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A new method of successive construction of a solution is developed for problems of 
strongly nonequilibrium Boltzmann kinetics beyond normal solutions. Firstly, the method 
provides dynamic equations for any manifold of distributions where one looks for an 
approximate solution. Secondly, it gives a successive procedure of obtaining corrections to 
these approximations. The method requires neither small parameters, nor strong restrictions 
upon the initial approximation; it involves solutions of linear problems. It is concordant with 
the H-theorem at every step. In particular, for the Tamm-Mott-Smith approximation, 
dynamic equations are obtained, an expansion for the strong shock is introduced, and a linear 
equation for the first correction is found. 

1. Introduction 

In this paper we introduce a new approach to the problem of reduced 
description in dissipative kinetics. The method is addressed especially to those 
strongly non equilibrium problems which cannot be considered in frames of 
methods based on small parameters and normal solutions. In these problems 
we usually arrive at some special ad hoc approximations such as, for example, 
the well known Tamm-Mott-Smith (TMS) bimodal approximation. Even the 
most successful of these approximations make a dramatic impression due to 
that they are unbacked by any successive procedure (the problems of the TMS 
approximation are well known [1,2]). 

We will consider the problem of reduced description for a general situation. 
Namely, we solve two main problems: (i) the problem of deriving a macro- 
scopic dynamics for a given approximated reduced description, and (ii) the 
problem of obtaining corrections to this approximation. The resulting equa- 
tions of the macroscopic description are thermodynamic (i.e. concordant with 
the H-theorem and conservation laws). The method of successive corrections 
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avoids a consideration of small parameters,  and it involves a Newton-type 
procedure  based on linear equations. 

Our method will be appropriate to any dissipative kinetic system with a 
global convex Lyapunov function (e.g. the Boltzmann equation provided with 
suitable boundary conditions, chemical kinetic equations for closed systems, 
the Fokker -P lanck  equation, etc). In order  to make our consideration more 
certain, we will speak about the Boltzmann equation. 

We suppose here that an approximated reduced description is chosen (it is 
unnecessary to discuss here particular reasons for this choice). This means that 
a manifold (a "surface")  ( f (a )}  is fixed in the space of distributions f, where a 
represents coordinates on the manifold. For every a, the function f(a) is the 
distribution which depends on spatial and momentum variables, and also on 
time. These latter dependencies will be omitted. 

Here  we arrive at two general problems: 
(i) We must define macroscopic dynamics on the manifold {f(a)}.  In order  

to do this, we must project  (transform) the Boltzmann equation onto some 
macroscopic parameters.  The first problem is: how and onto which macro- 
scopic parameters  should one perform this projection? In fact, there are a 
number  of possible answers to this question. Which projector  would make 
physical sense? We want that a solution of the first problem will preserve the 
thermodynamici ty (i.e. the concordance with the H-theorem) at the chosen 

macroscopic level. 
(ii) We understand that the chosen manifold is not a solution of the 

Boltzmann equation. In more general words, the chosen manifold ( f (a )}  is not 
a dynamically invariant manifold of the Boltzmann equation. The notion 
"dynamically invariant manifold" appears in most of the dynamic theories: a 
manifold is called dynamically invariant if the vector field of the dynamical 
system is tangent to this manifold at every point. 

Hence ,  we want to improve the chosen manifold {f(a)} in order  to make it 
"more  invariant".  The second problem is how to obtain these corrections in a 
general case (e.g. when there are no small parameters or other simplifications)? 
We hope that the solution of the second problem would be a method of 
successive approximations which would not require a too strong restriction 
upon the choice of the initial approximation {f(a)}.  

Let  us briefly outline this paper. In the next section we introduce a general 
construction which provides an essentially unique thermodynamic parame- 
terization for the almost arbitrary manifold {f(a)}.  In section 3 we introduce 
the invariance equation and we also introduce a Newton-type method to solve 
it. We obtain there an equation for the first correction to an arbitrary 
finite-dimensional approximation {f(a)}.  In section 4 we clarify the physical 
sense of our approach. Lastly, in section 5, we consider the important 
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particular case of the TMS approximation in the shock wave problem. There 
we obtain physically unique dynamic equations for this approximation, and we 
also obtain the equation for the first correction. 

