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Abstract—In this work we provide generalizations and exten-
sions of stochastic separation theorems to kernel classifiers. A
general separability result for two random sets is also established.
We show that despite feature maps corresponding to a given
kernel function may be infinite-dimensional, kernel separability
characterizations can be expressed in terms of finite-dimensional
volume integrals. These integrals allow to determine and quantify
separability properties of an arbitrary kernel function. The
theory is illustrated with numerical examples.

Index Terms—Stochastic separation theorems, kernel stochas-
tic separation theorems, kernel classifiers, artificial intelligence,
machine learning

I. INTRODUCTION

Kernel classifiers have long been recognized as a powerful
tool for a broad range of classification problems [1], [2]. Not
only they offer a natural extension of linear classifiers to the
nonlinear ones, the Representer Theorem [3] states that kernel
classifiers minimizing a wide range of risk functionals can
often be expressed as kernel expansions over sample points.
The latter property allows to expand the technology of support
vector machines [4] to the realm of kernel classifiers and hence
offers a computationally efficient way to construct classifiers
with nonlinear decision boundaries.

Choosing a particular kernel for a given task at hand is
recognized as a hard theoretical and computational problem
[5]. Several approaches have been developed to date to address
this problem, including the grid search algorithms [6], [7],
automatic tuning of kernel parameters [8], genetic algorithms
[9], and other heuristics [10]. These methods allow selection
of optimal feature spaces via thorough and explicit statistical
evaluation of kernel classifiers built over a family of kernel
candidates.

The work was supported by Innovate UK Knowledge Transfer Partnership
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In this work, we explore an alternative approach. Instead
of repeatedly solving a given classification problem with
a given family of kernel classifiers directly we investigate
and assess relevant statistical properties of kernels and their
corresponding feature maps. Our motivation stems from the
seminal Cover’s theorem [11], [12] suggesting that higher
dimensionality of the feature maps relative to that of the
original data may play a role in success of kernel classifiers,
and other relevant body of work [13], [14], [15], [16], [17],
[18], [19], [20], [21] on properties and geometry of high-
dimensional spaces.

Links between dimensionality and separability have been
explored in the literature on statistical learning theory through
e.g. the concept of the Vapnik-Chervonenkis (VC) dimension
[22], [23] measuring richness of classification rules which
can be implemented by a classifier. Here we adapt stochastic
separation theorems [14], [15], [16], [24], [25], [26] to kernel
classifiers, provide their kernel generalizations, and use these
results to derive computable separability measures for kernel
classifiers, including for given samples of empirical data (cf.
[27] exploring the notion of the local Rademacher complexity).

One of the outcomes of such generalization is an explicit
characterization of kernel separability properties in terms of
finite-dimensional volume integrals over domains determined
by the kernel functions themselves. This suggests that even
when kernel feature maps are infinite dimensional, separability
properties of these maps can be expressed in terms of (finite)
dimensionality of the space to which the original data belongs.

The paper is organized as follows. Section II contains
necessary theoretical preliminaries and formal statement of the
problem. In Section III we present new kernel stochastic sep-
aration theorems and derive separability characterizations for
kernel classifiers, Section IV presents two numerical examples,
and Section V concludes the paper.
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NOTATION

The following notational agreements are used throughout
the text:
• Rn stands for the n-dimensional linear real vector space;
• N denotes the set of natural numbers;
• symbols x = (x1, . . . , xn) will denote elements of Rn;
• (x,y) =

∑
k xkyk is the inner product of x and y, and

‖x‖ =
√

(x,x) is the standard Euclidean norm in Rn;
• Bn denotes for the unit ball in Rn centered at the origin:

Bn = {x ∈ Rn| (x,x) ≤ 1};
• Vn is the n-dimensional Lebesgue measure, and Vn(Bn)

is the volume of unit ball;
• if Y is a finite set then the number of elements in Y

(cardinality of Y) is denoted by |Y|;
• if x is a random variable then E[x] is the expectation of
x.

