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Abstract

Atoolbox for the development and reduction of the dynamical models of nonequilibrium systems is presented. The main components of this
toolbox are: Legendre integrators, dynamical post-processing, and the thermodynamic projector. The thermodynamic projector is the tool to
transform almost any anzatz to a thermodynamically consistent model. The post-processing is the cheapest way to improve the solution obtained
by the Legendre integrators. Legendre integrators give the opportunity to solve linear equations instead of nonlinear ones for quasiequilibrium
(“maximum entropy”, MaxEnt) approximations. The essentially new element of this toolbox, the method of thermodynamic projector, is
demonstrated on application to the FENE-P model of polymer kinetic theory. The multi-peak model of polymer dynamics is developed.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction librium approximation, dual integrators and the thermody-
namic projector.

There are many attempts to fill the gap between the mi- The quasiequilibrium closure for the set of macroscopic
croscopic and the macroscopic models, and to constructvariablesM (W) is built with the help of the solution to the
closed macroscopic equations. Most of the closure assump-variational problem (MaxEnt approximatidn)
tions have a relatively narrow domain of applicability, and
their usage has the following problems:

(1) Violation of basic phyS|caI (thermodynamlcs) laws. From time to time it is discussed in the literature, who was the first

2) Ab f trol d to introduce the quasiequilibrium approximations, and how to interpret
() Sence o accuracy control procedures. them. At least a part of the discussion is due to a different role that

(3) Absence of a successive step-by-step procedure of theyyasiequilibrium plays in the entropy—conserving and dissipative dynam-
refinement of a model. ics. The very first use of the entropy maximization dates back to the

classical work of Gibbg1], but it was first claimed for a principle by

The main object of investigation is the evolution equation  Jayneq?2]. Probably the first explicit and systematic use of quasiequilib-

. ria to derive dissipation from entropy—conserving systems is due to the

v =JW), (1) works of Zubarev. Recent detailed exposition is giver{3h For dissi-
pative systems, the use of the quasiequilibrium to reduce the description

whereJ is some operator and is the distribution function can be traced to the works of Grad on the Boltzmann equ4dpriThe

over the phase space. viewpoint of two of the present authors (ANG and IVK) was influenced

The constructed methods are aimed at extracting the dy_by the papers by L.I. Rozonoer and co-workers, in particular, Ref5].

nami f the macr ic variables from the micr i A detailed exposition of the quasiequilibrium approximation for Markov
amics o € macroscopic variables 1ro € microscopic chains is given in the bool8] (Chapter 3Quasiequilibrium and entropy

Eq. (1) The prototypes of these methods are the quasiequi-maximum pp. 92-122), and for the BBGKY hierarchy in the paj@f.
We have applied the maximum entropy principle to the description of
P the universal dependence of the 3-particle distribution functigion the
* Corresponding author. Tek:41 1 632 66 57; fax:+41 1 632 10 76. 2-particle distribution functionF, in classical systems with pair interac-
E-mail addresses:agorban@mat.ethz.ch (A.N. Gorban), pavelgor- tions[10]. A very general discussion of the maximum entropy principle
ban@yandex.ru (P.A. Gorban), ikarlin@mat.ethz.ch (1.V. Karlin). with applications to dissipative kinetics is given in the revig].

0377-0257/$ — see front matter © 2004 Elsevier B.V. All rights reserved.
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S(¥) — max M) =M, (2) and have obtained, (¢). Let us consider the following two
guestions:

whereS(¥) is the entropy. The quasiequilibrium closure is . , i )

always thermodynamically consistent, but Problem 2 (the ® How well does this solution approximate the true solution

absence of the accuracy control) remains unsolved, and ¥() given the same initial conditions? _

Problem 3 (the absence of refinement procedures) can be HOW is it possible to use the solutiofy (1) for it's re-

solved by adding new macroscopic variables to variational ~Inément without solving system (3) again?

problem (2). But uncontrolled enlargement of the macro- These two questions are interconnected. The first question
scopic variables set gives us no guarantee of the accuracytates the problem of accuracy estimation. The second one
improvement. There exists one more specific problem for states the problem of post-processing. The corresponding

the quasiequilibrium approximation (2). Usually while solv-  methods to answer these questions are developed and de-
ing variation problem (2) we can find explicit dependencies scribed in this work.

¥(A) andM(A), whereA are the corresponding Lagrange
multipliers (dual variables), more or less easily. It is much
more difficult to find the dependencie$(M) and ¥(M) 2. Elimination of fast variables with the help of the
that we need for the closure of the macroscopic equations. | yapunov function
The method of Legendre integrators consists of building
and SOlVing the equations of motion for the dual variables. The most popu|ar way to investigate the dynamics of com-
The methods of the first order, based on this idea, were Sug-plicated systems is to split the motion into the slow and
gested and tested in Refd82-14] The method of the ther-  the fast components, and then to exclude the fast compo-
modynamic projector lets us represent every ansatz-manifoldnent. As a result, one gets a system of equations that de-
as the solution to the variational problem (2) with spe- scribes the evolution of the slow variables. The necessary
cially chosen constraints. The thermodynamic projector is conditions of usefulness of this method are usually formu-
the unique operator that transforms the arbitrary vector field |ated as a set of restrictions for the possible dynamics of the
equipped with the given Lyapunov function into a vector “fast subsystem”. Here the “fast subsystem” is the subsys-
field with the same Lyapunov function. (This happens on tem which describes the evolution of the fast variables with
any manifold that is not tangent to the level of the Lyapunov gn assumption that slow variables are constant.
function.) Unfortunately, there often appear situations where we can-
Equations that are derived by the method of the thermody- not avoid using this method, and there is no proof that it is
namic projector are alwaythermodynamically consistent  valid. These situations appear almost everywhere in physi-
Although this idea was published in the year 199€], the  cal kinetics. Here one follows the same scheme: the relax-
full construction is published only recently in application to  ation processes are split into slow and fast. In spite of the
chemical kinetic§17]. fact that in most cases the proofs of validity of this scheme
One of the problems, discussed in this paper, is to con- gre absent, the experience helps to avoid fatal errors.
struct the method of the thermodynamic projector for the  |n this section the method to obtain the equations of the
derivation of physically consistent macroscopic equations macrokinetics from the micro-description is demonstrated.
for the polymer dynamics. In the process of building the The basis of the analysis is the assumption that if the macro-
thermodynamic projector and the quasiequilibrium approx- scopic variables are chosen in the proper way, then all other
imation one involves the Lyapunov function for tke. (1) variables relax fast: the probability distribution of the micro-
which is the entropys. The equations for the polymer dy-  scopic variables after a small period of time is determined
namics (Fokker—Planck Equation) allows us to use the hugewith good accuracy by the macroscopic variables. Let us
amount of different Lyapunov functions, and each of them c|| this assumption the “quasiequilibrium hypothesis”.
can be formally chosen to describe the macroscopic pro- The notion “macroscopic variables” is somewhat relative
cesses. We need to analyze the different Lyapunov functionsand is introduced to stress the difference of these variables
for the Fokker—Planck Equation. from “everything else”. For example, an one-particle distri-
The problem of accuracy estimation of the resulting ap- pution function can be “macroscopic” for the full description
proximations and their further improvement, it is suggested of the system.
to solve with the procedures of post-processing. Suppose The goal of this section is to describe the most primi-
that for the dynamical system (1), the approximate invari- tive procedure of derivation of the equations for the slow
ant manifold has been constructed and the approximate slowyariables and to discuss the form of these equations. In this

motion equation®y, (1) have been derived: paper, the reduction of description goes on with the help
dwy, of the Lyapunov functions. This formalism is the case of
o - Py, (J(Wnr)), (3) the known principle of the conditional maximum of entropy

with given values of the macroscopic variables.
where Py,, is the corresponding projector onto the tangent  Let us review the basic notions of the convex analysis,
spaceTy,, of ¥),. Suppose that we have solved system (3) which are used here. The subgebf the vector spacé is
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convey, if for every two points1, xo € U it contains the
segment betweem andxy: for everyi € [0, 1]

ax1+ (L= Mxp € U (4)

The intersection of any number of the convex sets is convex.
The convex envelope of the subgdtof a vector space’
is the smallest convex set 86 C E, that includesM. It is
the intersection of all the convex sets, that include
If the setU C E is convex and

xl,...,xkEU,)\l,...,)»kZO,Z)»izl,
i

then ), 1;x; € U. this leads to another definition of the
convex envelope:

k
coM = {inmxl,... k€M g =0.) N
i=1 i

:1,k<oo} (5)

If dim E = n, then inEq. (5)itis sufficient to take < n+1
(Caratheodory Theorem).

The function f, defined on the convex sét C E, is
convey, if its epigraph, i.e. the set of pairs

Epif ={(x.9lx el g= f0} (6)

is the convex set irE x R. Sometimes it is convenient to
consider functions that can reach the vafue- co. If there
occurs a necessity to study the functighshat are defined
on the non-convex sét C E, then it is supposed that is
convey, if the restriction off onto every convex subset of
V is convex. If the restriction of onto every line segment
from the region of definition is convex, thefiis convex.
The differentiable functiory of the clasC? is convex if and
only if the matrix of the second derivatives f/dx;dx; is

nonnegative definite (i.e. all its eigenvalues are nonnegative).

The smooth convex functiof on the convex set/ C R"
satisfies the inequality

b — f(x®) > (Vfl2, xt — x?)

= D @ffdx) o2t —xD), (¢F 5% € U) )

Geometrically this means that the graphya$ located above
the hyperplane, tangent at the paint x2.

