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Abstract 

Principal curves are smooth one dimensional curves that pass through the middle of a p dimensional 

data set. They minimise the distance from the points, and provide a non-linear summary of the 

data. The curves are non-parametric and their shape is suggested by the data. Similarly, principal 

surfaces are two dimensional surfaces that pass through the middle of the data. The curves and 

surfaces are found using an iterative procedure which starts with a linear summary such as the usual 

principal component line or plane. Each successive iteration is a smooth or local average of the p 

dimensional points, where local is based on the projections of the points onto the curve or surface of 

the previous iteration. 

A number of linear techniques, such as factor analysis and errors in variables regression, end 

up using the principal components as their estimates (after a suitable scaling of the co-ordinates). 

Principal curves and surfaces can be viewed as the estimates of non-linear generalisations of these 

procedures. We present some real data examples that illustrate these applications. 

Principal Curves (or surfaces) have a theoretical definition for distributions: they are the Self 

Consistent curves. A curve is self consistent if each point on the curve is the conditional mean of 

the points that project there. The main theorem proves that principal curves are critical values of 

the expected squared distance between the points and the curve. Linear principal components have 

this property as well; in fact, we prove that if a principal curve is straight, then it is a principal 

component. These results general&e the usual duality between conditional expectation and distance 

minimieation. We also examine two sources of bias in the procedures, which have the satisfactory 

property of partially cancelling each other. 

We compare the principal curve and surface procedures to other generalisations of principal 

components in the literature; the usual generalisations transform the space, whereas we transform 

the model. There are also strong ties with multidimensional scaling. 

l Work supported by the Department of Energy under contracts DE-AC03.76SF00515 and DEATOS-6l.ERlO645, 

and by the Office of Naval Research tmdcx contract ONR N00014.El-K-0340 and ONR N0014.63.K-0472, and by 

the U.S. Army Research Offics under contract DAAG29.62.K-0056. 
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Chapter I 

Introduction 

Consider a data set consisting of n observations on two variables, z and y. We can 

represent the n points in a scatterplot, as in figure 1.1. It is natural to try and summarize 

the joint behaviour exhibited by the points in the scatter-plot. The form of summary we 

chose depends on the goal of our analysis. A trivial summary is the mean vector which 

simply locates the center of the cloud but conveys no information about the joint behaviour 

of the two variables. 
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Figure 1.1 A bivariate data set represented by a scatterplot. 

It is often sensible to treat one of the variables as a response variable, and the other 

as an explanatory variable. The aim of the analysis is then to seek a rule for predicting the 

response (or average response) using the value of the explanatory variable. Standard linear 

regression produces a linear prediction rule. The expectation of y is modeled as a linear 
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function of z and is estimated by least squares. This procedure is equivalent to finding the 

lime that minimizes the sum of vertical squared errors, as depicted in figure 1.2a. 

When looking at such a regression line, it is natural to think of it as a summary of the 

data. However, in constructing this summary we concerned ourselves only with errors in 

the response variable. In many situations we don’t have a preferred variable that we wish 

to label response, but would still like to summarize the joint behaviour of z and y. The 

dashed line in figure 1.2a shows what happens if we used z as the response. So simply 

assigning the role of response to one of the variables could lead to a poor summary. An 

obvious alternative is to summarize the data by a straight line that treats the two variables 

symmetrically. The first principal component line in figure 1.2b does just this - it is found 

by minimizing the orthogonal errors. 

Linear regression has been generalized to include nonlinear functions of z. This has 

been achieved using predefined parametric functions, and more recently non-parametric 

scatterplot smoothers such as kernel smoothers, (Gasser and Muller 1979), nearest neighbor 

smoothers, (Cleveland 1979, F’riedman and Stuetzle 1981), and spline smoothers (Reinsch 

1967). In general scatterplot smoothers produce a smooth curve that attempts to minimize 

the vertical errors as depicted in figure 1.2~. The non-parametric versions listed above 

allow the data to dictate the form of the non-linear dependency. 

In this dissertation we consider similar generalizations for the symmetric situation. 

Instead of summarizing the data with a straight line, we use a smooth curve; in finding the 

curve we treat the two variables symmetrically. Such curves will pass through the middle 

of the data in a smooth way, without restricting smooth to mean linear, or for that matter 

without implying that the middle of the data is a straight line. This situation is depicted 

in figure 1.2d. The figure suggests that such curves minimize the orthogonal distances to 

the points. It turns out that for a suitable definition of middle this is indeed the case. We 

name them Principal Curves. If, however, the data cloud is ellipsoidal in shape then one 

could well imagine that a straight line passes through the middle of the cloud. In this case 

we expect our principal curve to be straight as well. 