2. Thermodynamic projector 

In this section we give a solution for the first of the two problems mentioned 
in the introduction (the problem of deriving the dynamic equations on the 
manifold {f(a)} with preservation of thermodynamicity). 

Our goal is to define macroscopic parameters M as values of some operators 
M ( f )  (yet unknown and, perhaps, nonlinear). The latter should be defined in a 
neighborhood of the manifold {f(a)}, and their values M ( f ( a ) )  = M(a) would 
create a new coordinate system on the manifold {f(a)}. We then obtain the 
expression of {f(a)} as {f(M)} where M depends on a (in the following we 
sometimes write M instead of M(a)).  

Knowing the operator M ( f ) ,  we are able to define dynamic equations on the 
manifold { f(a)}: 

dM(a) /d t  = f VfM(J(f))lf=f(M(a)) d3v. (1) 

Here d /d t  represents the substantial derivative, and J ( f )  is the Boltzmann 
collision integral. 

As it was mentioned above, there are a number of a priori possibilities to 
choose the operator M(f ) .  However, any choice should satisfy the condition of 
thermodynamicity: 

dH(  M(a))  / dt = (VMH( M)IM=M(a) , dM(a)/dt)  <~ O . (2) 

Here H ( M )  = H ( f ( M ) ) ,  and H ( f )  is the Boltzmann H-function. The notation 
( . ,  .) is used for a scalar product in the space of macroscopic parameters M. 
Condition (2) expresses that the Boltzmann H-theorem holds at the chosen 
macroscopic (reduced) level. 

Hence, the basic point is to construct the operator (projector) M ( f )  for a 
given manifold {f(a)} which satisfies condition (2). 

Our basic idea is to act as if a times hierarchy hypothesis (decomposition of 
motions) corresponds to the chosen approximation {f(a)}. This means that a 
"rapid" relaxation happens to the states f (a)  in a neighborhood of the manifold 
{f(a)}, and then "slow" motion along {f(a)} takes place. The rapid motion 
determines the direction of projection. The choice of the projector is de- 
termined by the fact that the H-function decreases in rapid relaxation. In fact, 
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the state f from the neighborhood of {f(a)) will be able to relax into the state 
f(a) at the end of rapid motion if f belongs to a hyperplane Fi(a), the latter 
being orthogonal to the gradient of the H-function ViH(f  ) at the point f(a). 
We call FI(~) the hyperplane of rapid motion. For the H-function J ' f  (In f -  
1)  d3v we have ViH(f  ) = In f, and FI(~) is defined by the equation: 

{f f (f- f(a))In f(a)d3o = 0}. (3) 

We assume further that {f(a)} is not tangent to a level of the H-function at 
any point f(a)E {f(a)}. This is the only principal restriction on the choice of 
the manifold {f(a)}. 

Thus, we define the functionals: 

, f Mi(a)(f )= f i n  f(a) d3v, (4) 

and the hyperplanes of rapid motions are defined as 

I~f(a) : { f l M;(a)( f - f(a)) = 0}. (s) 

It is clear that not all distributions of the hyperplane Fr(a) are able to 
transform into the state f(a) at the end of rapid motions. If the dimension of 
the manifold {f(a)) is higher than one, then Fi(a) includes some other 
distributions f(a') for a ~  a'. It is important that, for the validity of the 
macroscopic H-theorem (2), all rapid motions which lead to f(a) should belong 
to Fi(a). We will now show it. 

Due to the strict convexity of the H-function, the point f(a) is the only 
minimum of the H-function on the hyperplane of rapid motions FI(~). In other 
words, f(a) coincides with the solution of the variational problem 

H(f)---~ min for f f l n  f(a) d3v = f f(a) In f(a)d3v. (6) 

