PHYSICAL REVIEW E, VOLUME 65, 036128
Duality in nonextensive statistical mechanics
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We revisit recent derivations of kinetic equations based on Tsallis’ entropy concept. The method of kinetic
functions is introduced as a standard tool for extensions of classical kinetic equations in the framework of
Tsallis’ statistical mechanics. Our analysis of the Boltzmann equation demonstrates a remarkable relation
between thermodynamics and kinetics caused by the deformation of macroscopic observables.
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I. INTRODUCTION further implications of the duality are discussed.
The past decade has witnessed increasing interest in non- Il. THERMODYNAMICS

extensive statistical mechanics based on Tsallis’ entropy con-

cept[1,2]. Whereas most of the work has been done so far in Let I' be variables of a detailed descriptigphase vari-

the context of purely static consideration, more recently atf"bleg' f(_l“) dlstrl_butlon functions over the phase space, and
) microscopic observablegenergy, momentum, eic.

tempts have been made towards time-dependent procesé’ggr e th d 56 71 is based e
out of equilibrium. In particular, in a recent pap], the onextensive thermodynamits, 2] is based on two points:
(i) A set of concave functional§,, q>0,

authors have extended the classical Boltzmann equation in

such a way as to obtain its analog for the case of Tsallis’

entropy[1]. quk(l—q)*lf [f(I')—f9T)]dr, (1)
The motivation for this paper is that, in general, address-

ing the time-dependent processes may provide a test for Cezhere integration over the phase space is replaced by sum-
tain postulated properties of static considerations. Spec'f;mation in the discrete case. In the sequel, we use convex
cally, we want to test consequences of definitions o : - k-la o~ ot

magrosco . bl h quence . functionalsH,=—k™ 'S, in order to save notation,

pic variables such as particle’s density, momentum,
and energy, in the way they are used in nonextensive ther- .

modynamics. The outline and the main results of this paper He=(1-0q) j [f4T)—f(I")]dT". 2

are as follows: In the next section we recall, for the sake of

completeness, the basic points of the nonextensive thermarhe one-parametric family of functional®) can be consid-
dynamics. In Sec. Ill, we revisit the transformation of the ered as a continuous deformation of the classical Boltzmann-
Boltzmann kinetic equation. Our analysis is based on th€sibbs-Shannon functionalH,= [F(I")In F()dI', since
well-developed method of kinetic functions, and results argim,_., Hy=H,. [This deformation is continuous, and differ-
different from those of Re{.3] only in some points inessen- entiable but not continuously differentiable, the second de-
tial to our discussion. Equilibria in the kinetic picture are yjyative of the functionHy(x) with respect tog at g=1 is
zeroes of the collision integral, and they can be found indegjyergent]

pendently of any maximum entropy consideration. This gives  (ji) Maximum entropy states, corresponding to the observ-

us an opportunity to test which definitions of macroscopicaplesm, are found as a solution to the problem,
variables should be taken in order to describe the same equi-

librium states, also as the maximum entropy states. It is dem-

onstrated that consistency rules out the deformed constraints. Sq— max, f fdI'=My, f mf9dl'=M. (3
Instead, we find a relation between the two families of equi-

libria, one of which are nonextensive thermodynamic equi-The introduction of the nonlinear iing dependent constraints
libria, the other is the equilibria of the kinetic equations. Thisinstead of the usual linear functional,= [ mfdI is based
relation, termed duality in the sequel, is given by the transon the following observation: Let\y,\} be Lagrange mul-
form of Tsallis’ nonextensivity parameter g5=2—q. Some tipliers associated with constraints in the variational problem
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Let fM(My,M) be the solution to the problei8), and let o o N o
Z=[t®)(1,M)dI be the partition function. Then, for eagh Q:J w(v',vlv,vq) (e # —e1"H)do do ' do; .
there exists a function (9)
Ing(x) = xT9-1 ) Here we denotew;, u’, @y, and u, the functional deriva-
4 1-q ’ tives ofH evaluated af(v;,x,t), f(v’,xt), f(vq,xt), and

f(v,x,t), respectively. The generalized functiangives the
such that probability of scattering of the paiw,v’) into (v,,v), and
it has the form
dlngZ
IN =M. (6) w=ow(v',v1lv,v) 8V +v]—V—D,)

. . . . . . X 8(v'2+vi2—v2—v?). 10
This relation can be checked by inspection, and it provides a (v o1 vl (10

deformation of Gibbs’ fundamental relation defining the free
energy(or, in a broader sense, Jaynesian structure of therm
dynamicg. It is pertinent to mention here that this is a suffi-
cient but not necessary deformation with a similar property.
Indeed, also the use of the undeformed constraints,

