
11 Method of Natural Projector

P. and T. Ehrenfest introdused in 1911 a model of dynamics with a coarse-
graining of the original conservative system in order to introduce irreversibil-
ity [15]. Ehrenfests considered a partition of the phase space into small cells,
and they have suggested to combine the motions of the phase space ensemble
due to the reversible dynamics with the coarse-graining (“shaking”) steps –
averaging of the density of the ensemble over the phase cells. This general-
izes to the following: alternations of the motion of the phase ensemble due
to the microscopic equations with returns to the quasiequilibrium manifold
while preserving the values of the macroscopic variables. We here develop a
formalism of nonequilibrium thermodynamics based on this generalization.
The Ehrenfests’ coarse-graining can be treated as a a result of interaction
of the system with a generalized thermostat. There are many ways for in-
troduction of thermostat in computational statistical physics [283], but the
Ehrenfests’ approach remains the basic for understanding the irreversibility
phenomenon.

11.1 Ehrenfests’ Coarse-Graining Extended
to a Formalism of Nonequilibrium Thermodynamics

The idea of the Ehrenfests is the following: One partitions the phase space of
the Hamiltonian system into cells. The density distribution of the ensemble
over the phase space evolves in time according to the Liouville equation within
the time segments nτ < t < (n+1)τ , where τ is the fixed coarse-graining time
step. Coarse-graining is executed at discrete times nτ , densities are averaged
over each cell. This alternation of the regular flow with the averaging describes
the irreversible behavior of the system.

The most general construction extending the Ehrenfests’ idea is given
below. Let us stay with notation of Chap. 3, and let a submanifold F (W ) be
defined in the phase space U . Furthermore, we assume a map (a projection)
is defined, Π : U → W , with the properties:

Π ◦ F = 1, Π(F (y)) = y . (11.1)

In addition, one requires some mild properties of regularity, in particular,
surjectivity of the differential, DxΠ : E → L, in each point x ∈ U .
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Let us fix the coarse-graining time τ > 0, and consider the following
problem: Find a vector field Ψ in W ,

dy
dt

= Ψ(y) , (11.2)

such that, for every y ∈ W ,

Π(TτF (y)) = Θτy , (11.3)

where Tτ is the shift operator for the system (3.1), and Θτ is the (yet un-
known!) shift operator for the system in question (11.2).

Equation (11.3) means that one projects not the vector fields but segments
of trajectories. The resulting vector field Ψ(y) is called the natural projection
of the vector field J(x).

Let us assume that there is a very stiff hierarchy of relaxation times in the
system (3.1): The motions of the system tend very rapidly to a slow manifold,
and next proceed slowly along it. Then there is a smallness parameter, the
ratio of these times. Let us take F for the initial condition to the film equation
(4.5). If the solution Ft relaxes to the positively invariant manifold F∞, then
in the limit of a very stiff decomposition of motions, the natural projection
of the vector field J(x) tends to the usual infinitesimal projection of the
restriction of J on F∞, as τ → ∞:

Ψ∞(y) = DxΠ|x=F∞(y)J(F∞(y)) . (11.4)

For stiff dynamic systems, the limit (11.4) is qualitatively almost obvious:
After some relaxation time τ0 (for t > τ0), the motion Tτ (x) is located in
an ε-neighborhood of F∞(W ). Thus, for τ 	 τ0, the natural projection Ψ
(equations (11.2) and (11.3)) is defined by the vector field attached to F∞
with any predefined accuracy. Rigorous proofs of (11.4) requires existence and
uniqueness theorems, as well as uniform continuous dependence of solutions
on the initial conditions and right hand sides of equations.

The method of natural projector is applied not only to dissipative systems
but also (and even mostly) to conservative systems. One of the methods
to study the natural projector is based on series expansion1 in powers of
τ . Various other approximation schemes like the Padé approximation are
possible too.

The construction of the natural projector was rediscovered in a rather
different context by Chorin, Hald and Kupferman [282]. They constructed
the optimal prediction methods for an estimation of the solution of nonlin-
ear time-dependent problems when that solution is too complex to be fully

1 In the well-known work of Lewis [281], this expansion was executed incorrectly
(terms of different orders were matched on the left and on the right hand sides
of equation (11.3)). This created an obstacle in the development of the method.
See a more detailed discussion in the example below.
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resolved or when data are missing. The initial conditions for the unresolved
components of the solution are drawn from a probability distribution, and
their effect on a small set of variables that are actually computed is evaluated
via statistical projection. The formalism resembles the projection methods of
irreversible statistical mechanics, supplemented by the systematic use of con-
ditional expectations and methods of solution for the fast dynamics equation,
needed to evaluate a non-Markovian memory term. The authors claim [282]
that result of the computations is close to the best possible estimate that can
be obtained given the partial data.

The majority of the methods of invariant manifold can be discussed as
development of the Chapman–Enskog method. The central idea is to con-
struct the manifold of distribution functions, where the slow dynamics occurs.
The (implicit) change-over from solving the Boltzmann equation to construc-
tion of invariant manifold was the crucial idea of Enskog and Chapman. On
the other hand, the method of natural projector gives development to the
ideas of the Hilbert method. The Hilbert method was historically the first
in the solution of the Boltzmann equation. This method is not very popular
nowdays, nevertheless, for some purposes it may be more convenient than
the Chapman–Enskog method, for example, for a study of stationary solu-
tions [284]. In the method of natural projector we are looking for solutions of
kinetic equations with the quasiequilibrium initial state (and in the Hilbert
method we start from the local equilibrium too). The main new element in
the method of natural projector with respect to the Hilbert method is the
construction of the macroscopic equation (11.3). In the next Example the
solution for the matching condition (11.3) will be found in a form of Taylor
series expansion.

11.2 Example: From Reversible Dynamics
to Navier–Stokes and Post-Navier–Stokes
Hydrodynamics by Natural Projector

The starting point of our construction are microscopic equations of motion. A
traditional example of the microscopic description is the Liouville equation for
classical particles. However, we need to stress that the distinction between
“micro” and “macro” is always context dependent. For example, Vlasov’s
equation describes the dynamics of the one-particle distribution function. In
one statement of the problem, this is a microscopic dynamics in comparison
to the evolution of hydrodynamic moments of the distribution function. In
a different setting, this equation itself is a result of reducing the description
from the microscopic Liouville equation.

The problem of reducing the description includes a definition of the mi-
croscopic dynamics, and of the macroscopic variables of interest, for which
equations of the reduced description must be found. The next step is the con-
struction of the initial approximation. This is the well known quasiequilibrium
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approximation, which is the solution to the variational problem, S → max,
where S in the entropy, under given constraints. This solution assumes that
the microscopic distribution functions depend on time only through their de-
pendence on the macroscopic variables. Direct substitution of the quasiequi-
librium distribution function into the microscopic equation of motion gives
the initial approximation to the macroscopic dynamics. All further correc-
tions can be obtained from a more precise approximation of the microscopic
as well as of the macroscopic trajectories within a given time interval τ which
is the parameter of the method of natural projector.