The function f is called strictly convex if in the domain
of definition there is no line segment on which it is constant
and finite (f(x) = const# co0). The sufficient condition for
the differentiable functionf of the C? class to be strictly
convex is that the matrix of the second derivati&%ﬁ/axiaxj
is positive defined.

In the set of the maximum points of the convex functjon
on the compact séf (U may be not convex) there are some
boundary points otU, and if U is convex, then there are
some extreme points df. The set of the minimum points
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of f on the convex sdV/ is convex (but may be empty). The
strictly convex continuous function has its maximum only
in the boundary points of/, and if U is convex, then in
the extreme points. The strictly convex function may have a
finite minimum only at one point. The functiofiis called
concave if the functior- f is convex. Every bounded convex
function on the open subset &f' is continuous.

Let the C2-smooth functionH be defined in the domain
U C R". Let us relate the vectqx = V, H : u; = 0H/0x;
to every point € U. If the matrixdu;/dx; = 82 H/dx;dx; is
non-degenerated, then for the transform>- 1 there locally
(in the neighborhood of every point) exists the differentiable
inverse transform. The variablgsare often called conjugate
variables, and the transform — u is called “transition
to the conjugated coordinates”. Let the transform> u
be invertible on the open s& C U. This means that the
functionx(u) is defined onV. Assuming the smoothness of
this function, we describe the inverse transfgim— x in
the same way as the direct. For this purpose we introduce a
function

G(w) = (u, x(w)) — HOx(w) = Y pixi(p) — H(x(w)),

=xl'+2uj
J

The functionG is called the Legendre transform &f.

With the help of the conjugated coordinates it is possible
to write down the necessary conditions of the extremum for
problems with the linear constraints on the open setin a very
simple way:

0G

i

0x 0H 0x;

P ; Oxj O

(8)

H(x) - min, > “mijxj=M;, (i=1....k,xeU(@9)
J

With the method of Lagrange multipliers we get the system
of equations that gives us the necessary conditions for the
solution to Problem (9):

Mj=ZMmij, j=21...,n,
i

Y omixj=M;, (i=1....k), (10)
J

where thei; are the Lagrange multipliers. The necessary
conditions for the extremum are given by the system of
Eq. (10) One part of the system is linear in theoordinates,
and the other part is linear in the conjugated coordinates
Let us have the Legendre transfoi@(w) for the func-
tion H(x). Let the transform — u have the smooth inverse
transform, and let the solution to Problem (9) be unique
for some open set of values of the vectdfy, ... , M) €
R". Also let the point of the minimump;,, and, conse-
guently, the minimal value off be smoothly dependent on
M, Hmin = H(M). Letus denoteuy, = dH(M)/OM;, uy =
(Upmy, --- > mmy). Let us get some information about the
function H(M) from the functionsH(x) and G (i) without
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solving any equations. With the known value of the vector

uy we can immediately find the vectgrat the correspond-
ing point of the conditional minimumy; = >, umimij.
From this equality we get
x(uy) = (VHG(M)”M,’:Z,- ;i + (11)

Fromx,,, we obtainM(us) and H(M(pa)):

Mi(um) =Y miixj(um), H(M () = Hx(upr))-
J
(12)

Finally, the Legendre transforn® (w ;) for the function

H(M) is:

G(um) = (um, M(pm)) — HM(ppr)) = G(u(pm))-
(13)

So, we can find dependencie§yr), x(upr), M(upr),
H(uupy) and G(uy) from the functionsH(x) and G(x)

without solving any equations. We hope that the similar 37 — mFx*(Mm)),
notations forH(x) and corresponding conditional minimum

function H(M), and for their Legendre transformG(u)

and G (u ) will not cause confusion. Let us note that with

our assumptions the reversibility of the transfabim— 1y

follows from the reversibility of the transform — u, and

moreover, the functiod () can be found explicitly.
The convexity of the functioi/(x) usually makes our as-

going very rapidly to some small neighborhood of the
x*(M9), and during that/(x(z)) is almost constant,

(B) in the process of the further evolutiony) stays in the
small neighborhood of the value sfthat corresponds
to M(x(r)), sox is close tox*(M(x(0)).

It is usually impossible to give a strong proof for (A) and
(B) for situations of real complexity in nonequilibrium ther-
modynamics, so these assumptions are, probably, the weak-
est point of the entire construction. We are accepting them
because we are sure that the evolution of the macroscopic
variables can be described by the autonomous system of
differential equations of the first order. (If it is impossible,
then, probably, one should extend the list of macroscopic
variables with respect to the physical properties of the inves-
tigated process.) There is another way to deal with this prob-
lem: to equip the approximations by th®st-processing
The post-processing helps us to correct the errors, if they
are not too big, and gives us a signal if they are too big.

If we know the functionx™ (M), then we can write

M=) mij Fj(x*(M)). (15)
J

In general, this equation can be used only for short periods
of time which do not exceed some limit. The right-hand-side
mF(x*(M)) of Eq. (15)is not exactlymF(x(¢)), and it may
cause an error increment; as a result the solution of the
Eq. (15) will divert from the true solution strongly. The

sumptions (existence and uniqueness of the conditional min-exclusion is the case when in accordancé&ep (15) M(r)

imum, global reversibility of the transform— ., smooth-

tends to the only stable fixed point when— oo. If the

ness of the functior(M)) easier to check. Note, that the  solution ofEq. (15)and the real values @ (x(7)) are not too

convexity of the functionH(M) is neither a necessary nor

a sufficient condition for our assumptions. Af(x) is con-
vex, then the function of the conditional minimub(M) is
convex too.

far from one another during the time in which the solution

of the Eqg. (15)is approaching the small neighborhood of

the fixed point, thereqg. (15)can be used also for— oo.
The function x*(M) for the particular system is not

Now we proceed to the problem of elimination of the fast ynique, but the range of choices is small in the sense that
variables. Let us have the system of differential equations the neighborhood of*(M(x(1))) (in which the evolution

with smooth right hand-sides.

i = F(x), (14)

in the convex domai/ C R", and moreover let the linear
transformx — M, M; = Zj}’l’lij.xj' from the phase space

to the space of the slow variabldg be defined. We can

assume that we have no linearly dependent rows in the matrix
mij, because it is always possible to eliminate the linearly

dependent functionsf; (x), if they are present.

Let us assume that in the interesting domain of initial 2SSumption that*

conditionsxg the solutionsx(¢) of Eq. (14)are developing
in the following way: the vectok(z) is going rapidly to the
value that is defined by the slow variablgg after thatx

can be represented as a functionMfwith good accuracy,
and this function is unique for every initial condition. So,

(A) for each value of the slow variabled € M(U) there
existx = x*(M), such that it (x%) = MO, thenx(?) is

goes after the short period of time) is small.

Let us have the Lyapunov functioH(x) for the system
(14) that is decreasing along the trajectories. We can try to
find the dependence* (M) as the solution to the problem
H(x) — min, mx= M. This way seems to be natural, but
it does not follow directly from assumptions A and B. For
example, there could be a situation in whilhis very sen-
sitive to small changes of the slow variables, and not sensi-
tive to the changes of the fast variables. In this situation the
(M) is the point of conditional minimum
of the functionH, may not give the desired result. The fol-
lowing idea does not solve the problem, but it can be useful:
in applications, the system (14) usually depends on some
parameters. It seems to be more reasonable to use the Lya-
punov function that does not depend on these parameters,
if there exists such a function. It is most important in the
case when, among the parameters, we have such that their
values are determinate, whether or not is it possible to split
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the variables into fast and slow. So, the fast variables will If necessary, it is easy to perform further exclusion of the

be eliminated with the help of the Lyapunov function.

Let us have the Lyapunov functial for the initial sys-
tem. Let the transform — p = V. H have a smooth in-
verse, and let us know the Legendre transfasitu) for
the function H(x). Here it is also assumed that for every
M € M(U) Problem (9) has a unique solution, and the
minimum pointx* (M), and the function of the conditional
minimum H(M) smoothly depend om/. With the value
upm = VyH(M) it is possible to finduw (), x(pe(upr))
(seeEgs. (11) and (13) The result is

M= MEV LG () | p=ppgm (16)

where ym is the product of the row vectqu,, and the
matrix m:

(pym)j = Z i

1

V,.G is the vector with component&>/du;, and all deriva-
tives are taken at the poipt = wym. The right-hand-sides
of Eq. (16)are defined as the functions gfy;. In order to
define them as functions @f/, one needs to make the Leg-
endre transform, find the functioH(M) and, respectively,
up = Vy H(M) from the functionG (i) (13). Itis impos-

sible to make these calculations explicitly in such a general
case. It seems to be very natural and convenient to define th
right-hand-sides of the kinetic equations as functions of the

conjugate variables. If in the beginning the right-hand-sides * = TChe)

of Eq. (14)are defined as functions @f (i.e. x = J(w)),
thenEq. (16)has a very simple form:

M = mIpym). (17)

H(M) is the Lyapunov function foEq. (16) Its time deriva-
tive due to the system (16) is not positive:

H(M) = (ip, mIpym)) = (uym, J(uym)) <0, (18)

becausdp, J(n)) = H(x) < 0. .
Let us call the systems dissipativeHf < 0 and conserva-
tive, if H = 0. For the dissipative system we haldéM) <

0 (18), and if the system is conservative, then for all values

of u we have(u, J(n)) = H(x) = 0. Then fromEq. (18)

we getH (M) = (i, M ppm)) = (uym, J(juym)) = 0.
So, we proved the following theorem.