II. PRELIMINARIES AND PROBLEM FORMULATION

Let X = {x1, . . . ,xM} be a set of vectors in Rn sampled
from some distribution with a corresponding probability den-
sity function p. Each element of the sample is subjected to a
transformation

Φ : Rn → H,

called a feature map, mapping xi ∈ Rn into Φ(xi) in some
Hilbert space H. We shall assume that the feature map Φ is
known. The process induces a new random variable, Φ(x),
and a corresponding distribution. We suppose that the feature
map Φ is such that

E[Φ] =

∫
Φ(x)p(x)dx

exists. For the moment we assume that E[Φ] = 0 and lift this
technical assumption later in Section III-C.

For the given feature map Φ(x), a kernel function κ is
defined as follows

κ : Rn × Rn → R, κ(xi,xj) = (Φ(xi),Φ(xj)), (1)

and a kernel classifier is the function

f : Rn → R, f(x) =

m∑
j=1

αjκ(yj ,x)− b, (2)

where αj , b ∈ R, and yj ∈ Rn. In the simplest binary
classification setting, the classifier assigns positive values to
elements x ∈ Rn from the set corresponding to Class 1 and
negative values to elements from set to Class 2.

Definition 1: A point x ∈ Rn is kernel separable with the
kernel function (1) from a set Y ⊂ Rn, if there exist m ∈ N,
αj , yj ∈ Rn, j ∈ {1, . . . ,m} such that

m∑
j=1

αjκ(yj ,x) >

m∑
j=1

αjκ(yj ,y)

for all y ∈ Y .

Definition 2: A set X ⊂ Rn is kernel separable with the
kernel function (1) from a set Y ⊂ Rn, if there exist m ∈ N,
αj , yj ∈ Rn, j ∈ {1, . . . ,m} such that

m∑
j=1

αjκ(yj ,x) >

m∑
j=1

αjκ(yj ,y)

for all y ∈ Y and x ∈ X .
Definition 3: A set S ⊂ Rn is kernel separable with the

kernel function (1) if for each x ∈ S there exist m ∈ N, αj ,
yj ∈ Rn, j ∈ {1, . . . ,m} such that

m∑
j=1

αjκ(yj ,x) >

m∑
j=1

αjκ(yj ,y)

for all y ∈ S, y 6= x.
In addition to the notions of kernel separability, and similar

to [16], we adopt the notion of Fisher separability to kernel
classifiers.

Definition 4: A point x ∈ Rn is Fisher separable with the
kernel function (1) from a set Y ⊂ Rn, if

κ(x,x) > κ(x,y) (3)

for all y ∈ Y . A set S ⊂ Rn is Fisher separable with the
kernel function (1) if, for each x ∈ S, (3) holds for all y ∈ S,
y 6= x.

It is clear that Fisher separability with a given kernel
function automatically implies kernel separability and as such
is a stronger property. Note also that the notion of Fisher
separability can be further extended to the notion of Fisher
separability with a threshold γ ∈ [0, 1), cf. [16], by replacing
(3) with

γκ(x,x) > κ(x,y).

This generalization allows to meaningfully pose the separabil-
ity problem for kernels like κ(x,y) = (x/‖x‖,y/‖y‖) for
which the first part of Definition 4 always holds true.

Having introduced relevant notions, we are now ready to
present main results of the contribution.

III. KERNEL STOCHASTIC SEPARATION THEOREMS

A. Kernel separability of points

Our first result is provided in Theorem 1
Theorem 1: Let y1, . . . ,yM ∈ Rn be given, and let x be

drawn from a distribution with the probability density function
p(x|y1, . . . ,yM ). Then x is Fisher separable with the kernel
function (1) from the set Y = {y1, . . . ,yM} with probability
at least

1−
M∑
i=1

∫
κ(x,x)−κ(x,yi)≤0

p(x|y1, . . . ,yM )dx. (4)

Proof of Theorem 1. Consider events

Ai : x is Fisher separable from yi

It is clear that

P (not Ai) =

∫
κ(x,x)−κ(x,yi)≤0

p(x|y1, . . . ,yM )dx.