Thus, the hypothesis of the times hierarchy for {f(a)} means that the 
H-function decreases during the relaxation, and its minima occur on manifolds 
of rapid motions. The gradient of the H-function is normal to this manifold of 
rapid motions at the minimum. Therefore, in the linear approximation the 
equation 

f f ln  f(a)d3v= f f(a)ln f(a)d3v (7) 

is valid for those distributions f which are able to relax to the state f(a) in rapid 
processes. 
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We finish the construction of the projector by choosing macroscopic parame- 
ters M which define a coordinate system on the manifold (f(a)}. As a rule, it is 
sufficient to add a system of linear functionals L ( f ) =  f l(v)fd3o to the 
functionals Ms*~a)(f) (4) (further we consider only this case; hoyeever, the 
linearity does not play any specific role). Then the manifold {f(a)} will be 
parameterized by the macroscopic parameters Ms(,,)(f(a)) and L(f(a)). Any 

choice of macroscopic parameters additional to Mf(a)(f(a)) does not disturb 
the solution of the variational problem (6). Indeed, additional functionals L ( f )  
give only additional restrictions for the problem (6). These conditions, L ( f -  
f(a)) = O, "cut out" manifolds of lower dimension inside the hyperplane of 
rapid motions (3). One can consider the resulting linear manifold as a linear 
manifold of rapid motions which lead exactly to the distribution f(a). Hence, 
we see that the distribution f(a) is also the unique solution of the problem 

H(f)--* min for Ms*(a)(f- f(a)) -- O, L ( f -  f(a)) = 0. (6a) 

Thus, for the manifold {f(a)}, we have defined the operator M(f)  as the set of 
functionals (Ms*(a)(f), L(f)). Substituting these latter into (1) yields the 
resulting set of dynamic equations. 

The functionals -kBMs*(a ) project the points f(a) into the values of the 
entropy S(f(a)) and determine the entropy balance equation on the manifold 
{f(a)}. Thus, the times hierarchy hypothesis results immediately in the 
thermodynamic parameterization of the manifold {f(a)}. 

An important particular case occurs when the manifold considered is a 
quasi-equilibrium manifold (i.e. f(M) is the solution of the problem 
H(f)--~min for M ( f ) =  M, where M(f)  is fixed prior to obtaining f(M)). 
Here one does not need a new projector. The quasi-equilibrium manifold 
{f(M)} is thermodynamic due to its construction [3-5]: ln(f(M)) then is a 
linear combination of ~TsM(f)[s=s(~t ). Due to (6) one can consider an arbitrary 
manifold as if it were a quasi-equilibrium manifold after the appropriate 
parameterization. It should be stressed that in (6) we solve a reversed problem: 
we start with the manifold {f(a)} and next we construct the operator M(f).  

In spite of the external simplicity of the final results (the entropy balance 
equation is indeed "natural"), this parameterization has a complicated struc- 
ture because the functionals Mi(~)(f ) (4) are neither the usual moment 
functional nor the entropy. 

We use the asterisks * in order to stress the thermodynamicity of parame- 
terization. 

Thus, for a given manifold {f(a)} we have constructed the thermodynamic 
parameterization {f*(M(a))} concordant with the condition (2). The function- 
als (4) play the key role. In the next section we consider the problem of 
constructing a dynamically invariant manifold from the manifold {f(a)}. 
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3. Dynamic invariance 

We start with a formalization of the requirement on dynamic invariance for a 
manifold {f(M)} (it is important that the manifold is parameterized by 
macroscopic parameters, cf. in section 2). 

We write the Boltzmann equation as 

of(v, x, t) of(v, x, t) 
ot - B ( f ) ,  B ( f )  = - v  Ox + J ( f ) .  (8 )  

Denote by S t the operator of transition along a solution of the Boltzmann 
equation for the time t ~ O. A manifold {f(M)} is called dynamically invariant 
with respect to the Boltzmann equation if for all M and t >I 0 the following 
equality is valid: 

S , f ( M )  = f ( M ( S t f ( M ) ) )  . (9) 

The equality (9) has a clear geometrical interpretation: the Boltzmann dy- 
namics translates the point f ( M )  into another point f ( M ' )  on the same 
manifold. 

The differential version of the invariance equation (9) is more useful: 

A(f(M)) = (V Mf (M) ,  O M ( f ( M ) ) / O t )  - B ( f ( M ) )  = O . (10) 

Here 0M(f(M))  / Ot represents the derivative of the macroscopic parameters 
caused by eq. (8) at the point f ( M )  (i.e. the partial time derivative is expressed 
through the macroscopic parameters M from the macroscopic dynamical 
equations of type (1)). 