Theoren?. The Lyapunov function for the microscopic sys-

tem(14) remains the Lyapunov function for the macroscopic
system(17), and if the microscopic system is conservative,
then its quasiequilibrium projection to the space of macro-

scopic variables remains conservative

variables inEq. (16)with the help of the functiorH(M).

The right-hand-sides of the resulting equations will be de-
fined again as the functions of the conjugate variables, and
the function of the conditional minimum will be the Lya-
punov function again. Let us note thathig. (17)we have
neither H nor G in explicit form. (They occur only when
we need to find the connections betwednand 1y, or x

and ).

Convexity of H was never used above, but the natural
domain of applicability of the described formalism is com-
posed of systems with convex Lyapunov functidiis), or
at least with such that the set$x|H(x) < h} are convex.
Otherwise there exist such linear manifolds, that the local
minimum of H is not unique on them, and further considera-
tions are required to select the relevant minima. The finite di-
mensionality of phase space is not so important, because ev-
erything said above can be applied to the infinite-dimension
case with proper restrictions. Lét be the Banach space,
U C E be the convex open sel] : U — R be C?-smooth
function. With every pointt € U we associate the linear
functional u, € E*: uy = V. H, which is the differential
of H at the pointx. Let V be the set of values qf, for
x € U and let us have the smooth mappihdgrom E* to E
in the neighborhood o¥. The system(U, H, J) determines

ethe system of equations

(19)

Let L be the closed subset @& and for everyM € U/L

let the problemH(x) — min,x/L = M, x € U have the
unique solutionymin, which is C2-smooth dependent aif,
H(M) = H(xmin). Denotinguy = VyH(M) € (E/L)* €

E* we can define the factor-system, which is the exact ana-
logue ofEq. (16)

M = J(um)/L (20)

Here the argument is the linear functional o : ppx =
pm(x/L).

The described procedure of the elimination of variables
has one very important commutativity property: if one makes
a further simplification and transacts to the variables=
N(M), then after the application of the described formalism
to the system (20) with the functiati(M), one gets the same
result as after the application of this formalism directly to
the reduction fronx to N(x) = N(M(x)). So, the chain of
exclusionsx - M — N gives us the same result as the
direct exclusiomx — N.

The Legendre transformation and maximization of ther-
modynamic Lyapunov functions (thermodynamic potentials)

PR . . A i
This is a rather old theorem. One of us had published this theorem were recently placed by Grme[th] at the physu:al basis of

in 1984 already as textbook materig8], Chapter 3 Quasiequilibrium
and entropy maximuimp. 37, see also the papgt4]), but from time to

time different particular cases of this theorem continue to be published

as new results.

the nonequilibrium as well as of the equilibrium thermody-
namic. Contact Hamiltonians give an elegant representation
of the dynamics on Legendre manifolds].
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3. The main problems in usage of the quasiequilibrium
approximations

Our problem is to build the closed system
M = J(M),

from the initial system (1) and its Lyapunov function. If we
know the functionx®(M) then it is sufficient to calculate
m(F(x*(M))). This problem is the problem of calculation
of the projection of the microscopic vector field on the
macroscopic variable® at known pointe*(M). Let us call
this problem the problem of macroscopic projection. If the
right-hand-parts are expressed throygthen we have the
problem of macroscopic projection too.

Another problem is to fingcy,. Usually it is necessary to
solve the system of non-linear equations (if the functibis

not quadratic) to solve this problem. Indeed, let us consider

the conditions for the conditional extremumgfwith given
values of the moment&/. From the functiongd(x), G(u)
we getu(uar), x(upr), M(pr), H(M(pg)). But in this list
we have no functionuy, (M). We can find this function as
the solution of the equation

M(uym) =M (21)

Let us give a few examples.

One-particle approximatian_et x be theN-particle dis-
tribution function, fx (&1, ... , €n), Whereg; is vector of co-
ordinates and momenta of tli#h particle, and let the evo-
lution of this function be described by the linear equation

afn

ot
Furthermore, leM be the one-particle distribution function

¢ = N/fN(E, &2, ..., EN)dEa, ... dEy,

— Lfy. (22)

(23)

andH be the entropy (we use thé-function which is equal
to negative entropy)

H(fy) = / fv(n fy —1dVg (24)
For given fy, H, fi1, we getu =In fy, fv = expu,
G(u) = f expu(é, ... . &n) dVE, (25)

m(fy) = fz,iﬁ(% — &) fn(E1. ... En)dVE the ex-
tremum conditions (10) are of the form

> na).

1

N
Pl ) = [ da® Y56~ &) =
i=1

fn=expy_ pi(&) (26)

The normalization condition here i fx dVe =1, that is

f expu(®) dé = 1 27)
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Connection between the macroscopic variabfgegthat is
M) and the quasiequilibrium values of the microscopic vari-
ables fy (that is,xj,) is given by the well-known formula:
NG, ... EN) = N—j}\,fl(El), s J1(EN) (28)
Projection of the microscopic vector fie{@d2) can be found

by direct integration.

Two-particle distribution function as the macroscopic
variable The one-particle distribution functiorfyi(§) is
often not sufficient because, for example, the energy of
interaction of pairs of particles cannot be found from this
function. A much more detailed description is given by the
two-particle distribution function,

f2(81,82) = N(N — 1)/fzv(§1, ., EN)dEs, . dEN
(29)

We can easily find the expression

p .. EN) = Y o€,
i, ji# ]
INEL . E) =expu=exp Y paEE)),
i, JiF ]

but it is difficult to find the connection betweegrp and f>
explicitly. Only a series expansion in the neighborhood of
the uncorrelated state is knot0]. The problem with the
macroscopic projection becomes hard too: the necessary in-
tegrals in the general case are impossible to find analyti-
cally. For two-particle distribution functions as well as for
the majority of the most interesting variables the transform
M <y is very complicated in the forward direction and
not very simple (as simple as the derivationfeffrom fy)
in the opposite direction. So, we need to avoid the necessity
of calculatingu» (M) (and, if possible, to make less calcu-
lations to findM (e pr)).

The first of these two problems (avoiding calculation of
up (M) is solved by the method of Legendre integrators
which is developed in Ref12].

4. Legendre integrators

The main idea of Legendre integrators is to find some
alternate way to solve the macroscopic equatigns: J(x):
a way to find their solution in the absence of the explicit
form of these equations. First of all, note, that we have a
linear connection betweeM and i

dMM.

_ 2 -1 T
o = (m(DeS(x))""m’) o (30)
. d T.
M= E(mx(/wm)) =m(Dyx)m’ ;
Dyx = (Dypw) ™t = (D2S(x) 7t (31)
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Calculation of the functions:(F(x)) is the standard prob-
lem of the macroscopic projection. Dependenci€g )

are usually quite simple. We suggest the following chain of
computations to solve the (unknown) equatidfis= @(M):

wm(t) = x = x(uy) = M — [y

— pum(t + Af) — M(t + Af) (32)

In the sequencél32) there is one operation of macroscopic
projection and one operation of solving the system of linear
Eq. (30)

Formally, it is possible to write down the equations for
Mm:

dMM
Tdr

wherex = x73,.

Nevertheless, explicit inversion of the operator in the
right-hand-part oEq. (33)is usually difficult and one should
use the chain of computatioi32). In our first calculations
using Legendre integratofs2,13]the methods of first-order
of accuracy were used. This is not the principal restriction:
the scheme (32) gives us a possibility to calculajgg for
any givenu yy, so all known methods of higher-order can be
used (for example, the Runge—Kutta method with different
procedures of automatic step selectjab—27).

= (m(D28(x)) " tm ") "ImF(x), (33)

5. Lyapunov functions for the Fokker—Planck equation

The Fokker—Planck equation (FPE) in the absence of the

driving forces has the form

9¥(g, 1)
ot

where ¥ is the probability density over the configura-
tion spaceg is a point in this spacef(g) is the function
of time ¢, U(g) is the normalized potential energ¥/ (=
Upotentia/KT), D(g) is the positively semidefinite diffusion
operator (y, Dy) > 0).

The FPE has two important properties:

= Vy{D¥(q,)V,U(g) + V4¥(q, 1)}, (34)

(1) Conservation of the total probability:

d
— | W(g,ndg=0 35
o / (q,1) dg (35)
(2) Dissipation: for every convex function of one variable
h(a) (k"' (a) > 0,a > 0) the following functionalS[¥]
is monotonically non-increasing in time:

¥(q)
S[¥] =— [ ¥*(g9)h dg, 36
1= [ @n (il ) da (36)
where
¥*(g) = const- exp(—U(q)), (37)

is the Boltzmann—Gibbs distribution.
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For h(a) = alna, the functional S[¥] is the usual
Boltzmann-Gibbs—Shannon entropy:

v*(q)
Let us calculate the time derivative §f¥] due to FPE (34).
Note, that

v (q/(q) V,¥(q) + (@) V,U
"\ w+(g) *(q)

so we can rewrite FPE as follows:

Wan _g ), (W* @Y, ( ¥(g) ))

dt v*(q)
Let us consider FPE in the doma§i Function &/dr con-
sists of two summands: the first is the integral of the lo-
cal “production ofS”, [ o(g) dg, and the second is the flow
through the boundary of the domade

[ () (o
G

v
— w*/(

17
w)- 2 (57) %
+ f o(q) dg,
2

S[¥] = (38)

’

dsy)
dr

()

whereduw is the differential of the areay, is a vector of the
unitary normal tods2 in the pointg, o(g) is the entropysS

production:
'4
(7)) =0

o(q) = wn' (
o= ()

Let the flow of¥ through the boundar§s2 be equal to zero:

(o ()0

at all points ofds2. Then

as
dr

'

= f o(q)dg =0

Q
The most important cases Sfselection arek(a) = a In a,
S is the Boltzmann—-Shannon-Gibbs entropyia)
Balna—(1—pB)Ing,0=< B < 1isthe maximal family
of additive trace-formentropies[18—20] (these entropies
are additive for composition of independent subsystems);
h(a) = (L—dP)/(1— B), B # 1 is the Tsallis entropj21].
These entropies are not additive, but become additive af-
ter nonlinear monotonic transformation. This property can
serve as a definition of the Tsallis entropies in the class of
generalized entropies (3@0].



