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Abstract—In this study we examined the question of how error
correction occurs in an ensemble of deep convolutional networks
trained for an important applied problem: segmentation of
Electrocardiograms(ECG). We also explore the possibility of
using the information about ensemble errors to evaluate a quality
of data representation built by the network.

Index Terms—convolutional neural networks, cardiac cycle,
segmentation, ensemble, outliers, errors

I. INTRODUCTION

Correction of errors of Artificial Intelligence (AI) systems is
recognized as one of the main problems in the AI-based techni-
cal revolution [1]. The effect of error correction often appears
in ensembles of neural networks. It is known that in most
cases an ensemble performance is better than performance of
any individual network in it [2]. The creation of an ensemble
of models is widely used in modern machine learning as the
last step of the working pipeline. However, it is difficult to
predict which mistakes the ensemble can eliminate from the
basic model errors and which cannot.

This problem of possible mistakes of the trained model re-
mains relevant because the internal representation in the neural
network is difficult to interpret [3]. The reliability of a neural
network is directly connected to the quality of the internal
representation which it has built. In the context of medical
tasks, the problem of analyzing the quality of representation
(and fixing the flows in it) is especially important due to the
peculiarities of medical datasets: some pathologies are often
represented by a small number of samples, while variants
close to the normal may occur too often [4]. However, these
pathological cases are most important because pathological
morphologies of the cardiac cycle are strong manifestations
of diseases.

Imbalance of classes in the data set often leads to the
situation there formal quality metrics can give unreasonably
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good result, while the network could not cover all important
aspects of data well. It is not always possible to correct data
imbalances with well-known methods (such as, for example,
oversampling), because is not always clear which particular
classes require balancing. We illustrate the above problem
using the example of the ECG segmentation task: all mean-
ingful components of cardiac cycle (P-wave, T-wave and the
QRS complex) are roughly balanced in most of ECGs due to
the periodicity of ECG structure. But the task itself contains
imbalance because the dataset is not balanced for diseases.
Diseases change the morphology of the components of the
cardiac cycle in different ways, so the representation built
by the neural network must contain information of how the
cardiac cycle looks like for every pathology presented in the
dataset. When creating a quality metric for an arbitrary task, it
is difficult to take into account the imbalance for all the hidden
factors of influence for this task. In this paper we use data on
how exactly the ensemble of networks corrects the errors of
the single network in order to conclude about the quality of
internal representation in the network.

One of the ways to investigate the reliability of the internal
representation received within the network is to use adversar-
ial examples [5]. Another common approach to analyse the
quality of the representation of deep networks is based on
the visualization of the learned attributes of different levels
[6]. For models with attention, attention visualization can be
used [7]. A new direction is to find a metric for evaluating
the degree of disentanglement in representations [8]. Other
methods can be found in a survey [3].

This paper is organized as follows. Sections II,III and V
describe the applied task, sections IV, VI and VII describe the
convolutional network, its training and ensemble training, in
section VIII we give a qualitative analysis of the factors that
influence error correction by the ensemble and demonstrate
some interesting effects arising in the training of individual
networks in the ensemble. Sections IX and X summarize the
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main results.
The projects code is publically available at:

https://github.com/Folifolo/SegmentationECG

II. DATASET

LUDB [9] is an open access dataset, containing ECG
recordings of 200 unique patients. Each recording is repre-
sented by a 10-second signal registered from twelve leads
with a sampling rate of 500 Hz. An expert’s annotation is
provided for each patient, annotating the three segments of the
cardiac cycle: P, QRS and T. The proper detection of these
waves/complexes is essential for ECG-based diagnostics of
the cardiovascular system. A schematic representation of the
cardiac cycle is shown in fig. 1. A significant part of the dataset

Fig. 1: Schematic cardiac cycle

is represented by healthy cases and the remaining part covers
a wide range of different pathologies of the cardiovascular
system (different heart rhythm types, conduction abnormali-
ties, repolarization abnormalities and so on). The dataset also
contains ECGs with varying degree of noise.

III. DATA PREPARATION

ECG preprocessing has consisted of Baseline wander (BW)
removal, which is a conventional first step in ECG processing
for most applications [10]. Baseline wander is a low-frequency
ECG artifact, which may be caused by patients breath or
movement [11] and holds no diagnostic information. ECG
was filtered with two median filters as described in [10]. The
resulting ECG is shown in fig. 2. High frequency noise was
not removed, and no augmentation was performed.

Fig. 2: BW removal example. ECG signal before and after processing
is shown at the top and bottom panels respectively

IV. BASE NEURAL NETWORK

It was shown that the convolutional architecture of neural
networks is well-suited for many real world problems. In
particular, convolution networks have found application in
medical data processing, including ECG analysis [12]. There-
fore the architecture of the base network of the ensemble was
chosen to be convolutional(shown in fig. 3).