We consider the condition of dynamic invariance (10) as a nonlinear 
equation which one should solve by a method of successive approximations. 
The method should preserve thermodynamicity at every iteration. 

We introduce a Newton-type method of successive approximations to solve 
the invariance equation (10). This procedure involves a linearization of the 
vector field B ( f ) ,  and no small parameters are required for this linearization. 

The complete scheme of the method of obtaining corrections to the initial 
manifold {f0(a)} involves the following steps: 

Step 1. Choose the initial approximation {f0(a)}. 
Step 2. Create a thermodynamic parameterization {f~(M)} as described in 

section 2. 
Step 3. Calculate the defect A ( f ~ ( M ) ) .  If A ( f ~ ( M ) )  is identical to zero, 

then we have the dynamic invariant manifold { f0(a)}. If not, then linearize the 
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operator B ( f )  in (10) in the neighborhood of the manifold {f0(a)}, and solve 
the linear equation obtained (remember that operator B ( f )  appears also in the 
expression OM(f(M))/Ot) .  The solution is a new manifold {fl(a)}. 

Step 4. Create the thermodynamic parameterization {fT(M)} as described 
in section 2. 

Then the process is continued (go to step 3). 
We will finish this section by considering in more detail the important 

particular case of finite-dimensional manifold {f(a)}. 
For an r-parametric manifold {f(a)}, where a = ( a ~ , . . . ,  ar), w e  consider 

the case of thermodynamic parameterization when the functionals Mr*~a)(f) (4) 
are completed with r - 1 independent linear functionals: 

L i ( f )  = f li(v) f d3v. i =  1 . . . .  , r -  1. (11) 

Equations of reduced description (1) are as follows: 

OH(a) OLi(a) 
- -  + div jH(a) = ~(a) Ot ' Ot 

- -  + div jLi(a) = Ri(a) , 

H(a)=ff(a) [ln f ( a ) -  11 d3v, Li(a ) = f li(v ) f(a) d3v, 

jH(a) = f of(a) [In f(a) - 11 d3v, jci(a) = f v li(D ) f(a) d3v, 

o-(a) = f In f(a) J( f(a))  d3v Ri(a ) = f li(D ) J(f(a)) d3v . 

(12) 

At  the first iteration we search for 

In f'~ = In f ~  + ~ ,  . 

The correction q~l is obtained in order that the new manifold f~' = f~ exp(q~) 
will satisfy the invariance equation (10) within an accuracy of q~l order terms. 
Thus, q~ is obtained from the following linear in ~0~ equation: 

(1 - P0) B,i , ( f~(M);  ~fl) = A( f~(M))  . (13) 

Here Btin(f~(M); 8fl ) represents the linearization of the Boltzmann vector 
field at the point f~ (M) ,  and ~fl = f~ (M)  q~l. The operator P0 acts as follows: 

f r-10f~ f li(v ) £ d3v (14) Pog = ~ g l n  f) d3v+  i=,E ~ 
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The notation O f * / O M  represents the derivative 

O f ( a ( M ( f ) )  

O M ( f )  M(f)=M(f(a)) " 

The equation of the kth iteration is obtained from eqs. (13) and (14) by the 
rearrangement of indices 0----> k -  1, 1---~ k. Immediate calculations show that 
P~ = Pk, i.e. that the operators P~ are projecting operators. They project onto 
the tangential space of the manifold of the kth approximation. 

4. Physical interpretation 

We are now going to discuss the intuitive ideas behind our approach. The 
method is based on two points: (i) thermodynamic parameterization, and (ii) a 
successive correction of the dynamic noninvariance. These points are the 
immediate formalization of two general principles of dissipative kinetics: (i) the 
choice of an approximated reduced description always involves an implicit 
assumption on the decomposition of times of relaxation, and (ii) a dynamic 
invariant manifold of slow motions is located in a neighborhood of the chosen 
approximation. This is rather a fine place, and it requires additional explana- 
tions. 

Usually when one talks about decomposition of motions (i.e. about the times 
hierarchy), one keeps in mind the existence of a small parameter. This small 
parameter should express the ratio of the time of rapid relaxation to the time 
of macroscopic observation. One may expect that the result of the rapid 
relaxation will be a "sufficiently good" manifold of slow motions (i.e. it will be 
a "sufficiently invariant" manifold). 