The method described here has several clear advantages:
(i) It allows to derive complicated macroscopic equations, instead of writ-

ing them ad hoc. This fact is especially significant for the description of
complex fluids. The method gives explicit expressions for relevant variables
with one unknown parameter (τ). This parameter can be obtained from the
experimental data.

(ii) Another advantage of the method is its simplicity. For example, in the
case where the microscopic dynamics is given by the Boltzmann equation, the
approach avoids evaluation of the Boltzmann collision integral.

(iii) The most significant advantage of this formalizm is that it is ap-
plicable to nonlinear systems. Usually, in the classical approaches to reduced
description, the microscopic equation of motion is linear. In that case, one
can formally write the evolution operator in the exponential form. Obviously,
this does not work for nonlinear systems, such as, for example, systems with
mean field interactions. The method which we are presenting here is based on
mapping the expanded microscopic trajectory into the consistently expanded
macroscopic trajectory. This does not require linearity. Moreover, the order-
by-order recurrent construction can be, in principle, enhanced by restoring
to other types of approximations, like Padé approximation, for example, but
we do not consider these options here.

In the present section we discuss in detail applications of the method
of natural projector [29, 30, 34] to derivations of macroscopic equations, and
demonstrate how computations are performed in the higher orders of the
expansion. The structure of the Example is as follows: In the next subsec-
tion, we describe the formalization of Ehrenfests approach [29,30]. We stress
the role of the quasiequilibrium approximation as the starting point for the
constructions to follow. We derive explicit expressions for the correction to
the quasiequilibrium dynamics, and conclude this section with the entropy
production formula and its discussion. After that, we use the present formal-
ism in order to derive hydrodynamic equations. Zeroth approximation of the
scheme is the Euler equations of the compressible nonviscous fluid. The first
approximation leads to the Navier–Stokes equations. Moreover, the approach
allows to obtain the next correction, so-called post-Navier–Stokes equations.
The latter example is of particular interest. Indeed, it is well known that the
post-Navier–Stokes equations as derived from the Boltzmann kinetic equation
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by the Chapman–Enskog method (the Burnett and the super-Burnett hydro-
dynamics) suffer from unphysical instability already in the linear approxima-
tion [72]. We demonstrate it by the explicit computation that the linearized
higher-order hydrodynamic equations derived within the method of natural
projector are free from this drawback.

11.2.1 General Construction

Let us consider a microscopic dynamics given by an equation,

ḟ = J(f) , (11.5)

where f(x, t) is a distribution function over the phase space x at time t, and
where operator J(f) may be linear or nonlinear. We consider linear macro-
scopic variables Mk = µk(f), where operator µk maps f into Mk. The prob-
lem is to obtain closed macroscopic equations of motion, Ṁk = φk(M). This
is achieved in two steps: First, we construct an initial approximation to the
macroscopic dynamics and, second, this approximation is further corrected
on the basis of the coarse-gaining.

The initial approximation is the quasiequilibrium approximation, and it
is based on the entropy maximum principle under fixed constraints (Chap. 5:

S(f) → max, µ(f) = M , (11.6)

where S is the entropy functional, which is assumed to be strictly concave,
and M is the set of the macroscopic variables {Mk}, and µ is the set of the
corresponding operators. If the solution to the problem (11.6) exists, it is
unique thanks to the concavity of the entropy functional. The solution to
equation (11.6) is called the quasiequilibrium state, and it will be denoted
as f∗(M). The classical example is the local equilibrium of the ideal gas: f
is the one-body distribution function, S is the Boltzmann entropy, µ are five
linear operators, µ(f) =

∫
{1,v, v2}f dv, with v the particle’s velocity; the

corresponding f∗(M) is called the local Maxwell distribution function.
If the microscopic dynamics is given by equation (11.5), then the quasi-

equilibrium dynamics of the variables M reads:

Ṁk = µk(J(f∗(M)) = φ∗
k . (11.7)

The quasiequilibrium approximation has important property, it conserves
the type of the dynamics: If the entropy monotonically increases (or not de-
creases) due to equation (11.5), then the same is true for the quasiequilibrium
entropy, S∗(M) = S(f∗(M)), due to the quasiequilibrium dynamics (11.7).
That is, if

Ṡ =
∂S(f)
∂f

ḟ =
∂S(f)
∂f

J(f) ≥ 0 ,

then
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Ṡ∗ =
∑

k

∂S∗

∂Mk
Ṁk =

∑
k

∂S∗

∂Mk
µk(J(f∗(M))) ≥ 0 . (11.8)

Summation in k always implies summation or integration over the set of
labels of the macroscopic variables.

Conservation of the type of dynamics by the quasiequilibrium approxima-
tion is a simple yet a general and useful fact. If the entropy S is an integral
of motion of equation (11.5) then S∗(M) is the integral of motion for the
quasiequilibrium equation (11.7). Consequently, if we start with a system
which conserves the entropy (for example, with the Liouville equation) then
we end up with the quasiequilibrium system which conserves the quasiequi-
librium entropy. For instance, if M is the one-body distribution function, and
(11.5) is the (reversible) Liouville equation, then (11.7) is the Vlasov equation
which is reversible, too. On the other hand, if the entropy was monotonically
increasing on the solutions of equation (11.5), then the quasiequilibrium en-
tropy also increases monotonically on the solutions of the quasiequilibrium
dynamic equations (11.7). For instance, if equation (11.5) is the Boltzmann
equation for the one-body distribution function, and M is a finite set of mo-
ments (chosen in such a way that the solution to the problem (11.6) exists),
then (11.7) are closed moment equations for M which increase the quasiequi-
librium entropy (this is the essence of a well known generalization of Grad’s
moment method, Chap. 5).

11.2.2 Enhancement of Quasiequilibrium Approximations
for Entropy-Conserving Dynamics

The goal of the present subsection is to describe the simplest analytic imple-
mentation, the microscopic motion with periodic coarse-graining. The notion
of coarse-graining was introduced by P. and T. Ehrenfest in their seminal
work [15]: The phase space is partitioned into cells, the coarse-grained vari-
ables are the amounts of the phase density inside the cells. Dynamics is de-
scribed by the two processes, by the Liouville equation for f , and by periodic
coarse-graining, replacement of f(x) in each cell by its average value in this
cell. The coarse-graining operation means forgetting the microscopic details,
or of the history.

From the perspective of the general quasiequilibrium approximations, pe-
riodic coarse-graining amounts to the return of the true microscopic trajec-
tory on the quasiequilibrium manifold with the preservation of the macro-
scopic variables. The motion starts at the quasiequilibrium state f∗

i . Then
the true solution fi(t) of the microscopic equation (11.5) with the initial con-
dition fi(0) = f∗

i is coarse-grained at a fixed time t = τ , solution fi(τ) is
replaced by the quasiequilibrium function f∗

i+1 = f∗(µ(fi(τ))). This process
is sketched in Fig. 11.1.