156 A.N. Gorban et al./J. Non-Newtonian Fluid Mech. 120 (2004) 149-167

6. Macroscopic variables and quasiequilibrium For the next steps it is convenient to consider the temperature
distribution functions for the FPE dependence explicitly (i.e. writBU instead ofU in FPE,
B = 1/KT), then we havel* = const- exp(—pgU).

The set of the macroscopic variables can be continuous For the classical BGS entro®8) the quasiequilibrium
or discrete. Letx be the discrete or continuous parameter distribution will take the simplest form
that enumerates the macroscopic variables, Mgdbe the
corresponding variables. Every macroscopic vaMg is Ve 1o}, q) = eXp(-Mo —pyU — Zma(q)ua) , (45)
defined by its microscopic density,(g) : o

whereuy = B = 1/KT, uo is a variable, conjugated to
M, = /Qmoz(Q)‘I’(Q) dg (40) Mo = [,¥dq = 1. The function (45) is a solution to the
problem

The choice of the domaif, in which we are solving the
FPE, needs to be discussed separately. We can suppose for—/ ¥ In ¥dg — max My(¥) = / ¥(q) dg
mally, that2 = R", but for the calculations it is better to 12 2
make it as small as possible for the preservation of accu-  — 1, a7, (w) :/ U(q)¥(q) dg = My, Mo (&)
racy. Usually, whern|g|| — oo the function¥(g) tends to 2
zero faster than exponentially, and we can a priori select
the bounded domais®, out of which¥ is negligibly small.
We shall do the calculations for the general formSofsee
Eq. (36) and give the examples for the most popular choice
(38) of S.

The quasiequilibrium function,, for the given Lyapunov
function S (36) is defined as the solution to the problem

- fg ma(@)W(q) dg = M, (46)

In Eqg. (46)we move from the relative (so-called Kullback)
entropy to the absolute entropy.

Selection of the macroscopic variables is the most critical
point in construction of quasiequilibrium approximations.
It is always necessary to select them based on the specific
problem. Nevertheless, there are some simple general rec-
ommendations about construction of the set of variables for
the Legendre integrators.

S(¥) — max, / my(q)¥(q) dg = My (41)

Due to the convexity oh (and, consequently, concavity of _ _ _ _ _
S), it is sufficient to investigate the conditions of the local (1) It is necessary to includé/o in the list of variables,

extremum: becauseug is not constant in time.
(2) Itis useful to includeMy in the list of variables. With
Dy§ = Zm“@““’ (42) this variable in the process of the relaxation, all other
o

e — 0anduy — 1/KT.
where u, are variables that are dual td, (). For a (3) Itis better for the set of functions,(g) to be linearly
continuous parameter the sum ky. (42)is replaced by independent.
integration orw.
Next, we use the standard Riesz representation of func-
tionals (through the ? scalar product). Let us write %, q, 1)

Do SW) = i <WK> " (wﬂ) __ Xa:ma(q)ua = eXp(—Mo(t) — pu U@ — Xa:ma(q)ua(t)> (47)
Due toEg. (47)we have

W _y| B0 aMy dua
W= ytg (—Zma(q),ua>, @3 o w[ a V9O +Xa:m“@ dr } (48)

The FPE gives us

For the classical entropy we have

For the quasiequilibrium distribution we have

whereg(a) is a function of one variable, inverse (). . v

Note tha_lth/(b) is @ monotonically increasing function (be- 7~ _ yp <l1/*v—*> — —v | (uy — B)(V, DV)U(g)
causen is convex), sog(a) is a monotonically increasing or L4

function too, andg’(a) = (h”(g(a)))~ 1. Let us denote the

quasiequilibrium distribution function (43) @&%({1s}, ¢). + Z Ha(V, DV)ma(q)

For the BGS entropy:(b) = b(In b — 1), h'(b) = In b, ¢
g(a) = expa, and Eq. (43)transforms into the following — Y uutta — Bra) (VU(), DVmy(q))
equation: o

W11, q) = W* exp (— > ma<qma) (44) =D Hatter (VMa(@), DV (@) (49)

a,o
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To calculate d1/dt({}) one has to calculate the following it possible to do, if the closure with these variables gives too

integrals: large of an error (the estimation of accuracy is discussed be-
low)? There are at least two ways: to extend the list of vari-
dﬂ = / U(q)w dg; M, / ma(q)w dg, ables or to improve the quasiequilibrium maniféidt,34]
dr 2 o dr Ja o (Application of the methods of invariant manifolds to im-
wheredy/d: is calculated withEq. (49) dMp/dr = 0. proving the quasiequlibrium closure for dynamics of dilute
FromEq. (48)we get the conditions for derivation gf polymeric solution is presented [85].) The extension of
the list of variables is the central method of extended irre-
_Guo My duu Z Madﬁ — My =O: versible thermodynamid86]. It is possible to combine the
dr dr dr potential energy/(q), the vector of the configuration space
duo » duy ] g, and the gradient ob/(¢), VU(q) = —F(q), (F(q) is the
—My—- — U5~ — > (Umy)y = My; force) to obtain a huge amount of densitieg;), which can
o be scalars, vectors, or tensors. The corresponding “macro-
_MaM _w )tI/dMU B Z(myma)w% _ i, scopic variables” argl, m(q)¥(q) dg. . .
d dr dr The best hint for a choice of new macroscopic variables

(50) is the analysis of the right-hand-side of the dynamic equa-
tions[37]. The well-known distinguished macroscopic vari-
where by (f(¢)g(q))y we denote the averagingg)y = able associated with the polymeric kinetic equations is the
/ o f(@)g(q)¥(q) dg. We get the closed system for derivation polymeric stress tens@83,40] This variable is not the con-
of the dynamics ofx. But the question about the choice of served quantity but nevertheless it should be treated as a
the macroscopic variables still remains open. relevant slow variable because it actually contributes to the
In the problem of quasiequilibrium we find the projec- macroscopic (hydrodynamic) equations. Equations for the
tions of ¥ to the given set of the functions (linear space); stress tensor are known as “constitutive equations”, and the
afterwards we calculat due to the maximum entropy con-  problem of reduced description for the polymeric models
dition. It seems to be physically sensible to choose the ad-consists in deriving such equations from the kinetic equa-

ditional variables taMp, My asthe projections o onto tion.
some equilibrium states The tensor
R R TL (51)
2 Tpij = kT (5ij —/ Fiqj¥(q) de) (52)
2

There are two classical choices of macroscopic variables:

(1) @« = R+ (Laplace transform of the energy distribution
density).

(2) @ = ik, k € R (Fourier transform of the energy distri-
bution density).

gives a contribution to stresses caused by the presence of
polymer molecules for unit density. Her&q) = —VU(q)

is the force vectorgj is the Kronecker symbol. For spher-
ically symmetric potentials () = u(g?) this tensor
The variableMy is the average energy in the potential well is symmetric. The tensor of densitiesj(q) = Fi(g)q;

U(g). In analogy to this, the variable,, (¥) (51) for the real is the first addition to the densities that depend only
a > 0 can be considered as the energy in the potential well of U(g).

e U@ This potential is gained by the monotonic nonlinear  For the Boltzmann equation the thorough study of differ-

deformation of the energy scalé¢ — e~ %Y@ For imagi- ent types of the macroscopic description based on the anal-
nary « this nonlinear deformation is given by the periodical ysis of the right-hand-part of the equation was provided in
functionsU — cogkU) + i sin(kU). Refs[38,39] The first type involves only moments of dis-

A benefit of usingEq. (51)is also in that(mgmy) = tribution functions. It is the strategy used in the extended

My, and we have to perform less calculations in irreversible thermodynamicd86]. The second type of de-
(50). This set of the deformed energies can be used forscription involves only collision momen{88,39] Finally,
both the initial potentialU and the set of additional the third type involves both the moments and the collision
potentials. moments (the mixed description). The second and the mixed
Is this set of macroscopic variables sufficient for the de- hydrodynamics are sensitive to the choice of the collision
scription of nonequilibrium kinetics of polymers in the pres- model. It is shown, in particular, that the complete account
ence of flow? Probability densities for all the quasiequilib- of scattering processes leads to a renormalization of trans-
rium distributions that can be constructed with these macro- port coefficients. Explicit method of constructing of approx-
scopic variables have the foring) = ¢(U(g)), wherep(U) imations is developed for strongly nonequilibrium problems.
is a function of one variable. Is this class of distributions This method enables one to treat any complicated nonlinear
sufficient for the specific problem? This question can be an- functionals that fit into the physics of a problem (such as, for
swered only after specification of the problem. But what is example, rates of processes) as new independent variables.
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7. Macroscopic variables and boundary conditions
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8. Thermodynamic projector and Galerkin
approximations

There is a standard technique to solve boundary value and

initial-boundary value problems of mathematical physics:

Almost every manifold of functions can be represented

first, build the space of the functions that satisfy the boundary as the solution to the quasiequilibrium problé#l), if this
conditions, and then find the solution in this space. When manifold is not tangent to the level surface of the entropy
one uses the Legendre integrators, a special technique isS = const[16]. For this representation only the right system

needed to satisfy the boundary conditions.
The FPE describes the evolution of the probability distri-

bution. It conserves the total probability. The natural bound-

ary conditions for the FPE is the absence of flow through
the boundary of2:

1/
vy, DV, [— ) =0,
(v (7))

on 352, wherey, is a vector of outlet normal t652 in the
point . Quasiequilibrium distribution function@7) satisfy
the condition(53), if

(53)

(vg, DV4U(q)) = 0, (vg, DVymy(q)) = 0, (54)
for all «.