However,  this situation is far from simple. There is always doubt on whether 
the chosen parameter is sufficiently small. Even for finite-dimensional dissipa- 
tive systems (e.g. chemical kinetics) the steady-state manifolds might not 
always be referred as to good approximations (see a precise study: "The 
steady-state approximations, fact or fiction?" by E. Farrow and D. Edelson [6] 
and also ref. [7]). 

On the other hand, there are no small parameters in the general case, but 
still one can construct a "good"  approximation which approximately describes 
the evolution for a considerable period. For example, the TMS approximation 
illustrates this situation: a small parameter lacks in the strong shock wave 
problem but, nevertheless, one can consider the TMS approximation as a 
suitable approximation for this problem. Hence, we should take that the two 
assumptions mentioned above are appropriate to the TMS approximation (at 
least approximately). 
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The problem of dynamic invariant manifolds has a very specific sound for 
dissipative kinetics. Namely, one should expect that these manifolds are 
manifolds of slow motion. 

For a chosen approximated reduced description, one can not say beforehand 
whether the decomposition of motions indeed corresponds to the choice. 
Nevertheless, we act as if the chosen manifold is already a "good" manifold of 
slow motions. This immediately leads to the definition of hyperplanes of rapid 
motions via the principles of decrease of the H-function in rapid relaxation as 
described above. It is important that the variational principle (6) avoids a 
search for small parameters for the conduction of the manifolds of rapid 
motions. We obtain thermodynamic parameterization for the initial manifold. 
At the same time we remember that the chosen approximation is not a 
dynamic invariant manifold. We are able to measure the error caused by 
noninvariance from the definition (10), and we are able to approximately 
correct this error by solving the linear equation of the first Newton iteration 
(13). Then we again act as if the corrected manifold is a good manifold of slow 
motions, etc. 

It is very important that no small parameters are required to complete the 
procedure. The process is the same in its character for any initial approxi- 
mation. Small parameters can be used for simplification in some cases. 

5. Example: the Tamm-Mott-Smith approximation 

The following (I. Tamm and H. Mott-Smith) approximation is commonly 
known in the shock wave problem [1]: 

f ( a _ ,  a+) = a _ f _  + a+f~ . (15) 

Here f_ and f÷ represent Maxwell distributions infinitely far up and down the 
flow. According to refs. [1,2], the choice of the "natural" projector is the main 
unsolved problem of the approximation (15). 

Thermodynamic parameterization of the approximation (15) is determined 
by the values of the functionals M;( . . . . .  ) ( f )  (4) and of the moment functional 
n ( f )  = f f d3v. Then the dynamics of a_ and a+ are obtained from the 
equations for the macroscopic variables M;(  . . . .  +) ( f (a_ ,  a+)) and n ( f ( a ,  a+)) 
(see (12)): 

ajs On Ojn Os + =~r + - -  0 
Ot ax  ' dt ax  

s = - k  B f f ;  In f~ d3v , 



402 A.N. Gorban, I.V. Karlin / Thermodynamic parameterization 

n = f f~ d3v , L = -kB  f vx fa ln fa d3v , 

or = - k  B f In fa J ( f ] )  d3v. 

j .  = f v. f~ d3v , 

(16) 

Here f ;  stands for f(a , a+). 
The stationary version of the set (16) was originally introduced ad hoc by M. 

Lampis in ref. [8]. Here we have shown that eqs. (16) are the only equations 
which make physical sense in the Tamm-Mott-Smith kinetics. 

A detailed investigation of eqs. (16) is not the goal of this paper. Here we 
will indicate an approach to the analysis of the strong stationary shock wave 
(the more simple case of the weak wave was considered in ref. [8]). We assume 
that the wave propagates along the x-axis. We divide the velocity space into 
two regions: V (a_f_ > a+f+) and V+ ( a _ f  < a+f+). Then we introduce the 
following expansion: 

[ ln (a_ f  )+a+f+/a f_ . . . .  
ln(a f + a+f+)  = Lln(a+f+)  + a _ f / a + f +  

f o r a  f > a + f + ,  
fo ra  L <a+f+. 