From the features of the quasiequilibrium approximation it follows that
for the motion with the periodic coarse-graining, the inequality is valid,
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M = ϕ(M)·

f = J( f )
· f

M

f ∗

µµµ

Fig. 11.1. Coarse-graining scheme. f is the space of microscopic variables, M is
the space of the macroscopic variables, f∗ is the quasiequilibrium manifold, µ is
the mapping from the microscopic to the macroscopic space

S(f∗
i ) ≤ S(f∗

i+1) , (11.9)

the equality occurs if and only if the quasiequilibrium is the invariant mani-
fold of the dynamic system (11.5). Whenever the quasiequilibrium is not the
solution to equation (11.5), the strict inequality in (11.9) demonstrates the
entropy increase. Following Ehrenfests, the sequence of the quasiequilibrium
states is called the H-curve.

In other words, let us assume that the trajectory begins at the quasi-
equilibrium manifold, then it takes off from this manifold according to the
microscopic evolution equations. Then, after some time τ , the trajectory is
coarse-grained, that is the, state is brought back on the quasiequilibrium
manifold while keeping the current values of the macroscopic variables. The
irreversibility is born in the latter process, and this construction clearly rules
out quasiequilibrium manifolds which are invariant with respect to the mi-
croscopic dynamics, as candidates for a coarse-graining.

The coarse-graining indicates the way to derive equations for the macro-
scopic variables from the condition that the macroscopic trajectory, M(t),
which governs the motion of the quasiequilibrium states, f∗(M(t)), should
match precisely the same points on the quasiequilibrium manifold,
f∗(M(t + τ)), and this matching should be independent of both the initial
time, t, and the initial condition, M(t). The problem is then how to derive the
continuous time macroscopic dynamics which would be consistent with this
picture. The simplest realization suggested in [29, 30] is based on matching
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an expansion of both the microscopic and the macroscopic trajectories. Here
we present this construction to the third order accuracy [29,30].

Let us write down the solution to the microscopic equation (11.5), and ap-
proximate this solution by the polynomial of the third order in τ . Introducing
notation, J∗ = J(f∗(M(t))), we write,

f(t+ τ) = f∗ + τJ∗ +
τ2

2
∂J∗

∂f
J∗ +

τ3

3!

(
∂J∗

∂f

∂J∗

∂f
J∗ +

∂2J∗

∂f2
J∗J∗

)
+ o(τ3) .

(11.10)
Evaluation of the macroscopic variables on the function (11.10) gives

Mk(t+ τ) = Mk + τφ∗
k +

τ2

2
µk

(
∂J∗

∂f
J∗
)

(11.11)

+
τ3

3!

{
µk

(
∂J∗

∂f

∂J∗

∂f
J∗
)

+ µk

(
∂2J∗

∂f2
J∗J∗

)}
+ o(τ3) ,

where φ∗
k = µk(J∗) is the quasiequilibrium macroscopic vector field (the right

hand side of equation (11.7)), and all the functions and derivatives are taken
in the quasiequilibrium state at time t.

We shall now establish the macroscopic dynamic by matching the macro-
scopic and the microscopic dynamics. Specifically, the macroscopic dynamic
equations (11.7) with the right-hand side not yet defined, give the following
third-order result:

Mk(t+ τ) = Mk + τφk +
τ2

2

∑
j

∂φk

∂Mj
φj (11.12)

+
τ3

3!

∑
ij

(
∂2φk

∂MiMj
φiφj +

∂φk

∂Mi

∂φi

∂Mj
φj

)
+ o(τ3) .

Expanding functions φk into a series

φk = R
(0)
k + τR

(1)
k + τ2R

(2)
k + . . . (R(0)

k = φ∗) ,

and requiring that the microscopic and the macroscopic dynamics coincide
to the order of τ3, we obtain the sequence of approximations to the right-
hand side of the equation for the macroscopic variables. Zeroth order is the
quasiequilibrium approximation to the macroscopic dynamics. The first-order
correction gives:

R
(1)
k =

1
2


µk

(
∂J∗

∂f
J∗
)
−
∑

j

∂φ∗
k

∂Mj
φ∗

j


 . (11.13)

The next, second-order correction has the following explicit form:
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R
(2)
k =

1
3!

{
µk

(
∂J∗

∂f

∂J∗

∂f
J∗
)

+ µk

(
∂2J∗

∂f2
J∗J∗

)}
− 1

3!

∑
ij

(
∂φ∗

k

∂Mi

∂φ∗
i

∂Mj
φ∗

j

)

− 1
3!

∑
ij

(
∂2φ∗

k

∂Mi∂Mj
φ∗

iφ
∗
j

)
− 1

2

∑
j

(
∂φ∗

k

∂Mj
R

(1)
j +

∂R
(1)
j

∂Mj
φ∗

j

)
. (11.14)

Further corrections are found by the same token. Equations (11.13)–(11.14)
give explicit closed expressions for corrections to the quasiequilibrium dy-
namics to the order of accuracy specified above.

11.2.3 Entropy Production

The most important consequence of the above construction is that the result-
ing continuous time macroscopic equations retain the dissipation property of
the discrete time coarse-graining (11.9) on each order of approximation n ≥ 1.
Let us first consider the entropy production formula for the first-order ap-
proximation. In order to shorten notations, it is convenient to introduce the
quasiequilibrium projection operator,

P ∗g =
∑

k

∂f∗

∂Mk
µk(g) . (11.15)

It has been demonstrated in [30] that the entropy production,

Ṡ∗
(1) =

∑
k

∂S∗

∂Mk
(R(0)

k + τR
(1)
k ) ,

equals

Ṡ∗
(1) = −τ

2
(1 − P ∗)J∗ ∂2S∗

∂f∂f

∣∣∣∣
f∗

(1 − P ∗)J∗ . (11.16)

Expression (11.16) is nonnegative definite due to concavity of the entropy.
The entropy production (11.16) is equal to zero only if the quasiequilibrium
approximation is the true solution to the microscopic dynamics, that is, if
(1 − P ∗)J∗ ≡ 0. While quasiequilibrium approximations which solve the Li-
ouville equation are uninteresting objects (except, of course, for the equilib-
rium itself), vanishing of the entropy production in this case is a simple test
of consistency of the theory. Note that the entropy production (11.16) is pro-
portional to τ . Note also that the projection operator does not appear in our
consideration a priory, rather, it is the result of exploring the coarse-graining
condition in the previous subsection.

