

Arc Length Parameterization and the Lipschitz Condition

Two curves f : [a,b] → R
d and g : [a′,b′] → R

d are said to be equivalent if there exist two nonde-

creasing continuous functions φ : [0,1] → [a,b] and η : [0,1] → [a′,b′] such that

f(φ(t)) = g(η(t)), 0 ≤ t ≤ 1.

In this case we write f ∼ g, and it is easy to see that ∼ is an equivalence relation. If f ∼ g, then

l(f) = l(g). A curve f over [a,b] is said to be parameterized by its arc length if l(f,a, t) = t −a for

any a ≤ t ≤ b. Let f be a curve over [a,b] with length L. It is not hard to see that there exists a

unique arc length parameterized curve g over [0,L] such that f ∼ g.

Let f′ be any curve with length L′ ≤ L, and consider the arc length parameterized curve g ∼ f′

with parameter interval [0,L′]. By definition (13), for all s1,s2 ∈ [0,L′] we have ‖g(s1)− g(s2)‖ ≤
|s1− s2|. Define ĝ(t) = g(L′t) for 0 ≤ t ≤ 1. Then f′ ∼ ĝ, and ĝ satisfies the Lipschitz condition, i.e.,

For all t1, t2 ∈ [0,1],

‖ĝ(t1)− ĝ(t2)‖ = ‖g(L′t1)−g(L′t2)‖ ≤ L′|t1 − t2| ≤ L|t1 − t2|. (16)

On the other hand, note that if ĝ is a curve over [0,1] which satisfies the Lipschitz condition (16),

then its length is at most L.

19

Note that if l(f) < ∞, then by the continuity of f, its graph

Gf = f([a,b]) = {f(t) : a ≤ t ≤ b} (17)

is a compact subset of R
d , and the infimum in (15) is achieved for some t. Also, since Gf = Gg if

f ∼ g, we also have that ∆(x, f) = ∆(x,g) for all g ∼ f.

Geometrical Properties of Curves

Let f : [a,b]→R
d be a differentiable curve with f = (f1, . . . , fd). The velocity of the curve is defined

as the vector function

f′(t) =

(

d f1

dt
(t), . . . ,

d fd

dt
(t)

)

.

It is easy to see that f′(t) is tangent to the curve at t and that for an arc length parameterized curve

‖f′(t)‖ ≡ 1. Note that for a differentiable curve f : [a,b] → R
d , the length of the curve (13) over an

interval [α,β] ⊂ [a,b] can be defined as

l(f,α,β) =
Z β

α
‖f′(t)‖dt.

The vector function

f′′(t) =

(

d2 f1

dt2 (t), . . . ,
d2 fd

dt2 (t)

)

is called the acceleration of the curve at t. For an arc length parameterized curve f′′(t) is orthogonal

to the tangent vector. In this case f′′(t)/‖f′′(t)‖ is called the principal normal to the curve at t. The

vectors f′(t) and f′′(t) span a plane. There is a unique arc length parameterized circle in this plane

that goes through f(t) and has the same velocity and acceleration at t as the curve itself. The radius

rf(t) = 1/‖f′′(t)‖ is called the radius of curvature of the curve f at t. The center cf(t) of the circle is

called the center of curvature of f at t (Figure 3).

c

’

f ’’

���
�

f

f (t)
��

��

f r (t)
(t)

(t)

Figure 3: The velocity f′(t), the acceleration f′′(t), the radius of curvature rf(t), and the center of curvature
cf(t) of an arc length parameterized curve.

20

The Distance Function and the Empirical Distance Function

Consider a d-dimensional random vector X = (X1, . . . ,Xd) with finite second moments. The distance

function of a curve f is defined as the expected squared distance between X and f, that is,

∆(f) = E
[

∆(X, f)
]

= E
[

inf
t
‖X− f(t)‖2]= E

[

‖X− f(tf(X))‖2]. (18)

In practical situations the distribution of X is usually unknown, but a data set Xn = {x1, . . . ,xn}⊂
R

d drawn independently from the distribution is known instead. In this case, we can estimate the

distance function of a curve f by the empirical distance function defined as

∆n(f) =
1
n

n

∑
i=1

∆(xi, f). (19)

Straight Lines and Line Segments

Consider curves of the form

s(t) = tu+ c

where u,c ∈R
d , and u is a unit-vector. If the domain of t is the real line, s is called a straight line, or

line. If s is defined on a finite interval [a,b] ⊂ R, s is called a straight line segment, or line segment.