There is also a different way to satisfy conditiq8): to
makev*|y = 0. It is possible to do so by makirig(g) —
oo While g — go € 3£2. But this choice leads to singularities
and is very inconvenient from the numerical point of view.

Conditions (54) look somewhat surprisingly, if considered
outside of the context of quasiequilibrium approximations:
for quasiequilibrium solutions the absence of flow through
the barrier follows not from the infinite heights of the barrier,
but from the fact, that the normal derivatives @fandm,,
are zeros.

To satisfy the conditio54)it may be necessary to deform
the initial potentialU and densitieg:(g). This deformation
will be smoothing ofU neards2. The error introduced by this

of restrictions is needed. By simple parameterization with
the momentsM (W) it is possible to get only the classical
guasiequilibrium manifoldg41). The restrictions that are
necessary to represent manifalias the quasiequilibrium
manifold are built as follows. Lef € £, andT; be the
tangent space t@2 in the point f. On the space of the
distribution functionst we define the projectoP; : E —

Tr. OperatorP; depends smoothly on the poigitand on
Tr. The problem of quasiequilibrium is posed as follows:

S(W) — max Pr(¥ — f) =0. (56)

The necessary and sufficient condition foto be the unique

solution to the problen(56)is [16]:
ker Py C kerDy S|y, (57)

that is, if P¢(¢) = 0, thenDy S| s (¢) = 0. For the classical
entropy

Dy S|(p) = — / p(g)In flg) dg (58)
and the conditior{57) takes the form:
if Pr(p) =0, then/(p In fdg =0. (59)

Among all projectors that satisfy the conditi¢fi7) there is
unique projector, which has the following property. Let us
have the appropriate equation

v = JW),

deformation is usually not very big (because of the smallness ¢, \vhich ds[]/dr > 0. Then for the projected equation

of ¥* neards2) and can be estimated easily.

on $2

So, the quasiequilibrium approximation and the Legendre .

integrators of any order of accuracy are built, and the way /' = Pr(J(/).
to satisfy the boundary conditions is suggested. Numerical

experimentg12,13] have proven the effectiveness of this

idea. The main computational challenge in this method is to

calculate integrals of the form

/Q (Z mok(CI)) exp(Z yillfi(q)) dg

wheregy(g), ¥;(q) are known functions. (Usually they are
given analytically.) For problems of polymer physics the
complexity of the problen{55) is dependent on two char-

acteristics:

(55)

(1) The number of the different functions.(¢), ¥i(g) is
usually 5-10.

(2) The dimension of the space in which the integration is
performed is usually 10-100.

(60)

we also have §[ f]/dt > 0. This projector was introduced
in the papef17], and there its uniqueness was also demon-
strated. It is built as follows.

Let us require that the field of projectorB(¥; 7), is de-
fined for anyw andT, if

T ¢ kerDyS. (61)

From these conditions it follows immediately that at equilib-
rium, P(W*, T) is the orthogonal projector ontb (orthog-
onality with respect to entropic scalar prodygty+).

The field of projectors is constructed in the neighborhood
of equilibrium based on the requirement of maximal smooth-
ness ofP as a function oy = Dy S and¥. It turns out that
to the first order in the deviations — ¥* andgy — gy~, the
projector is defined uniquely. Let us first describe the con-
struction of the projector, and next discuss its uniqueness.
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Let the subspac® C E, the point¥, and the differential
of the entropy at this poingy = Dy S, be defined such that
the transversality conditiof61) is satisfied. Let us define
To = T\ kergy. By the condition(61), Top # T. Let us
denotee, = e,(T) € T as the vector irl", such thaie, is
orthogonal tdlp, and is normalized by the conditigiie,) =
1. Vectore, is defined unambiguously. Projectds, y
P 1) is defined as follows: for any € E,

Psy(f) = Po(z) + egguw(f),

where Py is the orthogonal projector ofiy (orthogonal-
ity with respect to the entropic scalar produgty). En-
tropic projector(62) depends on the poin¥ through the
w-dependence of the scalar prodygty, and also through
the differential ofS in ¥, the functionalgy .

Obviously, P(f) = 0 impliesg(f) = 0, that is, the ther-

(62)

modynamic requirement is satisfied. Unigueness of the ther-

modynamic projecto(62) is supported by the requirement
of the maximal smoothneg$&7] of the projector as a func-
tion of gy and (|)y, and is done in two steps, which we
sketch here:

(1) Considering the expansion of entropy at equilibrium
up to quadratic terms, one shows that at equilibrium
the thermodynamic projector is the orthogonal projector
with respect to the scalar produgly«.

For a giveng, one considers auxiliary dissipative dy-
namic systems that satisfy the condition: for evérye

U, it holds gy (J(¥')) = 0; that is,gy defines an addi-
tional linear conservation law for the auxiliary systems.
For the auxiliary systems, the poidt is the equilib-
rium. Eliminating the linear conservation lagy, and
using the result of the previous point, we end up with
the formula(62).

@)

The thermodynamic projector allows us to use almost ar-

bitrary manifold as a quasiequilibrium closure assumption.
If the projection of FPE60)is built with the thermodynamic
projector, then d/dz for initial system and for projected sys-

tem coincide (not only the sign, but also the value). The only

restriction is that the manifold must not be tangent to the
level surfaces of (and must contain the equilibrium point).

Let us write down explicit formulas for the closure as-
sumption of the form

@ =@+ fa@ta (63)
Due to probability conservation for alk we have
[ fu(g@)dg = 0. Tangent spaces to the manifd®B) at all
points coincide and have the form= {}_, 1 fu(¢)}. The
natural coordinates ifi are . For everyf(g) of the form
(63) there is the entropic scalar product, defined'in

o(@¥(q)
flg)

In the coordinateg.,, this scalar product has the form

(@lW) f = —(@|(D2S| )W) = / dg.
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> Saptal'p,

O fa@ial D S @) s =
a B a,p

where
Jo (@) f5(q)

wp = | L g,

B / g 1

We will need the orthonormalized basis of the subspace
T (" ker(DSy). This subspace is defined by the equation

f@
v*(q)

f@)
v*(q)

Z fa@pe In dg=0

Letbe [ fi(g)In
foroa > 1,

dg # 0 for the definiteness. Suppose

4o = fo — Vo f1, Wherey,
_ [ fa@ In((fq)/¥*(9))) dg
[ 1@ In((f(g))/(¥*(g))) dg

Let us orthogonalize the family of vectogs (o > 1) with
respect to the scalar produgt-) ». We will get the orthog-
onal basis in" (" ker(DS y): {eq}( > 1).

Letey € T be the vector, orthogonal to al} (for example,
e1 =a(f1—) 4.1 f1lex) f)) and lete; be normalized in
the following way: [ e1(¢) In(f1(¢))/(¥*(¢)) dg = 1. The
projection of the vector on T is defined as:

filg) dg +Z€a / J(@eq(q)
a>1

(64)

dg.
v (g) i 1

PP = 61/ J(@)In

(65)

Projector(65) allows us to consider every manifold of the
form (63) that is not tangent to the level surface of the
entropy S, as the quasiequilibrium manifold. If the vector
field is projected with the operat@5), then the dissipation
is conserved.

As we can see, there is a “difficulty conservation”: the
solution to quasiequilibrium problem with the moment pa-
rameterization of the manifold is not explicit, and it can be
difficult to calculate it. The thermodynamic projector com-
pletely eliminates this difficulty. From the other side, on the
quasiequilibrium manifold with the moment parameteriza-
tion (if it is found) it is easy to find the dynamics: simply
write M, = | 1o dg. The building of the thermodynamic
projector may require some efforts.

Finally, for each of the distributiong it is easy to find its
projection on the classical quasiequilibrium manif@td—
Wy itrequires just calculation of the moment&w). The
analogue projection for the general thermodynamic projector
is rather difficult:¥ — f with the conditionP}h(lll - H=
0. This equation defines the projection of some neighbor-
hood of the manifold2 on £2, but the solution of this equa-
tion is rather difficult. Fortunately, we need to build such
operators only to analyze the fast processes of the initial re-
laxation layer, and it is not necessary to investigate the slow
dynamics.
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9. A few words about the specifics of the computational
difficulties

From the computational point of view, the main difficul-
ties in realization of the described methods are in the calcu-
lation of integrals of the form

/Q S ai fi @ FCY by (@) d.

where f; are given functions of the vectay, a;, b; are
numbers,F is a function of one variable. The usu&Blare
F(z) = €; F(z) = 1/z. The usual dimension a® in poly-
mer physics is a few hundreds; the number of differgris
a few dozens. In any case, the transition from the integra-
tion of the whole FPE to solution of the moment equations
gives a considerable decrease of the computation time.

In the methods of Legendre integrators and the thermo-
dynamic projector the computational problems of linear al-

gebra are present: the solution of the system of linear equa-

tions Cjv = M (31), the problem of the orthogonalisation
of vectors inT; (64) and so on. All these problems have
the data that depend smoothly on the current staté of
and, consequently, on the timeSo, it is possible to solve
these problems with the help of perturbation theory and the
methods of parametric continuation. These methods of com-
putational linear algebra are widely used and their details
are well-known. Therefore we are not discussing it here
([22,23).