Though equation (11.16) looks very natural, its existence is rather subtle.
Indeed, equation (11.16) is a difference of the two terms,

∑
k µk(J∗∂J∗/∂f)
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(contribution of the second-order approximation to the microscopic trajec-
tory), and

∑
ik R

(0)
i ∂R

(0)
k /∂Mi (contribution of the derivative of the quasi-

equilibrium vector field). Each of these expressions separately gives a positive
contribution to the entropy production, and equation (11.16) is the difference
of the two positive definite expressions. In the higher order approximations,
these subtractions are more involved, and explicit demonstration of the en-
tropy production formulae becomes a formidable task. Yet, it is possible to
demonstrate the increase-in-entropy without explicit computation, though at
a price of smallness of τ . Indeed, let us denote Ṡ∗

(n) the time derivative of the
entropy on the nth order approximation. Then

∫ t+τ

t

Ṡ∗
(n)(s) ds = S∗(t+ τ) − S∗(t) +O(τn+1) ,

where S∗(t+τ) and S∗(t) are true values of the entropy at the adjacent states
of the H-curve. The difference δS = S∗(t+ τ) − S∗(t) is strictly positive for
any fixed τ , and, by equation (11.16), δS ∼ τ2 for small τ . Therefore, if τ is
small enough, the right hand side in the above expression is positive, and

τ Ṡ∗
(n)(θ(n)) > 0 ,

where t ≤ θ(n) ≤ t+ τ . Finally, since Ṡ∗
(n)(t) = Ṡ∗

(n)(s) +O(τn) for any s on
the segment [t, t + τ ], we can replace Ṡ∗

(n)(θ(n)) in the latter inequality by
Ṡ∗

(n)(t). The sense of this consideration is as follows: Since the entropy pro-
duction formula (11.16) is valid in the leading order of the construction, the
entropy production will not collapse in the higher orders at least if the coarse-
graining time is small enough. More refined estimations can be obtained only
from the explicit analysis of the higher-order corrections.

11.2.4 Relation to the Work of Lewis

Among various realizations of the coarse-graining procedures, the work of
Lewis [281] appears to be most close to our approach. It is therefore pertinent
to discuss the differences. Both methods are based on the coarse-graining
condition,

Mk(t+ τ) = µk (Tτf
∗(M(t))) , (11.17)

where Tτ is the formal solution operator of the microscopic dynamics. Above,
we applied a consistent expansion of both, the left hand side and the right
hand side of the coarse-graining condition (11.17), in terms of the coarse-
graining time τ . In the work of Lewis [281], it was suggested, as a general
way to exploring the condition (11.17), to write the first-order equation for
M in the form of the differential pursuit,

Mk(t) + τ
dMk(t)

dt
≈ µk (Tτf

∗(M(t))) . (11.18)
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In other words, in the work of Lewis [281], the expansion to the first order
was considered on the left (macroscopic) side of equation (11.17), whereas the
right hand side containing the microscopic trajectory Tτf

∗(M(t)) was not
treated on the same footing. Clearly, expansion of the right hand side to first
order in τ is the only equation which is common in both approaches, and this
is the quasiequilibrium dynamics. However, the difference occurs already in
the next, second-order term (see [29,30] for details). Namely, the expansion to
the second order of the right hand side of Lewis’ equation (11.18) results in a
dissipative equation (in the case of the Liouville equation, for example) which
remains dissipative even if the quasiequilibrium approximation is the exact
solution to the microscopic dynamics, that is, when microscopic trajectories
once started on the quasiequilibrium manifold belong to it in all the later
times, and thus no dissipation can be born by any coarse-graining.

On the other hand, our approach assumes a certain smoothness of tra-
jectories so that the application of the low-order expansion bears physical
significance. For example, while using lower-order truncations it is not pos-
sible to derive the Boltzmann equation because in that case the relevant
quasiequilibrium manifold (N -body distribution function is proportional to
the product of one-body distributions, or uncorrelated states) is almost in-
variant during the long time (of the order of the mean free flight of particles),
while the trajectory steeply leaves this manifold during the short-time pair
collision. It is clear that in such a case lower-order expansions of the mi-
croscopic trajectory do not lead to useful results. It has been clearly stated
by Lewis [281], that the exploration of the condition (11.17) depends on the
physical situation, and how one makes approximations. In fact, derivation of
the Boltzmann equation given by Lewis on the basis of the condition (11.17)
does not follow the differential pursuit approximation: As is well known, the
expansion in terms of particle’s density of the solution to the BBGKY hi-
erarchy is singular, and begins with the linear in time term. Assuming the
quasiequilibrium approximation for the N -body distribution function under
fixed one-body distribution function, and that collisions are well localized in
space and time, one gets on the right hand side of equation (11.17),

f(t+ τ) = f(t) + nτJB(f(t)) + o(n) ,

where n is particle’s density, f is the one-particle distribution function, and
JB is the Boltzmanns collision integral. Next, using the mean-value theorem
on the left hand side of the equation (11.17), the Boltzmann equation is
derived (see also a recent elegant renormalization-group argument for this
derivation [55]).

Our approach of matched expansions for exploring the coarse-graining
condition (11.17) is, in fact, the exact (formal) statement that the unknown
macroscopic dynamics which causes the shift of Mk on the left hand side
of equation (11.17) can be reconstructed order-by-order to any degree of
accuracy, whereas the low-order truncations may be useful for certain physical
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situations. A thorough study of the cases beyond the lower-order truncations
is of great importance which is left for Chap. 12.

11.2.5 Equations of Hydrodynamics

The method discussed above enables one to establish in a simple way the
form of equations of the macroscopic dynamics to various degrees of approx-
imation.

In this subsection, the microscopic dynamics is given by the simplest one-
particle Liouville equation (the equation of free flight). For the macroscopic
variables we take the density, average velocity, and temperature (average
kinetic energy) of the fluid. Under this condition the solution to the quasi-
equilibrium problem (11.6) is the local Maxwell distribution. For the hydro-
dynamic equations, the zeroth (quasiequilibrium) approximation is given by
Euler’s equations of compressible nonviscous fluid. The next order approxi-
mation are the Navier–Stokes equations which have dissipative terms.

Higher-order approximations to the hydrodynamic equations, when they
are derived from the Boltzmann kinetic equation (the so-called Burnett ap-
proximation), are subject to various difficulties, in particular, they exhibit an
instability of acoustic waves at sufficiently short wave length (see, e.g. [42] for
a recent review). Here we demonstrate how model hydrodynamic equations,
including the post-Navier–Stokes approximations, can be derived on the ba-
sis of the coarse-graining idea, and study the linear stability of the obtained
equations. We found that the resulting equations are stable.

Two points need a clarification before we proceed further [30]. First, be-
low we consider the simplest Liouville equation for the one-particle distribu-
tion, describing freely moving particles without interactions. The procedure
of coarse-graining we use is an implementation of collisions leading to dis-
sipation. If we had used the full interacting N -particle Liouville equation,
the result would be different, in the first place, in the expression for the lo-
cal equilibrium pressure. Whereas in the present case we have the ideal gas
pressure, in the N -particle case the non-ideal gas pressure would arise.

Second, and more essential is that, to the order of the Navier–Stokes
equations, the result of our method is identical to the lowest-order Chapman–
Enskog method as applied to the Boltzmann equation with a single relaxation
time model collision integral (the Bhatnagar–Gross–Krook model [116]).
However, this happens only at this particular order of approximation, be-
cause already the next, post-Navier–Stokes approximation, is different from
the Burnett hydrodynamics as derived from the BGK model (the latter is
unstable).