Note that since ‖u‖ = 1, s is arc length parameterized.

By (15), the squared distance of a point x and a line s is

∆(x,s) = inf
t∈R

‖x− s(t)‖2

= inf
t∈R

‖x− (tu+ c)‖2

= ‖x− c‖2 + inf
t∈R

(

t2 −2t(x− c)T u
)

= ‖x− c‖2 − ((x− c)T u)2 (20)

where xT denotes the transpose of x. The projection point of x to s is c+((x− c)T u)u.

If s(t) = tu + c is a line segment defined over [a,b] ⊂ R, the way the distance of a point x and

the line segment is measured depends on the value of the projection index ts(x). If ts(x) = a or

ts(x) = b, the distance is measured as the distance of x and one of the endpoints v1 = au + c or

v2 = bu + c, respectively. If x projects to s between the endpoints, the distance is measured as if s

were a line (Figure 4). Formally,

∆(x,s) =

‖x−v1‖2 if s(ts(x)) = v1,

‖x−v2‖2 if s(ts(x)) = v2,

‖x− c‖2 − ((x− c)T u)2 otherwise.

(21)

21

∆(,)

∆(,)

x2 s

x

s

v1 x2

v2

1

s1x

Figure 4: Distance of a point and a line segment. If a point x1 projects to one of the endpoints v1 of the line
segment s, the distance of x1 and s is identical to the distance of x1 and v1. If a point x2 projects to s between
the endpoints, the distance is measured as if s were a line.

2.2.2 Principal Component Analysis

Consider a d-dimensional random vector X = (X1, . . . ,Xd) with finite second moments and zero

mean1. Let u ∈ R
d be an arbitrary unit vector, and s(t) = tu the corresponding straight line. Let

Y = ts(X) = XT u be the projection index of X to s. From E[X] = 0 it follows that E[Y] = 0, and so

the variance of Y can be written as

σ2
Y = E[(XT u)2] = E[(uT X)(XT u)]

= uT E[XXT]u = uT Ru

= ψ(u) (22)

where the d ×d matrix R = E
[

(X−E[X])(X−E[X])T
]

= E
[

XXT
]

is the covariance matrix of X.

Since R is symmetric, R = RT , and so for any v,w ∈ R
d

vT Rw = wT Rv. (23)

To find stationary values of the projection variance ψ(u), consider a small perturbation δu, such

that ‖u+δu‖ = 1. From (22) and (23) it follows that

ψ(u+δu) = (u+δu)T R(u+δu)

= uT Ru+2(δu)T Ru+(δu)T R δu.

Ignoring the second order term (δu)T Rδu and using the definition of ψ(u) again, we have

ψ(u+δu) = uT Ru+2(δu)T Ru

= ψ(u)+2(δu)T Ru. (24)

If u is such that ψ(u) has a stationary value, to a first order in δu, we have

ψ(u+δu) = ψ(u). (25)

1If E[X] 6= 0, then we subtract the mean from X before proceeding with the analysis.

22

Hence, (25) and (24) imply that

(δu)T Ru = 0. (26)

Since ‖u+δu‖2 = ‖u‖2 +2(δu)T u+‖δu‖2 = 1, we require that, to a first order in δu,

(δu)T u = 0. (27)

This means that the perturbation δu must be orthogonal to u. To find a solution of (26) with the

constraint (27), we have to solve

(δu)T Ru− l(δu)T u = 0,

or, equivalently,

(δu)T (Ru− lu) = 0. (28)

For the condition (28) to hold, it is necessary and sufficient that we have

Ru = lu. (29)

The solutions of (29), l1, . . . , ld , are the eigenvalues of R, and the corresponding unit vectors,

u1, . . . ,ud , are the eigenvectors of R. For the sake of simplicity, we assume that the eigenvalues are

distinct, and they are indexed in decreasing order, i.e.,

l1 > .. . > ld .

Define the d ×d matrix U as

U = [u1, . . . ,ud],

and let be the diagonal matrix

= diag[l1, . . . , ld].