10. Accuracy estimation and post-processing

Suppose that for the dynamical system (1) the approxi-
mate invariant manifold has been constructed and the slow
motion equations have been derived:

dxs|

ar = P (J(xq1)), xs1 € M,

(66)
where P, is the corresponding projector onto the tangent
spaceT, of M. Suppose that we have solved the system
(66) and have obtaineg (7). Let us consider the following
two questions:

o How well does this solution approximate the real solution
x(#) given the same initial conditions?

e How is it possible to use the solutiog,(z) for its refine-
ment without solving the systef3) again?

These two questions are interconnected. The first question

states the problem of th&ccuracy estimationThe second
one states the problem pbst-processing

The simplest (“naive”) estimation is given by the “invari-
ance defect”™

Axs| =1- Px5|)J(xS|)v (67)
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compared with/(xg)). For example, this estimation is given
by € = | Ay ll/I1J(xs)]l using some appropriate norm.

Probably, the most comprehensive answer to this question
can be given by solving the following equation:

d(sx)
dr

This linear equation describes the dynamics of the devia-
tion 8x(r) = x(¢) — xg(¢) using the linear approximation.
The solution with zero initial condition&x(0) = 0 allows
estimating the robustness of; as well as the error value.
Substitutingxg(¢) for xg(¢) + 8x(¢) gives the required solu-
tion refinement. Thislynamical post-processirig4] allows

one to refine the solution substantially and to estimate its
accuracy and robustness. However, the price for this is solv-
ing Eq. (68)with variable coefficients. Thus, this dynamical
post-processing can be followed by a whole hierarchy of
simplifications, both dynamical and static. Let us mention
some of them, starting from the dynamical ones.

= Axyt) + Dy J(X)|xg(1)0x. (68)

(1) Freezing the coefficientsn Eq. (68)the linear opera-
tor D, J(x)|xy( is replaced by its value at some distin-
guished pointc* (for example, at equilibrium) or it is
frozen somehow else. As a result, one gets the equation
with constant coefficients and the explicit integration
formula:

t
Sx(f) = / exp(D*(t — 1)) Axy(n dr. (69)
0

where D* is the “frozen” operator andx(0) = 0.

Another important way of freezing is substituti(@g)
for somemodel equationi.e. substitutingD, J(x) for
—1/7*, wheret* is the relaxation time. In this case the
formula for éx(¢) has a very simple form:

t
Sx(f) = / ef_”*Axsl(,) dr. (70)
0

(2) One-dimensional Galerkin-type approximatiorn-
other “scalar” approximation is given by projecting
(68)on A(r) = Aryn:

dx() = 8(0) - A),
dé(n) (A|DA) — (A]A)
=145

dr (A|A)

where (|) is an appropriate scalar product, which can
depend on the point (for example, the entropic scalar
product),D = D, J(x)|x« Or the self-adjoint lineariza-
tion [17] of this operator, or some approximation of it,
A =dA(r)/dr.

The “hybrid” betweeriEgs. (71)and(68) has the sim-
plest form (but is more difficult for computation than
Eq. (71):
d(8x) (A|DA)

dr (A|A)

Here one uses the normalized matrix elementDA)/
(A]A) instead of the linear operat@ = D J(x)|xy()-

(71)

’

A®) + (72)
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Both Egs. (71)and(72) can be solved explicitly: 11. Example: dumbbell model, explosion of the
. ) Gaussian anzatz and polymer stretching in flow
3() _/0 dr exp(/T k() de)’ (73) Here is an example of an application of the thermody-
namic projector method. In this example we consider the
! ' following simplest one-dimensional kinetic equation for the
Sx (1) :/(; A de exp(/r k1(6) de)’ (74) configuration distribution function¥(q, 1), wheregq is the

reduced vector connecting the beads of the dumbbell. This
AIDAY—(A|A) k() — 4104) equation is slightly different from the FPE considered above.

_ ¢
wherek(r) R (a[a)y - It is nonlinear, because of the dependencé&ain the mo-
The projection ofA, () on the slow motion is zero,

hence, for post-processing analysis of the slow motion,
the one-dimensional mod@1)should be supplemented
by one more iteration:

ment Mo[¥] = fqzlll(q) dg. This dependence allows us to
get the exact quasiequilibrium equations &, but these
equations are not solving the problem: this quasiequilibrium
manifold may become unstable when flow is preq@si.

The model is:
dCD) _ 5Py (D A 152
e xs1(6) (Dx J(xs1(1)) (A(2)), ¥ = —d,{a(q¥} + 39;W (77)
t
8xsi(f) = / 8(0) Pegn(DeJxsi()) (A(D) dr,  (75)  Here
0 a(f) = k() — 3 f(M2(1)), (78)
whereé (1) is the solution of(71). «(7) is the given time-independent velocity gradierit the
(3) For astatic post-processingne uses stationary points  reduced time, and the functioafq is the reduced spring
of dynamicalEq. (68pr their simplified versiong69), force. The functionf may depend on the second moment
(71). Instead ofEq. (68)one gets of the distribution functionM, = [ ¢?¥(q, 1) dg. In par-
ticular, the casef = 1 corresponds to the linear Hookean
Dy J ()| xg(0x = —Axga) (76) spring, while f = [1 — Mx(r)/b]~! corresponds to the
self-consistent finite-extension nonlinear elastic spring (the
with one additional conditionP,,éx = 0. This is ex-  FENE-P model, first introduced if29]). The second mo-
actly the iteration equation of Newton’s method in solv- ment M, occurs in the FENE-P forcg as the result of the
ing the invariance equation. pre-averaging approximation of the original FENE model

(with nonlinear spring forcef = [1 — ¢?/b]1). Leading

The corresponding stationary problems for the model equa-to closed constitutive equations, the FENE-P model is fre-
tions and for the projections ¢68) on A are evident. We  quently used in simulations of complex rheological flows as
only mention that in the projection an one gets a step of  the reference for more sophisticated closures to the FENE
the relaxation method for the invariant manifold construc- model[31-33] The parametel changes the characteristics
tion. For the static post-processing with frozen parameters of the force law from Hookean at small extensions to a con-
the “naive” estimation given by the invariance def¢gt) fining force forg? — b. The parameteb is roughly equal
makes sensgL4]. to the number of monomer units represented by the dumb-

Serious problems for reduced description can arise if the pell and should therefore be a large number. In the limit
approximate invariant manifold is unstable in the sense thatb — o0, the Hookean spring is recovered. Recently, it has
after small perturbations the perturbed motion can go far heen demonstrated that the FENE-P model appears as a first

away. But what do these “small” and “far away” mean? approximation within a systematic self-consistent expansion
There are no elaborated notions of stability &pproximate of nonlinear force§30,14]

invariant manifolds. Nevertheless, there exist several exam- Eq. (77)describes an ensemble of non-interacting dumb-
ples of unstable quasiequilibrium exactly invariant mani- pells subject to a pseudo-elongational flow with fixed kine-

folds: explosion of the Gaussian manifold for mean-field matics. As is well known, the Gaussian distribution function,
dumbbell models in polymer dynamid28] and simple 2
exp[ | ] , (79)

model examples of invariant Legendre manifo|tiS]. vl (My) = -1

Proposed post-processing procedures can give a valid im- 27 M> 2M3
provement of reduced model on the approximate invariant solvesgq. (77)provided the second moment, satisfies
manifold if the stable invariant manifold in not far from dm
the initial anzatz manifold. (This situation can be inter- 2 1+ 20(t) Mo. (80)
preted as a soft instability.) On the other hand, a norm of a
post-processing correction can serve as a rough estimatiorSolution (79) and(80) is the valid macroscopic description
of a distance between the initial anzatz manifold and the if all other solutions ofEq. (77)are rapidly attracted to the
stable invariant manifold. family of the Gaussian distribution&9). In other words
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[34], the special solutiorf79) and (80) is the macroscopic ~ whereu = §F/5W¥, B > 0. FromEq. (82)it follows that
description ifEq. (79)is the stable invariant manifold of the

kinetic Eq. (77) If not, then the Gaussian solution is just a dUMa) ,

member of the family of solutions, akfl). (80has no mean- 4 = dM, 4q In

ing of the macroscopic equation. Thus, the complete answer duU

to the question of validity oEq. (80)as the macroscopic J = —B(¥) [Zd_qu + lplvqw] . (84)

equation requires a study of dynamics in the neighborhood
of the manifoldEq. (79) Because of the simplicity of the
model (77), this is possible to a satisfactory level even for
M>-dependent spring forces.

If we suppose thaB = (D/2)¥, then we get

In the papef28] it was shown that there is a possibility J—_D [d—Uqu/ L 1V 11/]
of “explosion” of the Gaussian manifold. The qualitative am 2
description of the results §28] is as follows: the distribution ow ) dU(M>) )
function ¥ is stretched fast, but loses the Gaussian form, 5~ = divyJ = d—3 (q¥) + —3 q¥. (85)

and after that the Gaussian form recovers slowly with the

new value ofM,. For investigation of this effect the anzatz When D = 1 these equations coincide wiktg. (77)in the

for ¥ can be represented in the form: absence of flow (due t&q. (85)dF/dr < 0).