The form of the functionw in this expression is known in the
Siterature for various particle’s interactior}9,10]. While a
specific form ofw is unimportant to our discussion, we re-
mind that it is derived from a purely mechanical consider-
ation on the basis of Newton’s equations of motion of two
particles. This results in the well known symmetry of func-

Sy— max, deF=M0, fmfdr:M, (7)  tion o (detail balanck

- ) w(v' vilv,v))=w(v,vv’,v)). 11
satisfies the relation ( 1lv.01)= 0.0y v (11)

Various generalizations of the structui® can be found in

‘7_Gq _ (8) the literaturg/4—7]. We recall the two formal features of the
IN ' collision integral(9) valid for anyH:
(i) The entropy production inequality for the entropy pro-
Here G, is the Legendre transform of the function ductiono= [(8S/5f)Q(f)dv,

(2) = (2)
Sq (MOIM) Sq(f (MOIM)) UZ_;J W(eﬂi+;1,/_e;/,1+,ll,)

The existence of the functio@ is guaranteed because the

transformf— &S,/ 6f is one into one. However, the impor- X(pu+py—p'—py)doide’do,dv=0. (12
tant difference from the cadé) is that the explicit form of ) _ o _
functionsG, is not known for a generig and generian. (it) Zero points of collision integralQ=0, and zero

We discussed here only the formal aspect of the maximunRoints of entropy productiony =0, satisfy
entropy problem for a generic phase sp&ceand for a ge-
neric set of observables, without touching upon the ques- p*%=Lin{1v,v%}, (13
tion of existence of solutions to either probleit® or (7).
We shall come back to this point later on. Finally, whereaswhere Lin denotes linear envelope.
most of the standard sources on maximum entropy states are Using any of the functionalsi (2), and computing de-
almost exclusively devoted to the Boltzmann-Gibbs-Shannomivatives,
functional, this question has been studied in detail for a ge-
neric concave functioi in the context of the master equa- pq=0Hq/8f=(1-q) [1—qfi 1], (14
tion in Ref.[4].
together with Eq(9), we obtain the desired family of colli-

Il KINETICS sion integralsQq(f), and which provides a deformation of
the Boltzmann collision integral. The latter is obtained in the
A. Deformation of collision integral limit of q—1.

Same as in Ref:3], we focus our attention on the defor- ~ Whereas all the general properties of the opertdpare
mation of the Boltzmann collision integral. To this end, we valid in the particular casel,, we will write out explicitly
use the following well known structure of the collision inte- EGs.(13),(14) in terms of the equilibrium distribution func-
gral [5,4,6,7: Let f(v,x,t) be the one-particle distribution tion rather than the derivative ¢f in the equilibrium,
function, andH a strictly convex functionalassociated con-

cave functional, the entropy, 8= —kH). Let us denoteu feo=(ap+ay-v+ap®)a Y, (15
= 6H/5f the \olterra functional derivative ofl. Then the
following operator,f —Q(f), is defined as whereag, a;, anda, are arbitrary parameters.
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B. Variational specification of equilibria the case of the classical Boltzmann equation: for example,

The analysis of the previous subsection is the result of '€ maximum entropy solution for the Boltzmann entropy

specification of the standard schei® to H,, and is only does not exist if the observables are the density, the average
q 1

slightly different from Ref[3]. This difference is due to the Momentum, the stress tensor, and the heat[fldx In such
fact that Eq.(9) is based on the derivative of thé function cases a regularlzatl_on _of divergent integrals is required. I_n
whereas the author8] used a related quantit§d—In, f, particular, a regularisation by the argument that the magni-
and which is specific to the cag@). However, the r%ost tude of the microscopic velocity is restricted to the value
important feature of both the deformation is titaey make dictated by finiteness of thietal energy{11] seems relevant
no attempt to alter the scattering probabilities &q. (10). to our case. Another opportunity is to restore to a discretiza-

Before going any further, we need a short reflection of theion in the velocity spacésee, e.g., Re(.12]). .
classical Boltzmann case. (i) If one insists on using deformed constraints for deri-

In the classical Boltzmann'’s case, tfiecal) Maxwell dis- vations of kinetic equations, then not only the collision inte-

tribution functions are described in three different ways.gra! bu_t also the free flight operator must be deform_ed. Such
First, they are zero points of the collision integral. Secondderlvatlons has to be based on the deformed Liouville equa-

they are zero points of the entropy production. Third, anoiion. Let us reca_ll thgt, itJ(T) i_s the particles’ Hamiltonian,

final, they are maximizers of the entropy density under thé"€ classical Liouville equation conserves the eneiy,

linear constraints that fix the five hydrodynamic fields corre-=JUfdl, any of the functionalsS, (1), but not the func-