11.2.6 Derivation of the Navier–Stokes Equations

Let us assume that reversible microscopic dynamics is given by the one-
particle Liouville equation,
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∂f

∂t
= −vi

∂f

∂ri
, (11.19)

where f = f(r,v, t) is the one-particle distribution function, and index i
runs over spatial components {x, y, z}. Subject to appropriate boundary
conditions which we assume, this equation conserves the Boltzmann entropy
S = −kB

∫
f ln f dv dr.

We introduce the following hydrodynamic moments as the macroscopic
variables: M0 =

∫
f dv, Mi =

∫
vif dv, M4 =

∫
v2f dv. These variables are

related to the more conventional density, average velocity and temperature,
n, u, T as follows:

M0 = n , Mi = nui , M4 =
3nkBT

m
+ nu2 ,

n = M0 , ui = M−1
0 Mi , T =

m

3kBM0
(M4 −M−1

0 MiMi) . (11.20)

The quasiequilibrium distribution function (local Maxwellian) reads:

f0 = n

(
m

2πkBT

)3/2

exp
(
−m(v − u)2

2kBT

)
. (11.21)

Here and below, n, u, and T depend on r and t.
Based on the microscopic dynamics (11.19), the set of macroscopic vari-

ables (11.20), and the quasiequilibrium (11.21), we can derive the equations
of the macroscopic motion.

A specific feature of the present example is that the quasiequilibrium
equation for the density (the continuity equation),

∂n

∂t
= −∂nui

∂ri
, (11.22)

should be excluded out of the further corrections. This rule should be applied
generally: If a part of the chosen macroscopic variables (momentum flux nu
here) correspond to fluxes of other macroscopic variables, then the quasiequi-
librium equation for the latter is already exact, and has to be exempted of
corrections.

The quasiequilibrium approximation for the rest of the macroscopic vari-
ables is derived in the usual way. In order to derive the equation for the
velocity, we substitute the local Maxwellian into the one-particle Liouville
equation, and act with the operator µk =

∫
vk · dv on both the sides of the

equation (11.19). We have:

∂nuk

∂t
= − ∂

∂rk

nkBT

m
− ∂nukuj

∂rj
.

Similarly, we derive the equation for the energy density, and the complete
system of equations of the quasiequilibrium approximation reads (compress-
ible Euler equations):
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∂n

∂t
= −∂nui

∂ri
, (11.23)

∂nuk

∂t
= − ∂

∂rk

nkBT

m
− ∂nukuj

∂rj
,

∂ε

∂t
= − ∂

∂ri

(
5kBT

m
nui + u2nui

)
.

where varepsilon = 3
2nkBT is the energy density.

Now we are going to derive the next order approximation to the macro-
scopic dynamics (first order in the coarse-graining time τ). For the velocity
equation we have:

Rnuk
=

1
2


∫ vkvivj

∂2f0

∂ri∂rj
dv −

∑
j

∂φnuk

∂Mj
φj


 ,

where φj are the corresponding right hand sides of the Euler equations
(11.23). In order to take derivatives with respect to macroscopic moments
{M0,Mi,M4}, we need to rewrite equations (11.23) in terms of these vari-
ables instead of {n, ui, T}. After some computation, we obtain:

Rnuk
=

1
2
∂

∂rj

(
nkBT

m

[
∂uk

∂rj
+
∂uj

∂rk
− 2

3
∂un

∂rn
δkj

])
. (11.24)

For the energy we obtain:

Rε =
1
2


∫ v2vivj

∂2f0

∂ri∂rj
dv −

∑
j

∂φε

∂Mj
φj




=
5
2
∂

∂ri

(
nk2

BT

m2

∂T

∂ri

)
. (11.25)

Thus, we get the system of the Navier–Stokes equations in the following
form:

∂n

∂t
= −∂nui

∂ri
,

∂nuk

∂t
= − ∂

∂rk

nkBT

m
− ∂nukuj

∂rj

+
τ

2
∂

∂rj

nkBT

m

(
∂uk

∂rj
+
∂uj

∂rk
− 2

3
∂un

∂rn
δkj

)
, (11.26)

∂ε

∂t
= − ∂

∂ri

(
5kBT

m
nui + u2nui

)
+ τ

5
2
∂

∂ri

(
nk2

BT

m2

∂T

∂ri

)
.

We see that the kinetic coefficients (viscosity and heat conductivity) are pro-
portional to the coarse-graining time τ . Note that they are identical with
kinetic coefficients as derived from the Bhatnagar–Gross–Krook model [116]
in the first approximation of the Chapman–Enskog method [70].
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11.2.7 Post-Navier–Stokes Equations

Now we are going to obtain the second-order approximation to the hydrody-
namic equations in the framework of the present approach. We shall compare
qualitatively the result with the Burnett approximation. The comparison
concerns stability of the hydrodynamic modes near the global equilibrium.
Stability of the global equilibrium is violated in the Burnett approximation.
Though the derivation is straightforward also in the general, nonlinear case,
we shall consider only the linearized equations which is appropriate to our
purpose here.

Linearizing the local Maxwell distribution function, we obtain:

f = n0

(
m

2πkBT0

)3/2(
n

n0
+

mvn

kBT0
un +

(
mv2

2kBT0
− 3

2

)
T

T0

)
e
− mv2

2kBT0

=
{

(M0 + 2Mici +
(

2
3
M4 −M0

)(
c2 − 3

2

)}
e−c2

, (11.27)

where we have introduced dimensionless variables:

ci =
vi

vT
, M0 =

δn

n0
, Mi =

δui

vT
, M4 =

3
2
δn

n0
+
δT

T0
,

vT =
√

2kBT0/m is the thermal velocity, Note that δn, and δT determine
deviations of these variables from their equilibrium values, n0, and T0.

The linearized Navier–Stokes equations read:

∂M0

∂t
= −∂Mi

∂ri
,

∂Mk

∂t
= −1

3
∂M4

∂rk
+
τ

4
∂

∂rj

(
∂Mk

∂rj
+
∂Mj

∂rk
− 2

3
∂Mn

∂rn
δkj

)
, (11.28)

∂M4

∂t
= −5

2
∂Mi

∂ri
+ τ

5
2
∂2M4

∂ri∂ri
.

Let us first compute the post-Navier–Stokes correction to the velocity
equation. In accordance with the equation (11.14), the first part of this term
in the linear approximation is:

1
3!
µk

(
∂J∗

∂f

∂J∗

∂f
J∗
)
− 1

3!