Then the d equations of form (29) can be summarized in

RU = U . (30)

The matrix U is orthonormal so U−1 = UT , and therefore (30) can be written as

UT RU = . (31)

Thus, from (22) and (31) it follows that the principal directions along which the projection variance

is stationary are the eigenvectors of the covariance matrix R, and the stationary values themselves

are the eigenvalues of R. (31) also implies that the maximum value of the projection variance is the

23

largest eigenvalue of R, and the principal direction along which the projection variance is maximal

is the eigenvector associated with the largest eigenvalue. Formally,

max
‖u‖=1

ψ(u) = l1, (32)

and

argmax
‖u‖=1

ψ(u) = u1. (33)

The straight lines si(t) = tui, i = 1, . . . ,d are called the principal component lines of X. Since the

eigenvectors form an orthonormal basis of R
d , any data vector x ∈ R

d can be represented uniquely

by its projection indices ti = uT
i x, i = 1, . . . ,d to the principal component lines. The projection in-

dices ti, . . . , td are called the principal components of x. The construction of the vector t = [ti, . . . , td]T

of the principal components,

t = UT x,

is the principal component analysis of x. To reconstruct the original data vector x from t, note again

that U−1 = UT so

x = (UT)−1t = Ut =
d

∑
i=1

tiui. (34)

From the perspective of feature extraction and data compression, the practical value of princi-

pal component analysis is that it provides an effective technique for dimensionality reduction. In

particular, we may reduce the number of parameters needed for effective data representation by dis-

carding those linear combinations in (34) that have small variances and retain only those terms that

have large variances. Formally, let §d′ be the d′-dimensional linear subspace spanned by the first d ′

eigenvectors of R. To approximate X, we define

X′ =
d′

∑
i=1

tiui,

the projection of X to §d′ . It can be shown by using (33) and induction that §d′ maximizes the

variance of X′,

E
[

X′2]=
d′

∑
i=1

ψ(ui) =
d′

∑
i=1

li,

and minimizes the variance of X−X′,

E
[

(X−X′)2]=
d

∑
i=d′+1

ψ(ui) =
d

∑
i=d′+1

li,

among all d′-dimensional linear subspaces. In other words, the solutions of both Problem 1 and

Problem 2 are the subspace which is spanned by the first d ′ eigenvectors of X’s covariance matrix.

24

2.2.3 Properties of the First Principal Component Line

The first principal component line (Figure 5) of a random variable X with zero mean is defined as

the straight line s1 = tu1 where u1 is the eigenvector which belongs to the largest eigenvalue l1 of

X’s correlation matrix. The first principal component line has the following properties.

1. The first principal component line maximizes the variance of the projection of X to a line

among all straight lines.

2. The first principal component line minimizes the distance function among all straight lines.

3. If the distribution of X is elliptical, the first principal component line is self-consistent, that is,

any point of the line is the conditional expectation of X over those points of the space which

project to this point. Formally,

s1(t) = E
[

X|tf(X) = t
]

.

Figure 5: The first principal component line of an elliptical distribution in the plane.

Property 1 is a straightforward consequence of (33). To show Property 2, note that if s(t)= tu+c

is an arbitrary straight line, then by (18) and (20),

∆(s) = E
[

∆(X,s)
]

= E
[

‖X− c‖2 − ((X− c)T u)2]

= E
[

‖X‖2]+‖c‖2 −E
[

(XT u)2]− (cT u)2 (35)

= σ2
X −ψ(u)+‖c‖2 − (cT u)2

≤ σ2
X −ψ(u), (36)

where (35) follows from E[X] = 0. On the one hand, in (36) equality holds if and only if c = tu

for some t ∈ R. Geometrically, it means that the minimizing line must go through the origin. On

25

the other hand, σ2
X −ψ(u) is minimized when ψ(u) is maximized, that is, when u = u1. These two

conditions together imply Property 2. Property 3 follows from the fact that the density of a random

variable with an elliptical distribution is symmetrical about the principal component lines.

2.2.4 A Fast PCA Algorithm for Data Sets

In practice, principal component analysis is usually applied for sets of data points rather than dis-

tributions. Consider a data set Xn = {x1, . . . ,xn} ⊂ R
d , such that 1

n ∑n
i=1 xn = 0. The first principal

component line of Xn is a straight line s1(t) = tu1 that minimizes the empirical distance function

(19),

∆n(s) =
1
n

n

∑
i=1

∆(xi,s),

among all straight lines. The solution lies in the eigenstructure of the sample covariance matrix of

the data set, which is defined as Rn = 1
n ∑n

i=1 xnxT
n . Following the derivation of PCA for distributions

previously in this section, it can be shown easily that the unit vector u1 that defines the minimizing

line s1 is the eigenvector which belongs to the largest eigenvalue of Rn.