Let us construct the thermodynamic projector with the

_ 2 2 (_~\2 2
(67 @He)/207 4 g (am97/20%), help of the thermodynamic Lyapunov functigh(82). The

vA(a, ¢}, q) =

20/ 2 (81) corresponding entropic scalar product at the pwirtas the
form
Natural inner coordinates on this manifold arand¢. Note,
that nowo? # M». The valueo? is a dispersion of one of U ) 5
the Gaussian summands #BiL), (flg)= FTYE '/6] fl@)dq - /CI 8(q) dgq
2 | Ma=M[¥]

M0 (o, 6}, @) = 0% + &2, @) )
To build the thermodynamic projector on the manif¢sd), ¥(q)

the thermodynamic Lyapunov function is necessary. It is . _ o
necessary to emphasize tld. (77)is nonlinear. For such ~ During the investigation of the anzg@1) the scalar product
equations, the arbitrariness in the choice of the thermody- (86), constructed for the correspondmg point of the Gaus-

namic Lyapunov function is much smaller. Nevertheless, sian manifold withM, = o2, will be used. It will let us
such a function exists. It is the free energy investigate the ne|ghborhood of the Gaussian manifold (and

to get all the results in the analytical form):

F = UM[¥]) — T9Y], (82)
where d2u 5 2
(f18)q2 = 02 /q (@) dq-/q 8(q) dg
S[lI/]:—/lI/(In ¥ —1)dg, M3,
0.2
U(M3[¥]) is the potential energy in the mean field approx- +‘7“/Z/ &7 f(g)5(q) dg. (87)

imation, andT is the temperature (further we assume that

T = 1). The thermodynamic properties of the mean-field aso we will need to know the functionddF at the point
models in polymer physics are studied in the recent paper of the Gaussian manifold:

[41]
Note, that Kullback-form entropgy = — [ ¥ In(¥/¥*) dU(Mp) 1
also has the forns; = —F/T: DF,2(f) = < szz " 202 fq fg)dg, (88)
Mo=o

Ut = exp(—U), Sk [¥] = —(U) — /tp In ¥dg.
(with the condition/ f(¢) dg = 0). The point
If U(M2[¥]) in the mean-field approximation is a convex
function of M», then the free energ{82) is a convex func- dU(M>)
tional too. For the FENE-P modél = —In[1 — M>/b]. TdM,
In accordance with the thermodynamics the vector of flow
of ¥ must be proportional to the gradient of the correspond-
ing chemical potentia:

Mp=02 202

corresponds to the equilibrium.
The tangent space to the manifdRil) is spanned by the
J=-BW¥)Vypu, (83) vectors
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163

whered = ¢(¥), Ma(®) = [ ¢>@(W) dg.

It is easy to check that the formulé®4) are indeed defin-
ing the projector: iff, (or f.) is substituted there instead
of the function®, then we will getp, = 1,¢. = 0 (or
vs = 0,9, = 1, respectively). Let us substitute the right
part of the initial kineticEq. (77) calculated at the point
U(q) = ¥({o, ¢}, q) (seeEq. (81) in Eq. (94)instead ofd.

We will get the closed system of equationsah ¢2 in the
neighborhood of the Gaussian manifold.

This system describes the dynamics of the distribution
function ¥. The distribution function is represented as the

The Gaussian entropy (free energy) production in the direc- half-sum of two Gaussian distributions with the averages of

tions f, and f. (88) has a very simple form:
dU(M3) 1

DFaz(fg):Dng(fG): sz z_ﬁ.
Mor=0o

(90)

The linear subspace kB2 in lin{f,, fc} is spanned by
the vectorf. — f,.

Let us have the given vector fieldddr = @(V¥) at the
point ¥({o, ¢}). We need to build the projection @ onto
the tangent spacg; . at the point¥({s, ¢}):

PR(®D) = po fo + 0 fc. (91)

This equation implies that the equations & and ¢2 will
have the forms
do? dc?
a9 = Qo> a9 = @Ys-
Projection (g5, ¢) can be found from the following two
equations:

(92)

Go + 9 = / 7*®(W)(q) dg;
<‘Pofo+¢’§f§|fa_fg>52 = (¢(W)|fa‘_f§>02, (93)

where (f|g),2 = (P(WV)| fo — fc)o2, (86). The first equa-
tion in (93) implies that the time derivativeM>/dr is the

distribution+¢ and mean-square deviatiomsAll integrals
in the right-hand-part oEq. (94)are possible to calculate
analytically.

Basis( f,, f¢) is convenient to use everywhere, except the
points in the Gaussian manifold,= 0, because it — 0,
then

2
fg—f§=0<%>—>0.

To analyze the relaxation in the small neighborhood of the
Gaussian manifold it is more convenient to use another basis:

Ft=f, +f'F+=a—2(f = fo)-
o s 2o S

This corresponds to a reparametrization of the initial mani-
fold (81):

1
Y({é. ¢ @) = —F—F—
227\ /€2 — ¢2
x (e~ @+9%/2E =D | a=(g-9?/26* =%y
(95)

Let us analyze the stability of the Gaussian manifold to the

same for the initial and the reduced equations. Due to the “dissociation” of the Gaussian peak in two ped&d). To

formula for the dissipation of the free enerd§8), this

equality is equivalent to the persistence of the dissipation

do this, it is necessary to find the first non-zero term in the
Taylor expansion irc? of the right-hand-side of the second

in the neighborhood of the Gaussian manifold. The second €quation in the systeit94). The denominator has the order

equation in(93) means thatp is projected orthogonally on
kerDS( T,.. Let us use the orthogonality with respect to
the entropic scalar produ¢87). The solution ofEq. (93)
has the form

of ¢4, the numerator has, as it is easy to see, the order not
less thans® (because the Gaussian manifold is invariant with
respect to the initial system).

Let us denote5, = \/Lz?e‘qz/‘fz. Then we get

1§2 qz 1§4 1 q2 1q4 §4
U(o,¢t,q) =G 1+ (L -1 i e S ;
(o 6} @) o(@) |: 202 <02 ) + 4 o4 (2 o2 + 604> ¢ (a“)

_Gs(9 | ¢
fo = 202 [;_
d;‘2:¢ _ (Pl fo— o) g2+ MaAP)({fel fo)o2 = fol fe)o2)
d 7 (fo—felfomfe)o2 Tod

2 1144 2 3 40145 154* 1542 5 4
+ 5 (3L 3L 4 )+ 5 (L - 2L 2L ) 4o )
o 20 o 2 o 240 240 8 o 8 o

ds? (Pl fo— fodoz+ MaA(D) (fol fo) g2 (fol fe)o?)

(fa_f§|fa - fg>02
(94)
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sz“(q) q_2_1+g_2 }q_4_q_2+1' +§_4 iq_G_}q_Al_i_gq_z_} +o0 §_4
s 202 | o2 02\604 o2 2 04\ 12006 804 802 8 o4 )’
2 4 2

¢ 1 lq q 2145 144 342 1 ¢t
_f=5 g 24 o4 945 (2424 29 - <),
fo= o= 252 "(q)[3o4 o2 T 52\ 3006 208 T 252 2] | T\ 03

Let us calculated, ¥ = @ (¥({o, ¢})) with the accuracy up
to §42

30000 ch = for  M23RW({o,ch) =1 Ma¥({o, o)) = 0% + %

2 2 4 2 4 6 4 2 4
_ q s (1q g 1 s“(lq 11q° 797 1 Y.
‘“aﬂ‘f‘”“"’g}”—“G"(q)[z‘“ﬁ(59‘%%)* F(ZF_ZF+§E_§ toloe)

4
S . . . . =
Ma(—ady(q¥({o, §1) = 2a(0® + ¢ + o0 <F> : the motion in the effective potential well (¢) = U(q) —
o _ o «xq?. Different variants of the phase portrait for the FENE
The diffusion part gives the zero contribution to the numer- potential are presented Fig. 2 Instability and dissociation

ator of Eq. (94) of the unimodal distribution functions (“peaks”) for the FPE
_ B _ —0 is the general effect when flow is present. The instability

olfo = Jo) + Uolfo = fo) occurs when the matrid?U /dq;dq; starts to have negative
Therefore, to find g/dr it is sufficient to use®; = eigenvalues {{ is the effective potential energy/(q) =
—ady(q¥), so we get U(q) — X, ki, j4iq;)-

The stationary polymodal distribution corresponds to the

Ma(®1(¥ ({0, sh) fo — P2(¥({o. ) persistence of several local minima of the functitg). The

_ aGU(q)§—4 (}61_4 _ 26]_2 n 1) To (5_4) multidimensional case is different from the one-dimensional
o4 \304 o2 o4 case because it has a huge amount of possible configura-
2gz 4 tions. All normal forms of the catastrophe of “birth of the
= 200 ;(fo —fo)to (F) . critical point” are well investigated and knowa2)]. Every
dissociation of the peak is connected with such a catastro-
Thus phe. The number of new peaks is equal to the number of the
1ds? 5 ¢? ¢t 9 new local minima ofU.
2 et a) (96) It is not very difficult to perform the analysis &qgs. (94)

_ 5 _ . for every quantity of peaks and every potential. Moreover,
So, ifa > 0, theng grows exponentiallyg ~ 3”‘ )andthe  for the polynomial potentials all the necessary integrals are
Gaussian manifold is unstable;daf< 0, thenc” decreases  possible to calculate analytically (if the coefficients of the

exponentially and the Gaussian manifold is stable. ~ scalar product and entropy production are taken in the Gaus-
_The form of the phase trajectories is shown qualitative in sjan point). The same situation also applies to the general
Fig. 1 n-dimensional Gaussian distributions:

The exact analytical computation for nonlinear cé&4)

leads to exactly the same result withaut. .): dc?/dr = 1 _
20c2, do?/d = 1 + 2002, Gez=Aexp|—5 Z(E Yiigi — &) — &) |, (©97)
For the real FPE (for example, with the FENE potential) b
the motion in the presence of flow can be represented as i j i
! / o2 o? *

/x ¥ (
BV

gz
M0 [ alMo=-172 (a) ¢ (b) ¢

Fig. 1. Phase trajectories for two-peak approximation, FENE-P model. Fig. 2. Phase trajectories for two-peak approximation, FENE model: (a)
The vertical axis £ = 0) corresponds to the Gaussian manifold. The a stable equilibrium on the vertical axis, one stable peak and (b) a stable
triangle witha(M>) > 0 is the domain of exponential instability. equilibrium with ¢ > 0, stable two-peak configuration.