∑
ij

(
∂φ∗

k

∂Mi

∂φ∗
i

∂Mj
φ∗

j

)
= −1

6

∫
ck

∂3

∂ri∂rj∂rn
cicjcn

×
{

(M0 + 2Mici +
(

2
3
M4 −M0

)(
c2 − 3

2

)}
e−c2

d3c

+
5

108
∂

∂ri

∂2M4

∂rs∂rs
=

1
6

∂

∂rk

(
3
4
∂2M0

∂rs∂rs
− ∂2M4

∂rs∂rs

)
+

5
108

∂

∂rk

∂2M4

∂rs∂rs

=
1
8

∂

∂rk

∂2M0

∂rs∂rs
− 13

108
∂

∂rk

∂2M4

∂rs∂rs
. (11.29)
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The part of equation (11.14) proportional to the first-order correction is:

− 1
2

∑
j

(
∂φ∗

k

∂Mj
R

(1)
j +

∂R
(1)
k

∂Mj
φ∗

j

)
=

5
6

∂

∂rk

∂2M4

∂rs∂rs
+

1
9

∂

∂rk

∂2M4

∂rs∂rs
. (11.30)

Combining together terms (11.29), and (11.30), we obtain:

R
(2)
Mk

=
1
8

∂

∂rk

∂2M0

∂rs∂rs
+

89
108

∂

∂rk

∂2M4

∂rs∂rs
.

Similar calculation for the energy equation leads to the following result:∫
c2

∂3

∂ri∂rj∂rk
cicjck

{
(M0 + 2Mici +

(
2
3
M4 −M0

)(
c2 − 3

2

)}
e−c2

d3c

−25
72

∂

∂ri

∂2Mi

∂rs∂rs
=

1
6

(
21
4

∂

∂ri

∂2Mi

∂rs∂rs
+

25
12

∂

∂ri

∂2Mi

∂rs∂rs

)
=

19
36

∂

∂ri

∂2Mi

∂rs∂rs
.

The term proportional to the first-order corrections gives:

5
6

(
∂2

∂rs∂rs

∂Mi

∂ri

)
+

25
4

(
∂2

∂rs∂rs

∂Mi

∂ri

)
.

Thus, we obtain:

R
(2)
M4

=
59
9

(
∂2

∂rs∂rs

∂Mi

∂ri

)
. (11.31)

Finally, combining together all the terms, we obtain the following system
of linearized hydrodynamic equations:

∂M0

∂t
= −∂Mi

∂ri
,

∂Mk

∂t
= −1

3
∂M4

∂rk
+
τ

4
∂

∂rj

(
∂Mk

∂rj
+
∂Mj

∂rk
− 2

3
∂Mn

∂rn
δkj

)
+

τ2

{
1
8

∂

∂rk

∂2M0

∂rs∂rs
+

89
108

∂

∂rk

∂2M4

∂rs∂rs

}
, (11.32)

∂M4

∂t
= −5

2
∂Mi

∂ri
+ τ

5
2
∂2M4

∂ri∂ri
+ τ2 59

9

(
∂2

∂rs∂rs

∂Mi

∂ri

)
.

Now we are in a position to investigate the dispersion relation of this
system. Substituting Mi = M̃i exp(ωt + i(k, r)) (i = 0, k, 4) into equation
(11.32), we reduce the problem to finding the spectrum of the matrix:



0 −ikx −iky

−ikx
k2

8 − 1
4k

2 − 1
12k

2
x −kxky

12

−iky
k2

8 −kxky

12 − 1
4k

2 − 1
12k

2
y

−ikz
k2

8 −kxkz

12 −kykz

12

0 −ikx

(
5
2 + 59k2

9

)
−iky

(
5
2 + 59k2

9

)
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Fig. 11.2. Attenuation rates of various modes of the post-Navier–Stokes equations
as functions of the wave vector. Attenuation rate of the twice degenerated shear
mode is curve 1. Attenuation rate of the two sound modes is curve 2. Attenuation
rate of the diffusion mode is curve 3

−ikz 0

−kxkz

12 −ikx

(
1
3 + 89k2

108

)
−kykz

12 −iky

(
1
3 + 89k2

108

)
− 1

4k
2 − 1

12k
2
z −ikz

(
1
3 + 89k2

108

)
−ikz

(
5
2 + 59k2

9

)
− 5

2k
2




This matrix has five eigenvalues. The real parts of these eigenvalues re-
sponsible for the decay rate of the corresponding modes are shown in Fig.11.2
as functions of the wave vector k. We see that all real parts of all the eigenval-
ues are non-positive for any wave vector. In other words, this means that the
present system is linearly stable. For the Burnett hydrodynamics as derived
from the Boltzmann or from the single relaxation time Bhatnagar–Gross–
Krook model, it is well known that the decay rate of the acoustic branch be-
comes positive after some value of the wave vector [42,72], which leads to the
instability. While the method suggested here is clearly semi-phenomenological
(coarse-graining time τ remains unspecified), the consistency of the expansion
with the entropy requirements, and especially the latter result of the linear
stable limit of the post-Navier–Stokes correction strongly indicates that it
might be more suited to establishing models of highly nonequilibrium hydro-
dynamics.
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11.3 Example: Natural Projector
for the Mc Kean Model

In this section the fluctuation–dissipation formula derived by the method of
natural projector [31] is illustrated by the explicit computation for McKean’s
kinetic model [285]. It is demonstrated that the result is identical, on the
one hand, to the sum of the Chapman–Enskog expansion, and, on the other
hand, to the solution of the invariance equation. The equality between all the
three results holds up to the crossover from the hydrodynamic to the kinetic
domain.

11.3.1 General Scheme

Let us consider a microscopic dynamics (3.1) given by an equation for the
distribution function f(x, t) over a configuration space x:

∂tf = J(f) , (11.33)

where operator J(f) may be linear or nonlinear. Let m(f) be a set of linear
functionals whose values, M = m(f), represent the macroscopic variables,
and also let f(M , x) be a set of distribution functions satisfying the consis-
tency condition,

m(f(M)) = M . (11.34)

The choice of the relevant distribution functions is the point of central impor-
tance which we discuss later on but for the time being we need the condition
(11.34) only.

Given a finite time interval τ , it is possible to reconstruct uniquely the
macroscopic dynamics from a single condition of the coarse-graning. For the
sake of completeness, we shall formulate this condition here. Let us denote
as M(t) the initial condition at the time t to the yet unknown equations of
the macroscopic motion, and let us take f(M(t), x) for the initial condition
of the microscopic equation (11.33) at the time t. Then the condition for the
reconstruction of the macroscopic dynamics reads as follows: For every initial
condition {M(t), t}, solution to the macroscopic dynamic equations at the
time t + τ is equal to the value of the macroscopic variables on the solution
to equation (11.33) with the initial condition {f(M(t), x), t}:

M(t+ τ) = m (Tτf(M(t))) , (11.35)

where Tτ is the formal solution operator of the microscopic equation (11.33).
The right hand side of equation (11.35) represents an operation on trajecto-
ries of the microscopic equation (11.33), introduced in a particular form by
Ehrenfests’ [15] (the coarse-graining): The solution at the time t + τ is re-
placed by the state on the manifold f(M , x). Notice that the coarse-graining
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time τ in equation (11.35) is finite, and we stress the importance of the re-
quired independence from the initial time t, and from the initial condition
at t.