An obvious algorithm to minimize ∆n(s) is therefore to find the eigenvectors and eigenvalues of

Rn. The crude method, direct diagonalization of Rn, can be extremely costly for high-dimensional

data since it takes O(nd3) operations. More sophisticated techniques, for example the power method

(e.g., see [Wil65]), exist that perform matrix diagonalization in O(nd2) steps if only the first leading

eigenvectors and eigenvalues are required. Since the d × d covariance matrix Rn must explicitly

be computed, O(nd2) is also the theoretical lower limit of the computational complexity of this

approach.

To break the O(nd2) barrier, several approximative methods were proposed (e.g., [Oja92],

[RT89], [Föl89]). The common approach of these methods is to start from an arbitrary line, and

to iteratively optimize the orientation of the line using the data so that it converges to the first princi-

pal component line. The characterizing features of these algorithms are the different learning rules

they use for the optimization in each iteration.

The algorithm we introduce here is of the same genre. It was proposed recently, independently

by Roweis [Row98] and Tipping and Bishop [TB99]. The reason we present it here is that there is a

strong analogy between this algorithm designed for finding the first principal component line2, and

the HS algorithm (Section 3.1.1) for computing principal curves of data sets. Moreover, we also use

a similar method in the inner iteration of the polygonal line algorithm (Section 5.1) to optimize the

locations of vertices of the polygonal principal curve.

2The original algorithm in [Row98] and [TB99] can compute the first d′ principal components simultaneously. For
the sake of simplicity, we present it here only for the first principal component line.

26

The basic idea of the algorithm is the following. Start with an arbitrary straight line, and project

all the data points to the line. Then fix the projection indices, and find a new line that optimizes the

distance function. Once the new line has been computed, restart the iteration, and continue until

convergence.

Formally, let s(j)(t) = tu(j) be the line produced by the jth iteration, and let t(j) =
[

t(j)
1 , . . . , t(j)

n

]T
=

[

xT
1 u(j), . . . ,xT

n u(j)
]T

be the vector of projection indices of the data points to s(j). The distance func-

tion of s(t) = tu assuming the fixed projection vector t(j) is defined as

∆n

(

s
∣

∣

∣
t(j)
)

= =
n

∑
i=1

∥

∥

∥
xi − t(j)

i u
∥

∥

∥

2

=
n

∑
i=1

‖xi‖2 +‖u‖2
n

∑
i=1

(

t(j)
i

)2
−2uT

n

∑
i=1

t(j)
i xi. (37)

Therefore, to find the optimal line s(j+1), we have to minimize (37) with the constraint that ‖u‖= 1.

It can be shown easily that the result of the constrained minimization is

u(j+1) = argmin
‖u‖=1

∆
(

s
∣

∣

∣
t(j)
)

=
∑n

i=1 t(j)
i xi

∥

∥

∥∑n
i=1 t(j)

i xi

∥

∥

∥

,

and so s(j+1)(t) = tu(j+1).

The formal algorithm is the following.

Algorithm 3 (The RTB algorithm)

Step 0 Let s(0)(t) = tu(0) be an arbitrary line. Set j = 0.

Step 1 Set t(j) =
[

t(j)
1 , . . . , t(j)

n

]T
=
[

xT
1 u(j), . . . ,xT

n u(j)
]T

.

Step 2 Define u(j+1) = ∑n
i=1 t(j)

i xi
∥

∥

∥∑n
i=1 t(j)

i xi

∥

∥

∥

, and s(j+1)(t) = tu(j+1).

Step 3 Stop if

(

1− ∆n(s(j+1))
∆n(s(j))

)

is less than a certain threshold. Otherwise, let j = j +1 and go to

Step 1.

The standard convergence proof for the Expectation-Minimization (EM) algorithm [DLR77]

applies to the RTB algorithm so it can be shown that s(j) has a limit s(∞), and that the distance

function ∆n (s) has a local maximum in s(∞). Furthermore, [TB99] showed that the only stable local

extremum is the global maximum so s(∞) is indeed the first principal component line.

27