Recall that

P (A1&A2& · · ·&AM ) ≥ 1−
M∑
i=1

P (not Ai).

Combining the last two observations we can conclude that the
probability that x is separable from all yi is bounded from
below by the expression in (4). �

Corollary 1: Suppose that assumptions of Theorem 1 hold.
Let us further assume that there is a λ ∈ (0, 1), an L ∈ R>0,
and a function α : N→ R such that∫

κ(x,x)−κ(x,y)≤0
p(x|y1, . . . ,yM )dx ≤ Lλα(n) (5)

for all y ∈ Rn. Then x is Fisher separable with the kernel
function (1) from the set Y = {y1, . . . ,yM} with probability
at least

1−MLλα(n).

It has been shown in [16] that for the feature maps Φ(x) =
x and p(·|y1, . . . ,yM ) defined on Bn and bounded from above
by L/Vn(Bn), condition (5) holds with

λ =
1

2
, α(n) = n.

Corollary 2: Consider the set S = {x1, . . . ,xM} in which
xi ∈ Rn, i = 1, . . . ,M are random i.i.d. vectors. Let p :
Rn → R be the corresponding probability density function,
and let there exist λ ∈ (0, 1), L ∈ R>0, and a function α :
N→ R such that∫

κ(x,x)−κ(x,y)≤0
p(x)dx ≤ Lλα(n) (6)

for all y ∈ Rn. Then the set S is Fisher separable with the
kernel function (1) with probability at least

1− (M − 1)MLλα(n).

Theorem 1 and Corollaries 1, 2 extend stochastic separation
theorems to kernel classifiers. Note that dimensionality N of
the space to which the feature map, Φ(·), maps original data
points x need not be finite. And yet, according to these results,
the probabilities of kernel separability in these cases can still
be estimated via integration in finite dimensional spaces using
e.g. (5), (6).

We also note that, since Theorem 1 and Corollaries 1
concern Fisher separability, these bounds apply to kernel sep-
arability too (cf. Definitions 1 – 3). Moreover, all statements
derived so far could be generalized to cases when the functions
κ themselves are not kernels.

An interesting question is if these results can be extended
to characterise separability of two random sets. As we shall
see below, the above formalism can be generalized to answer
this question too.

B. Kernel separability of two random sets

Consider two random sets X = {x1, . . . ,xM} and Y =
{y1, . . . ,yK}. Let there be a process (e.g. a learning algo-
rithm) which, for the given X , Y or their subsets, produces a
function

f(·) =

d∑
i=1

αiκ(zi, ·), αj ∈ R.

The vectors zi, i = 1, . . . , d are supposed to be known.
Furthermore, we suppose that the function f is such that

f(yj) >

d∑
m,k=1

αmαkκ(zm, zk) (7)

for all yj ∈ Y . In other words, if we denote w =∑d
i=1 αiΦ(zi), the following holds true:

(w,w) < (w,Φ(yi)) for all i = 1, . . . ,K. (8)

Note that since the Y,X are random, it is natural to expect that
the vector α = (α1, . . . , αd) is also random. The following
statement can now be formulated:

Theorem 2: Consider sets X and Y . Let pα(α) be the
probability density function associated with the random vector
α, and α satisfies condition (7) with probability 1. Then the
set X is kernel separable with the kernel function (1) from the
set Y with probability at least

1−
M∑
i=1

∫
H(α,xi)≤0

pα(α)dα, (9)

where

H(α,xi) =

d∑
k,m=1

αkαmκ(zk, zm)−
d∑

m=1

αmκ(zm,xi).

Proof of Theorem 2. The proof of the theorem is similar to
that of Theorem 1. Consider events

Ai : (w,w) > (w,Φ(xi)).