The essence of the reconstruction of the macroscopic equations from the
condition just formulated is in the following [29,30]: Seeking the macroscopic
equations in the form,

∂tM = R(M , τ) , (11.36)

we proceed with the Taylor expansion of the unknown functions R in terms
of powers τn, where n = 0, 1, . . ., and require that each approximation, R(n),
of the order n, is such that the resulting macroscopic solutions satisfy the
condition (11.36) to the order τn+1. This process of successive approxima-
tion is solvable. Thus, the unknown macroscopic equation (11.36) can be
reconstructed to any given accuracy.

Coming back to the problem of choosing the distribution function
f(M , x), we recall that many physically relevant cases of the microscopic
dynamics (11.33) are characterized by existence of a concave functional S(f)
(the entropy functional; discussions of S can be found in [115,191,192]). Tra-
ditionally, two cases are distinguished, the conservative [dS/dt ≡ 0 due to
equation (11.33)], and the dissipative [dS/dt ≥ 0 due to equation (11.33),
where equality sign corresponds to the stationary solution]. The approach
(11.35) and (11.36) is applicable to both these situations. In both of these
cases, among the possible sets of distribution functions f(M , x), the distin-
guished role is played by the well known quasiequilibrium approximations,
f∗(M , x), which are maximizers of the functional S(f) for fixed M . We re-
call that, due to convexity of the functional S, if such maximizer exists then
it is unique.

The special role of the quasiequilibrium approximations is due to the
fact that they preserve the type of dynamics (Chap. 5): If dS/dt ≥ 0 due
to equation (11.33), then dS∗/dt ≥ 0 due to the quasiequilibrium dynam-
ics, where S∗(M) = S(f∗(M)) is the quasiequilibrium entropy, and where
the quasiequilibrium dynamics coincides with the zeroth order in the above
construction, R(0) = m(J(f∗(M)).

In particular, the strict increase in the quasiequilibrium entropy has been
demonstrated for the first and higher order approximations (see preceding
sections of this chapter and [30]). Examples have been provided focusing on
the conservative case, and demonstrating that several well known dissipative
macroscopic equations, such as the Navier–Stokes equation and the diffusion
equation for the one-body distribution function, are derived as the lowest
order approximations of this construction.

The advantage of the method of natural projector is the locality of con-
struction, because only Taylor series expansion of the microscopic solution
is involved. This is also its natural limitation. From the physical standpoint,
finite and fixed coarse-graining time τ remains a phenomenological device
which makes it possible to infer the form of the macroscopic equations by a
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non-complicated computation rather than to derive a full form thereof. For
instance, the form of the Navier–Stokes equations can be derived from the
simplest model of free motion of particles, in which case the coarse-graining
is a substitution for collisions (see previous example.

Going away from the limitations imposed by the finite coarse graining time
[29, 30] can be recognized as the major problem of a consistent formulation
of the nonequilibrium statistical thermodynamics. Intuitively, this requires
taking the limit τ → ∞, allowing for all the relevant correlations to be
developed by the microscopic dynamics, rather than to be cut off at the
finite τ (see Chap. 12).

11.3.2 Natural Projector for Linear Systems

However, there is one important exception when the “τ → ∞ problem” is
readily solved [30,31]. This is the case where equation (11.33) is linear,

∂tf = Lf , (11.37)

and where the quasiequilibrium is a linear function of M . This is, in particu-
lar, the classical case of the linear irreversible thermodynamics where one con-
siders the linear macroscopic dynamics near the equilibrium, f eq, Lf eq = 0.
We assume, for simplicity, that the macroscopic variables M are equal to zero
at the equilibrium, and are normalized in such a way that m(f eqm†) = 1,
where † denotes transposition, and 1 is an appropriate identity operator. In
this case, the linear dynamics of the macroscopic variables M has the form,

∂tM = RM , (11.38)

where the linear operator R is determined by the coarse-graining condition
(11.35) in the limit τ → ∞:

R = lim
τ→∞

1
τ

ln
[
m
(
eτLf eqm†)] . (11.39)

Formula (11.39) has been already briefly mentioned in [30], and its relation
to the Green-Kubo formula has been demonstrated in [31]. The Green-Kubo
formula reads:

RGK =
∫ ∞

0

〈ṁ(0)ṁ(t)〉dt , (11.40)

where angular brackets denote equilibrium averaging, and where ṁ = L†m.
The difference between the formulae (11.39) and (11.40) stems from the fact
that condition (11.35) does not use an a priori hypothesis about the sepa-
ration of the macroscopic and the microscopic time scales. For the classical
N -particle dynamics, equation (11.39) is a very complicated expression, in-
volving a logarithm of non-commuting operators. It is therefore desirable to
gain its understanding in simple model situations.
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11.3.3 Explicit Example of the Fluctuation–Dissipation Formula

In this subsection we want to give an explicit example of the formula (11.39).
In order to make our point, we consider here dissipative rather than conser-
vative dynamics in the framework of the well known toy kinetic model in-
troduced by McKean [285] for the purpose of testing various ideas in kinetic
theory. In the dissipative case with a clear separation of time scales, existence
of the formula (11.39) is underpinned by the entropy growth in both the fast
and slow dynamics. This physical idea underlies generically the extraction
of the slow (hydrodynamic) component of motion through the concept of
normal solutions to kinetic equations, as pioneered by Hilbert [16], and has
been discussed by many authors, e.g. . [112,197,201]. Case studies for linear
kinetic equation help clarifying the concept of this extraction [202,203,285].

Therefore, since for the dissipative case there exist well established ap-
proaches to the problem of reducing the description, and which are exact
in the present setting, it is very instructive to see their relation to the for-
mula (11.39). Specifically, we compare the result with the exact sum of the
Chapman–Enskog expansion [70], and with the exact solution in the frame-
work of the method of invariant manifold. We demonstrate that both the
three approaches, different in their nature, give the same result as long as
the hydrodynamic and the kinetic regimes are separated.

The McKean model is the kinetic equation for the two-component vector
function f(r, t) = (f+(r, t), f−(r, t))†:

∂tf+ = −∂rf+ + ε−1

(
f+ + f−

2
− f+

)
, (11.41)

∂tf− = ∂rf− + ε−1

(
f+ + f−

2
− f−

)
.

Equation (11.41) describes the one-dimensional kinetics of particles with ve-
locities +1 and −1 as a combination of the free flight and a relaxation with
the rate ε−1 to the local equilibrium. Using the notation, (x,y), for the
standard scalar product of the two-dimensional vectors, we introduce the
fields, n(r, t) = (n,f) [the local particle’s density, where n = (1, 1)], and
j(r, t) = (j,f) [the local momentum density, where j = (1,−1)]. Equation
(11.41) can be equivalently written in terms of the moments,

∂tn = −∂rj , (11.42)
∂tj = −∂rn− ε−1j .

The local equilibrium,
f∗(n) =

n

2
n , (11.43)

is the conditional maximum of the entropy,

S = −
∫

(f+ ln f+ + f− ln f−) dr ,
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under the constraint which fixes the density, (n,f∗) = n. The quasiequilib-
rium manifold (11.43) is linear in our example, as well as the kinetic equation.