)
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whereX is the covariance matrig; = (g;) is the expectation w(q)
i ot . S=— [ ¥g|In —1) d%g
of g;. The normalization constamnt is *(q)
A = ((2m)"detx)Y2, 98
((2r)"detZ) ©O 5o [v@ua e, (101)

Here in the equation for the effective energy we have the
symmetric part of the tensa; = 9°U/dg;3g,. The presence |t has the formS = —F, whereF is the free energy. (The
of the asymmetric part may lead to the relaxation oscillations temperaturer” is normalized to 1.) The second differential
(both for the FPE and for the peak dynamics). ~ for the classical entropy100) and for the Kullback-form

For the modeling of dynamlcs of the multimodal distri- entropy(lO]_) is the same, hence, the entropic scalar prod-
butions for FPE with the presence of the flow (the flow may yct is also the same:f()|g(¢))w = [ f@g(q)/¥(g) d'q.
be nonstationary) it seems to be useful to use the physicallyTherefore the orthogonal projector onto the tangent space to
clear modeling of the distribution function as a sum of the the Gaussian manifold can be written through moment pa-
finite number of the Gaussian peaks. Thermodynamic pro- rameterization, in the same way as for a quasiequilibrium

jector gives us an opportunity to make this models thermo-
dynamically consistent.

12. The thermodynamic projector and post-processing
for Gaussian manifolds

Multidimensional Gaussian distributio(&7)form a man-
ifold of distribution functions. It is natural to use this man-
ifold as a first (and simplest) anzatz for model reduction.
More complicated approximations for distribution functions
should be considered, if this Gaussian anzatz is insufficient
for modeling, for example, for systems with instabilities.

For the FPE with polynomial potentidl(q) the thermo-

dynamic projector and some of post-processing procedures

for the Gaussian anzatz do not require numerical calculation
of multidimensional integrals mentioned$ection 9 These
integrals can be calculated analytically: for any dimension
and any polynomiaP(q) the integral/ P(q)Ge, s (¢) d"g can

be calculated by using the bosonic Wick form{4&,45]:

let X1, ..., X,, be random variables and have a joint Gaus-
sian distribution; then the mathematical expectation of the
product ofX; is

m
E <1_[X,-> =0, if misodd E(
i=1
if m 2k, where the sum runs over all partition of

= Z Cirj1Cizjas -+ > Ciji»
LJ
{L.2,...,2%} = 1UJ, I = {i,}5, J = {j,}}, such that
i1<---<ip, j1<---< jr and for each i, < j,

Let us describe the thermodynamic projector and
one-dimensional post-processing for multidimensional
Gaussian anzatz. The Gaussian distribut{®7) is the
solution for optimization problem:

m;(¥) = §&;, (100)

wherem;(¥) = [qi¥(q)d'q, oj(#) = [(qi — &)(q; —
£/)¥(q) d"gq. The entropySg here is the classical Boltzmann
entropy: So = [ ¥(g)(In ¥(q) — 1) d"q. This entropy is
not a Lyapunov function for the FPE. The corresponding
Lyapunov function is Kullback-form entropy

[1x
i=1
(99)

So(¥) — max, ojj(¥) = Zjj,

manifold:
Ge»

3

L _
PrJ(g) = Z %
—&m(J(q) — &mi(J(q)),

wherem; (J(9)) = [ qiJ(q) d"q. m§(J(9)) = [ 4iq;J(q) d"q.
This formula for orthogonal projection of (102) fol-
lows from usual chain rule and from moment equations: if
¥ = J, then§ = m(J) and Zjj = mf (J(@) — &m (J(g)) —
§imi(J(q)).

The gradients of(¥) (100)and So(¥) (101)with respect
to the entropic scalar product in poit are:;

0Ge, 5
02

mi(J@)+ ) m§ (J(g)
ij

(102)

gradSo = —¥(q) <|n(¢’(q)) - / Y(q") In(¥(q)) d”f/) ,

grads = gradSo — ¥(q) <U(q) - / w(qgHU(q) d"q/> :
(103)

Integrals in right-hand-parts &fgs. (103)provide conditions
of zero means:

/ gradSo(g) d*g = f grads(g) d"g = 0.

These conditions are necessary, because functix@ldDS

act on differences of distribution functions that have zero
mean values. The gradient gr&glis tangent to the Gaussian
manifold at the point, because this manifold is quasiequi-
librium with respect to the entrop§y. Let us use the or-
thogonal projectof102) to split gradS (103) onto tangent
and orthogonal components:

grads = grads! + grads* = (1 — P+)grads + P*grads.
The thermodynamic projectsf® has the form

grads'

PthJ =ptyj+—=
+ (gradSl!l|grads')

(grads=|J). (104)
It is important to mention that the second term of the ther-
modynamic projectot104) becomes singular if gragl =

0. These points are the stationary points of the entr®py
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on the Gaussian manifold. These singularities provide the The post-processing is necessary for accuracy estimation.
preservation of entropy production near these points. Thelt gives us the cheapest way to improve the solution obtained
singularity of projection has a transparent physical sense.by the Legendre integrators.
The relaxation along the Gaussian manifold to the p@ét The thermodynamic projector allows one to transform al-
of entropy maximum on this manifold is not complete, be- most any arbitrary anzatz into a physically consistent dy-
cause this point is not the equilibrium. This motion should namic model with persistence of dissipation. The simplest
be rated as a step of relaxation, and after it was completed,example, discussed in details, is the two peaks model for
the next step should start. In this sense it is obvious that theGaussian manifold instability in polymer dynamics. This
motion to the point¥g along the anzatz manifold should type of models opens a way to create the computational
take the finite time. The results of this step-by-step relax- models for the “molecular individualisn{48-50}
ation can represent the whole process (with smootfi6y The simplest model of molecular individualism is the
or without it[47]). The experience of such step-by-step com- “Gaussian parallelepiped”. The distribution function is rep-
puting of relaxation trajectories in the initial layer prob- resented as a sum of'2Z5aussian peaks located at the ver-
lem for the Boltzmann kinetics demonstrated it's efficiency tices of a centrally symmetrical parallelepiped:
[46,47]

Let us project the right-hand-part of the FRE) onto W(q) = 1/2"(27)"/?V/det Z

the tangent space to the Gaussian manifold. For polyno- gi=%1, (i=1,....m)

mial potentials both the projection and the invariance de- 1 L " "

fect A can be calculated analytically. For one-dimensional XExXp (_E (2 (61 + Z&'Q) q+ Zsigi)) )
post-processing procedyi&l) one needs the matrix element i=1 i=1

{AlDA) and the scalar products\|4), (A]A). HereDis  wherep is the dimension of configuration space; 2 the
the linear operator of FPE. Calculation of all these scalar \qctor of theith edge of the parallelepiped, adtiis the one
products does not need the numerical integration in multi- peak covariance matrix (in this modl is the same for all

dimensional space. The same is truth also for a supplemeneaks). The macroscopic variables for this model are:
tary operation(75). So, the thermodynamic projection of

the FPE with polynomial potential onto the Gaussian man- (1) The covariance matrix..

ifold and one-dimensional postprocessing of solutions for (2) The set of vectors; (or the parallelepiped edges).
this projected equation can be performed using the bosonicTne dimension i$i(n + 1)/2 + mn

Wick formula without numerical integration into the config- The numberm(m < n) is the estimated number of

uration space. nonstable directions of motion (dimension of instability).
To include the non-Gaussian equilibrium the “Gaussian
] parallelepiped” should be deformed to non-Gaussian “peaks
13. Conclusion parallelepiped”. Technical details will be discussed in the
_ separate paper. The structure of “peaks parallelepiped” leads
In this work we presented a toolbox for the develop- g the molecular individualism in such a way: each individ-
ment and reduction of dynamical models of nonequilibrium 51 molecule belongs to a domain of a peak in configuration
systems with the persistence of the correct dissipation.space_ The number of these peaks grows significantly with
The basic notions of this toolbox are entropy, quasiequi- the dimension of instability, as”2 and even ifn = 3, then
librium  (MaxEnt) distribution, dual variables, and the the number of peaks is 8, and one should discover 8 dis-
thermodynamic projector. The main technical ideas are: tinguished sorts of molecular configurations. On the other
Legendre integrators, dynamical post-processing, and theénand, in projection on a line this amount of peaks can form
transformation of almost any arbitrary anzatz into a ther- g gjstribution without a clue about peak structure, hence,
modynamically consistent model via the thermodynamic the study of properties of ensembles (viscosity, stress coef-

projector. ) _ ficient, etc.) can be without any hint to a cluster structure
The Legendre integrators are based on a simple, but veryjn configuration space.

useful idea: to write and solve dynamic equations for dual

variables. This idea is efficient, because to obtain the dy-

namic equations for dual variables it is necessary to solve Acknowledgements

linear equations. To get the usual quasiequilibrium dynam-
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