sponding to the five collision invariants. In the classical casetionals Eq=fUf%dI". Therefore, the deformed Liouville

the three sets of distribution functions, each set specified bauation has to read

one of the conditions just mentioned, are equivalent. Finally,

it is only the third specification that equips tiset of the P f=L%

local Maxwell distributions by a specifithermodynamig t of 7

coordinate systerfthe density, the average velocity, and the

temperature, the latter is in agreement with the fundamentalhereL is the Poissonian operator. Obviously, dynani&

thermodynamic relation conserves the deformed enerBy, as well as any of the
This reminder is pertinent to our discussion because thmnctionalssq. Development of the projection operator for-

two of the specificationé&zeroes of the collision integral, and malism to derive the deformed Boltzmann H43] is an
zeroes of the entropy productipare already fixed for the interesting option left for a future work.

deformed Maxwell state§€l5) by adopting the form of the
kinetic function, Eq(9) and Eq.(10). Thus, we are led to the

(20

question, as to which is the third, variational specification of IV DUALITY
the set(15)? A priori, we have the two possibilities: The apparent discrepancy between the outcomes of the
(i) Using the deformed constrainfsroblem(3)], thermodynamics with thg-deformed constraints, and of the

g-deformed kinetics is explained by the following duality:
Hq—min, J {1v,02f%v={My,M;,M,}. (16)  Foreach value of the deformation paramefethere are two
families of equilibrium distribution functions. The firsg(
family) Fg described by the maximizers of the entropy func-
tion S, underg-deformed constraints. The second family (
family) Fg are stationary states of the deformed kinetics that
Hq— min, f{l,v,vz}deZ{Mo,Ml,Mz}. (177  are maximizers of the same entropy under the undeformed
constraints. We have worked out explicitly the particular case
Solving formally both the problems by the method of Of the Bolizmann equation, but the observation should be
Py valid for any deformation of kinetics based on the kinetic
Lagrange multipliers, we get . _ o .
function formalism. These families are related by the duality
(18) transform of the deformation parameter,

(ii) Using the undeformed constrairfisroblem(7)],

f:q =(ayt ai-v+aé)l/(17q),

’_ E _ =N N _ E
fe9=(ag+ @y v+ ) M9, (19) q'=2-q, Fqg=Fq. Fqg=Fq. (2D
for the problemg17) and(16), respectively. Obviously, if the The Boltzmann-Gibbs-Shannon case is thereby characterized
deformation parameteris fixed, andg#1, it is the se{19)  not just by the limiting feature afj—1 but also by self-
that stays in agreement with the two other specifications, Ecduality: The only solution to the set of equatiorts,=q,
(15). Thus, in the kinetic picture, consistency g1 ulti- q'=2-—q, is q'=g=1. This is precisely the Boltzmann-
matively requires the choice of the undeformed constraint§sibbs-Shannon limit of Tsallis’ entropy family that in our
for the variational specification. Several comments are irpresentation gives the identity of tleand of theN families
order. of equilibria, FE=FY . This algebraic rather than the limiting

(i) For infinite-dimensional systems such as the continudescription of the Boltzmann-Gibbs-Shannon case has not
ous Boltzmann equation, the moments of the local equilibrisoeen mentioned before, to the best of our knowledge. Several
may not exist for somg# 1. This fact is also well known in concluding remarks are in order:
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V. CONCLUSION

¢ In this paper, we have analyzed the relation between the
thermodynamic and kinetic description arising from the non-
2 extensive statistical mechanics. We have argued that the well

known formulation of kinetic modelgt,5] provides a natural
setup for such extensions. We have demonstrated this for the

1 BGS case of the Boltzmann collision integral. Several extensions
of classical models are readily obtained in a straightforward
1/2¢-—-—--~- - — - way (for example, the deformation of the chemical kinetics
: that parallels the formulation of the Boltzmann equation,
1 3‘/2 > q [7,8]). Based on this deformation, we were able to test which

kind of maximum entropy principle is compatible with other
FIG. 1. Dual familiesF§ and Fy. BGS is the self-dual properties of local equilibria. Finally, we have demonstrated
Boltzmann-Gibbs-Shannon limit. that the intrinsic duality between thermodynamic and kinetic
descriptions is present when the deformation parameter

(i) Deformation[3] also leads to the same result as oursd7 1.
and, in fact, the transformg’ =2—q appears in an interme-
diate computation in Ref.3]. However, the importance of
this fact has not been mentioned by the authors. ACKNOWLEDGMENT
(ii) Duality (21) selects the range of the deformation pa- i
rameterg between 0 and 2. It is only in this range where both ~ We thank Professor Hans Christiarnti@ger for valuable
the E and theN families coexist. This is depicted in Fig. 1. discussions of the results of this paper.
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