Events Ai are equivalent to that H(α,xi) > 0. Eq. (9)
provides a lower bound for the probability that all these events
hold. Recall that vectors α satisfy (8), and hence

d∑
m=1

αmκ(zm,xi) =(w,Φ(xi))

< (w,Φ(yj)) =

d∑
m=1

αmκ(zm,yj)

for all xi ∈ X and yj ∈ Y with probability at least (9). The
statement now follows immediately from Definition 2. �

Theorem 2 generalizes earlier k-tuple separation theorems
[24], [28] in that it applies to a much broader class of
classifiers and is not limited to a particular set of distributions.
Similar to Corollaries 1, 2, one can establish conditions
linking dimensionality of the vector α with the probability of



separation. An example of such condition could be existence
of L > 0, λ ∈ (0, 1) and a function β : N×N→ R such that∫

H(α,y)≤0
pα(α)dα ≤ Lλβ(d,n)

for any y ∈ Rn.

C. Kernels with E[Φ(x)] 6= 0

Theorems 1, 2, their corollaries, and Fisher separability no-
tions in Definition 4 have been produced under the simplifying
assumption that E[Φ(x)] = 0. These statements, however, can
be straightforwardly generalized to more general settings with

E[Φ(x)] = Φ.

The generalization can be achieved by replacing kernel func-
tions κ(x,y) = (Φ(x),Φ(y)) with

κ̃(x,y) = (Φ(x)− Φ,Φ(y)− Φ) = κ(x,y)

−
∫
p(x)κ(x,y)dx−

∫
p(y)κ(x,y)dy

+

∫ ∫
p(x)p(y)κ(x,y)dxdy

in relevant expressions. In practice, E[Φ(x)] can be replaced
with the sample mean over a finite sample X = {x1, . . . ,xM}
leading to the following approximations of κ̃(x,y):

κ̃(x,y) = κ(x,y)

− 1

N

M∑
i=1

(κ(xi,y) + κ(x,xi)) +
1

N2

M∑
i,j=1

κ(xi,xj).

D. Kernel separability measure

One of the outcomes of our theoretical results is the kernel
separability characterization expressed e.g. in terms of the
upper bound Lλα(n) on the integral∫

κ̃(x,x)−κ̃(x,y)≤0
p(x)dx

in the left-hand side of (6). The bound allows to determine
how well a particular kernel κ(·, ·) separates points in samples
from a given distribution. The smaller the value of λ is and
the faster the function α(·) grows with n the better is the
kernel’s separability (as per Definition 4). Direct derivation
of λ, α(·), requires knowledge or at least bounds on the
probability density functions p, pα.

In practice, however, the probability density functions are
rarely known. On the other hand, it is not unrealistic to expect
that some data sample X from the distribution might be
available. If this is the case then one may replace evaluation
of the above integral with

ω(y, n) =
|{x ∈ X ⊂ Rn |x 6= y, κ̃(x,x)− κ̃(x,y) ≤ 0}|

|X |
.

Empirical kernel separability measure, can then be defined as
the average

Ωa(n) =

∑|X |
i=1 ω(xi, n)

|X |

or
Ωmax(n) = max

xi∈X
ω(xi, n). (10)

In the next section we show how these measures can
be employed to characterize and compare different kernel
functions with respect to their ability to separate points in
random sets.

IV. EXAMPLES

A. Polynomial kernels for an equidistribution in the [−1, 1]n

cube

In the first group of experiments we considered behavior of
polynomial kernels in a synthetic test in which the original
data samples are generated from equidistributions in the unit
cubes [−1, 1]n of varying dimension n. The kernel functions
were chosen as follows

κ(x,y) = ((x,y) + 1)p, (11)

where parameter p took values in the set {1, 2, 3}. Observe
that for p = 1 the centralized kernel κ̃ reduces to standard
inner product (x,y), and for quadratic kernels, p = 2, the
feature map is

Φ(x) =(x21, . . . , x
2
n,
√

2x1x2, . . . ,
√

2xn−1xn,√
2x1, . . . ,

√
2xn, 1).