(17) 

The surface which separates V from V+ is obtained from the condition of 
term-by-term continuity of the expansion (17). This surface does not depend 
on the number of terms taken into account. The equation of this surface is 

u T+ - u+T )2 
2 - z r 2 , g v / + v x -  >--/+ ~-: +p 

i = y , z  

2RT T+ ln( a_u+ 
P= M(T+-- T_) ( 1 - a ) u _ : '  

2 T T + ( u + - u _ )  2 3RT T+ (T+)  
r = (T+ - T_) 2 + M(T--f+-- T- )  In ~ . 

(18) 

Here R is the gas constant, M is the molar mass, u+ and T~ represent the 
hydrodynamic quantities infinitely far up and down the flow. The expansion 
(17) solves the main difficulty of analytic investigation of eqs. (16). This 
difficulty appears from the logarithm of the sum of functions under integration. 

Finally, we introduce the equation of the first iteration (13) for the TMS 
initial approximation. The operator P0 (14) acts as follows: 

of~ f of~ f afa Pog = -~0  g fo d3v + ~ n  ° g d3v , aH° - Z(q~+ - ~p_), 
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Of~ 
- Z(q~+ ( l n  f o ) _  - ~o_ ( l n  f o )  + ) , Z = ( ( l n  f o )  + - ( l n  f o ) _  ) -1 . 

On o 
(19) 

Notations used are: q~+ = f+_/n+, (g)+_ = f g ~p+_ d3o. The defect of the approxi- 
mation (17) (the RHS of eq. (13)) is equal to 

(<ln o>  Jno+  J°o ) 
+ O X  1 OX~--~ - -  OrO 

- ~+/~-  (In fo) O J"° + oJ"...._2o _ 
- Ox 1 Ox 1 k 

Ofo 
O-o)] + o, TXl-  J(f0) • (20) 

Thus, eq. (13), with the account of (19) and (20), gives the linear equation for 
the first correction to the Tamm-Mott-Smith approximation. 

6. Conclusions and remarks 

(i) The method of constructing the projector introduced in section 2 solves 
the problem of thermodynamic parameterization. The condition of the entropy 
growth during rapid relaxation results in the entropy balance equation for the 
slow process. One can prove that there is no other universal way to construct a 
thermodynamic parameterization of an arbitrary manifold. In particular, eqs. 
(16) solve the old problem of ambiguousness of the Mott-Smith approximation. 

(ii) When constructing the projector we have neglected the deviations from 
{f(a)} in the slow process. As was mentioned above, we act as if the manifold 
{f(a)} is the manifold of slow motion. Accurately speaking, this is not so. The 
next step should be the obtainment of corrections for the approximation 
(f(a)}. The construction of the thermodynamic projector is the preparation of 
the general Newton-type procedure of constructing a dynamic invariant man- 
ifold from a given initial approximation introduced in section 3. 

Acknowledgements  

The authors wish to thank Prof. C. Cercignani for his attention to this work 
and for informing us about paper [8]. We are also grateful to the referee of 
"Physica A" for helpful remarks. This work was supported by the USSR-USA 
Foundation "Cultural Initiative" (the grant "Provincial Science of Siberia"). 



404 A.N. Gorban, 1.V. Karlin / Thermodynamic parameterization 

References 

[1] C. Cercignani, Theory and Applications of the Boltzmann Equation (Scottish Academic Press, 
Edinburgh, 1975). 

[2] R. Caflish, in: Nonequilibrium Phenomena I (North-Holland, Amsterdam, 1983) pp. 192-223. 
[3] A.M. Kogan and L.I. Rozonoer, Sov. Math. Rev. 158 (1964) 566. 
[4] A.N. Gorban, Equilibrium Encircling (Nauka, Novosibirsk, 1984). 
[5] I.V. Karlin, in: Mathematical Problems of Chemical Kinetics (Nauka, Novosibirsk, 1989) pp. 

7-42. 
[6] E. Farrow and D. Edelson, Int. J. Chem. Kinet. 6 (1974) 787. 
[7] G.S. Yablonskii, V.I. Bykov, A.N. Gorban and V.I. Elokhin, Kinetic Models of Catalytic 

Reactions, Comprehensive Chemical Kinetics, vol. 32 (Elsevier, Amsterdam, 1991). 
[8] M. Lampis, Meccanica 12 (1977) 171. 