The principal component line plays roles other than that of a data summary: 

. In errors in variable8 regression the explanatory variables are observed with error (as 

well as the response). This can occur in practice when both variables are measurements 

of some underlying variables, and there is error in the measurements. It also occurs in 

observational studies where neither variable is fixed by design. If the aim of the analysis 
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is prediction of y or regression and if the z variable is never observed without error, then 

the best we can do is condition on the observed z’s and perform the standard regression 

analysis (Madansky 1959, Kendall and Stuart 1961, Lindley 1947). If, however, we do 

expect to observe z without error then we can model the expectation of y as a linear 

function of the systematic component of z. After suitably scaling the variables, this 

model is estimated by the principal component lime. 

l Often we want to replace a number of highly correlated variables by a single vari- 

able, such ss a normalized linear combination of the original set. The first principal 

component is the normalized linear combination with the largest variance. 

l In factor analysis we model the systematic component of the data as linear combina- 

tions of a small subset of new unobservable variables called factors. In many cases 

the models are estimated using the linear principal components summary. Variations 

of this model have appeared in many different forms in the literature. These include 

linear functional and structural models, errors in variables and total leaet squares. 

(Anderson 1982, Golub and van Loan 1979). 

In the same spirit we propose using principal curves as the estimates of the systematic 

components in non-linear versions of the models mentioned above. This broadens the scope 

and use of such curves considerably. This dissertation deals with the definition, description 

and estimation of such principal curves, which are more generally one dimensional curves 

in p-space. When we have three or more variables we can carry the generalizations further. 

We can think of modeling the data with a 2 or more dimensional surface in p space. Let us 

first consider only three variables and a Zsurfsce, and deal with each of the four situations 

in figure 1.2in turn. 

l If one of the variables is a response variable, then the usual linear regression model 

estimates the conditional expectation of a, given z = (zi,zz) by the least squares 

plane. This is a planar response surface which is once again obtained by minimizing 

the squared errors in y. These errors are the vertical distances between y and the point 

on the plane vertically above or below y. 

l Often a linear response surface does not adequately model the conditional expectation. 

We then turn to nonlinear two dimensional response surfaces which are smooth surfaces 

that minimize the vertical errors. They are estimated by surface smoothers that are 

direct extensions of the scatterplot smoothers for curve estimation. 
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Figure 1.2a The linear regression line mini- Figure 1.2b The principal component line 
mises the sum of squared errors in the response minimises the sum of squared errors in all the 
variable. variables. 

Figure 1.2~ The smooth regression curve 
minimises the sum of squared errors in the 
response variable, subject to smoothness con 
straints. 

Figure 1.2d The principal curve minimises 
the sum of squared errors in all the variables, 
subject to smoothness constraints. 
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l If all the variables are to be treated symmetrically the principal component plane passes 

through the data in such a way that the sum of squared distances from the points to 

the plane is minimized. This in turn is an estimate for the systematic component in a 

Zdimensional linear model for the mean of the three variables. 

l Finally, in this symmetric situation, it is often unnatural to assume that the best two 

dimensional summary is a plane. Principal surfaces are smooth surfaces that pass 

through the middle of the data cloud; they minimize the sum of squared distances 

between the points and the surface. They can also be thought of as a an estimate for 

the two dimensional systematic component for the means of the three variables. 

These surfaces are easily generalized to 2-dimensional surfaces in p space, although they 

are hard to visualize for p > 3. 

The dissertation is organized as follows: 

l In chapter 2 we discuss in more detail the linear principal components model, as well 

as the linear relationship model hinted at above. They are identical in many cases, 

and we attempt to tie them together in the situations where this is possible. We then 

propose the non-linear generalizations. 

l In Chapter 3 we define principal curves and surfaces in detail. We motivate an al- 

gorithm for estimating such models, and demonstrate the algorithm using simulated 

data with very definite and difficult structure. 

l Chapter 4 is theoretical in nature, and proves some of the claims in the previous chap 

ters. The main result in this chapter is a theorem which shows that curves that pass 

through the middle of the data are in fact critical points of a distance function. The 

principal curve and surface procedures are inherently biased. Thii chapter concludes 

with a discussion of the various forms and severity of this bias. 

l Chapter 5 deals with the algorithms in detail. There is a brief discussion of scatterplot 

smoothers, and we show how to deal with the problem of finding the closest point on 

the curve. The algorithm is explained by means of simple examples, and a method for 

span selection is given. 

l Chapter 6 contains six examples of the use and abilities of the procedures using real 

and simulated data. Some of the examples introduce special features of the procedures 

such as inference using the bootstrap, robust options and outlier detection. 
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. Chapter 7 provides a discussion of related work in the literature, and gives details of 

some of the more recent ideas. This is followed by some concluding remarks on the 

work covered in this dissertation. 