(12)

For each given value of n we generated a sample of M =
103 vectors and calculated the value of Ωmax(n) (see Eq. (10))
from a sub-sample of 102 points chosen randomly from this
sample. The outcomes of this process for different values of
p are summarized in Fig. 1.

According to Fig. 1, separability of quadratic kernels is
higher that that of the original Fisher discriminants. This is
hardly surprising given that the dimensionality of the quadratic
feature map, n(n+ 1)/2 + n+ 1, is significantly higher than
that of the original space, n.

Unexpectedly, these experiments reveal that re-weighting of
features, e.g. via the whitening transformation, may produce
higher performance gains than choosing a kernel with a higher-
dimensional feature map (black triangled lines in Fig. 1 vs
squared magenta lines). Note, however, that such re-weighting
generates a different inner product and hence corresponds to
a kernel function that is different from the ones specified in
(11).

B. Polynomial kernels for the bottlenecks of Inception model

In this example we investigated and tested kernel separabil-
ity in the setting when the original features are bottle necks
of a pre-trained convolutional neural network. In particular,
we considered a network trained to distinguish ten digits in
American Sign Language. The network was an Inception deep
neural network model [29] whose architecture and training
process has been described in detail in [28]. The model was
trained1 on ten sets of images corresponding to the American
Sign Language pictures for 0-9. Each set contained 1000

1https://www.tensorflow.org/tutorials/image retraining



Fig. 1. Separability characterizations for polynomial kernels with p = 1, 2, 3. Blue circled line corresponds to p = 1, red starred line corresponds to p = 2,
and magenta squares show performance of the chosen polynomial kernel with p = 3. Black line with triangle markers corresponds to Fisher discriminants
built over quadratic feature maps followed by centralization and whitening. Left panel shows original data, and right panel shows the same data but in the
logarithmic scale.

unique images consisting of profile shots of the persons hand,
along with 3/4 profiles and shots from above and below. The
states xi are the vectors containing the values of pre-softmax
layer bottlenecks of size n for however many neurons are in
the penultimate layer.

It was shown in [28] that these bottlenecks can be used
to construct error correcting cascades for such systems, and
thanks to stochastic separation theorems, such cascades can
be derived using mere Fisher discriminants. The higher is
the dimension of the bottlenecks xi the larger is the prob-
ability that the error correcting cascades are successful. It is
therefore interesting to see if employing kernels in place of
the original linear classifiers could potentially improve error
correction performance. To assess this, we projected original
bottle necks xi on n principal components, and constructed
higher-dimensional representations of the projected data using
quadratic kernel feature map (12). This was followed by
centering and whitening transformation. For the new feature
vectors defined in this way, we derived Ωmax(n) for n ranging
from 1 to 94. Results are shown in Fig. 2.

The figure suggests that using kernels induced by quadratic
feature maps may offer superior point separability properties
as compared to the original feature vectors.

V. CONCLUSION

In this work we presented an extension of the framework
of stochastic separation theorems to arbitrary kernel classi-
fiers. Separability criteria emerging from these generalizations
reduce to finite-dimensional volume integrals despite the fact
that the feature maps corresponding to relevant kernels may be
infinite-dimensional. In addition, we formulated a general sep-
arability result for two random sets. The latter result assumes
some prior knowledge of the distribution of the weights of the
classifier.

These results allowed us to produce empirical kernel sep-
arability characterizations for arbitrary kernel functions. The
application of these new characterizations has been illustrated
with two case study examples. These examples showed that
if an additional whitening and re-weighting of features are
allowed then point separability performance of the induced
kernel may be drastically improved. We have not, however, in-
vestigated generalization capabilities of such kernel classifiers
and their derivatives for the problem of AI error correction
[28], [24]. This will be the subject of our future work.
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