The problem of reducing the description for the model (11.41) amounts
to finding the closed equation for the density field n(r, t). When the relax-
ation parameter ε−1 is small enough (the relaxation dominance), then the
first Chapman–Enskog approximation to the momentum variable, j(r, t) ≈
−ε∂rn(r, t), amounts to the standard diffusion approximation. Let us consider
now how the formula (11.39), and other methods, extend this result.

Because of the linearity of the equation (11.41) and of the local equi-
librium, it is natural to use the Fourier transform, hk =

∫
exp(ikr)h(r) dr.

Equation (11.41) is then written,

∂tfk = Lkfk , (11.44)

where

Lk =
(
−ik − 1

2ε
1
2ε

1
2ε ik − 1

2ε

)
. (11.45)

Derivation of the fluctuation-dissipation formula (11.39) in our example goes
as follows: We seek the macroscopic dynamics of the form,

∂tnk = Rknk , (11.46)

where the function Rk is yet unknown. In the left-hand side of equation
(11.35) we have:

nk(t+ τ) = eτRknk(t) . (11.47)

In the right-hand side of equation (11.35) we have:

(
n, eτLkf∗(nk(t))

)
=

1
2

(
n, eτLkn

)
nk(t) . (11.48)

After equating the expressions (11.47) and (11.48), we require that the re-
sulting equality holds in the limit τ → ∞ independently of the initial data
nk(t). Thus, we arrive at the formula (11.39):

Rk = lim
τ→∞

1
τ

ln
[(

n, eτLkn
)]

. (11.49)

Equation (11.49) defines the macroscopic dynamics (11.46) within the present
approach. Explicit evaluation of the expression (11.49) is straightforward in
the present model. Indeed, operator Lk has two eigenvalues, Λ±

k , where

Λ±
k = − 1

2ε
±
√

1
4ε2

− k2 (11.50)

Let us denote as e±
k two (arbitrary) eigenvectors of the matrix Lk, corre-

sponding to the eigenvalues Λ±
k . Vector n has a representation, n = α+

k e+
k +
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α−
k e−

k , where α±
k are complex-valued coefficients. With this, we obtain in

equation (11.49),

Rk = lim
τ→∞

1
τ

ln
[
α+

k (n,e+
k )eτΛ+

k + α−
k (n,e−

k )eτΛ−
k

]
. (11.51)

For k ≤ kc, where k2
c = 4ε, we have Λ+

k > Λ−
k . Therefore,

Rk = Λ+
k , for k < kc . (11.52)

As was expected, formula (11.39) in our case results in the exact hydrody-
namic branch of the spectrum of the kinetic equation (11.41). The standard
diffusion approximation is recovered from equation (11.52) as the first non-
vanishing approximation in terms of the (k/kc)2.

At k = kc, the crossover from the extended hydrodynamic to the kinetic
regime takes place, and ReΛ+

k = ReΛ−
k . However, we may still extend the

function Rk for k ≥ kc on the basis of the formula (11.49):

Rk = Re Λ+
k for k ≥ kc (11.53)

Notice that the function Rk as given by equations (11.52) and (11.53) is
continuous but non-analytic at the crossover.

11.3.4 Comparison with the Chapman–Enskog Method
and Solution of the Invariance Equation

Let us now compare this result with the Chapman–Enskog method. Since the
exact Chapman–Enskog solution for the systems like equation (11.43) has
been recently discussed in detail elsewhere [40, 42, 205, 219–221], we shall be
brief here. Following the Chapman–Enskog method, we seek the momentum
variable j in terms of an expansion,

jCE =
∞∑

n=0

εn+1j(n) (11.54)

The Chapman–Enskog coefficients, j(n), are found from the recurrence equa-
tions,

j(n) = −
n−1∑
m=0

∂
(m)
t j(n−1−m) , (11.55)

where the Chapman–Enskog operators ∂(m)
t are defined by their action on

the density n:
∂

(m)
t n = −∂rj

(m) . (11.56)

The recurrence equations (11.54), (11.55), and (11.56), become well defined
as soon as the aforementioned zero-order approximation j(0) is specified,
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j(0) = −∂rn . (11.57)

From equations (11.55), (11.56), and (11.57), it follows that the Chapman–
Enskog coefficients j(n) have the following structure:

j(n) = bn∂
2n+1
r n , (11.58)

where coefficients bn are found from the recurrence equation,

bn =
n−1∑
m=0

bn−1−mbm, b0 = −1 . (11.59)

Notice that coefficients (11.59) are real-valued, by the sense of the Chapman–
Enskog procedure. The Fourier image of the Chapman–Enskog solution for
the momentum variable has the form,

jCE
k = ikBCE

k nk , (11.60)

where

BCE
k =

∞∑
n=0

bn(−εk2)n . (11.61)

Equation for the function B (11.61) is easily found upon multiplying equation
(11.59) by (−k2)n, and summing in n from zero to infinity:

εk2B2
k +Bk + 1 = 0 . (11.62)

Solution to the latter equation which respects condition (11.57), and which
constitutes the exact Chapman–Enskog solution (11.61) is:

BCE
k =

{
k−2Λ+

k , k < kc

none, k ≥ kc
(11.63)

Thus, the exact Chapman–Enskog solution derives the macroscopic equation
for the density as follows:

∂tnk = −ikjCE
k = RCE

k nk , (11.64)

where

RCE
k =

{
Λ+

k , k < kc

none, k ≥ kc
(11.65)

The Chapman–Enskog solution does not extend beyond the crossover at kc.
This happens because the full Chapman–Enskog solution appears as a con-
tinuation the diffusion approximation, whereas formula (11.49) is not based
on such an extension.

Finally, let us discuss briefly the comparison with the solution within the
method of invariant manifold [9,11,14]. Specifically, the momentum variable
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jinv
k = ikBinv

k nk is required to be invariant of both the microscopic and
the macroscopic dynamics, that is, the time derivative of jinv

k due to the
macroscopic subsystem,

∂jinv
k

∂nk
∂tnk = ikBinv

k (−ik)[ikBinv
k ] , (11.66)

should be equal to the derivative of jinv
k due to the microscopic subsystem,

∂tj
inv
k = −iknk − ε−1ikBinv

k nk , (11.67)

and that the equality of the derivatives (11.66) and (11.67) should hold inde-
pendently of the specific value of the macroscopic variable nk. This amounts
to a condition for the unknown function Binv

k , which is essentially the same
as equation (11.62), and it is straightforward to show that the same selection
procedure of the hydrodynamic root as above in the Chapman–Enskog case
results in equation (11.65).

In conclusion, in this Example we have given the explicit illustration
for the formula (11.39). The example demonstrates that the fluctuation-
dissipation formula (11.39) gives the exact macroscopic evolution equation,
which is identical to the sum of the Chapman–Enskog expansion, as well as
to the invariance principle. This identity holds up to the point where the hy-
drodynamics and the kinetics cease to be separated. Whereas the Chapman–
Enskog solution does not extend beyond the crossover point, the formula
(11.39) demonstrates a non-analytic extension.
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