Fig. 3: An 8-layer convolutional architecture used for all experiments
below

The softmax layer provides a probability distribution over
4 possible options for a given point in time: refer it as part
of the T peak, the P peak, the QRS complex, or none of the
three listed.

The final result represents binary masks for all three types
of peaks. For each channel, the mask is generated based on
the softmax output: for each point in time, a winner channel
is selected. It gains 1, the remaining channels get 0. Examples
of input ECG, corresponding softmax output and resulting
delineation are shown in fig. 6 and 7.

Training was conducted on 12 ECG leads. However, a
decrease in the number of leads under consideration does not
greatly impair the result.

V. QUALITY EVALUATION

In this work we define each peak (complex) as the first and
the last points of it. To evaluate the annotation quality for a
particular type of points, (such as the P-wave starting points)
we employ an algorithm that works as follows: for each point
of this type on the ground truth annotation the algorithm looks
for the corresponding point on the network’s annotation.

If a corresponding point is found in the specified neighbor-
hood of the point in ground truth annotation, then we count
the networks decision as valid (True Positive, TP). In this case
the error value is calculated as the distance between the point
in ground truth annotation and the corresponding point in the
network’s annotation.

If a point specified by the network does not exist on the
ground truth annotation in the specified neighborhood, we
count the answer as false positive (FP). Should the network be
unable to locate a point, which is present in the ground truth
annotation, then the answer is marked as false negative (FN).

The permitted neighborhood is calculated adaptively de-
pending on the patient’s heart rate. For a heart rate of 70 BPM



the radius of the permitted neighborhood was chosen to be 150
ms. Then, the size of this neighborhood is decreased linearly
based on the length of the cardiac cycle. An interval of 150
milliseconds was selected in accordance with ANSI/AAMI-
EC57:1998 [13].

The following quality metrics are commonly used for ECG
annotation evaluation:

• m – expected value of error

• σ2 – error variance

• Se = TP
TP+FN – sensitivity

• PPV = TP
TP+FP – positive predictive value

Values of these metrics for the single network can be seen
in table I and are slightly worse than that of the best direct
methods [9]. However, it must be said that these metrics do not
account for the degree of representation of various pathologies
(diseases) within the dataset for which ECG segmentation is
performed. For example, if the majority of samples belongs to
healthy patients and if the segmentation algorithm handles the
standard healthy case right( but not the pathological one) then
its quality assessment will directly depend on the number of
pathological or artifact-containing samples in the data set.

So it is important to investigate the behavior of the network
on pathological cases rather than relying on formal metrics.

VI. SINGLE NETWORK TRENDS

In this section we describe some qualities that the single
deep network demonstrates while being trained throughout
the training dataset. The dataset was split into training (134
patients) and test (66 patients) parts. We did not single out the
validation part due to the peculiarities of the dataset, namely
due to its small size in combination with a high degree of
imbalance. The reliability of the results is ensured by multiple
runs of the experiment with different random partitioning into
train and test.

Mini-batches are formed out of randomly selected 6-second
intervals. The chosen optimizer is RMSProp [14] and the loss
function is categorical cross entropy.

A. Noise stability

All else being equal, the presence of high-frequency noise
(power line interference, 50 Hz) does not have a significant
effect on the networks ability to produce a correct annotation,
nor does it influence the smoothness of its output signal.

Absence of necessity of noise filtration is an advantage of
the deep learning approach, since it reduces the time spent on
ECG preprocessing.

B. Reaction to pathologies

It turned out that the presence of pathology(diseases) has the
most noticeable effect on the quality of the neural network’s
performance.

Fig. 4: Noised ECG is annotated correctly by a single network.
The bottom row of colored boxes shows the annotation given by an
expert, the top row depicts the annotation by the neural network,
which architecture is depicted in fig. 3

When analyzing the network’s performance on a test set of
patients, it turned out that the following rule of thumb is valid:
if the case is pathological, it can still be properly annotated by
a single neural network. For example fig.5 shows an ECG with
a non-standard T-wave shape and the network had annotated
it well.

Fig. 5: An abnormal case (containing unusual T-waves) is annotated
by a single network with satisfactory results

But if the annotation from the neural network was essen-
tially erroneous (F1-score less than 0.9), then this ECG is
pathological (or unreadable due to artifacts of the recording
process).

This is especially true for the QRS complex. The QRS
complex turned out to be the easiest to mark up with a neural
network (as well as direct algorithms). Typically it has the
largest signal amplitude although this is not always true, for
example see fig. 4.

If we study the raw(softmax) output of the network for
an ECG which does not contain any noticeable pathologies
and compare it against the output for a markedly pathological
ECG, we can notice a systematic difference in a raw signal. In
the pathological case the networks signal contains numerous
asymmetric low-amplitude surges, which do not contribute
to the resulting annotation (see fig.7). However, we do not
observe this kind of behavior in the non-pathological case:
if the channel contain a signal surge, it is smooth and has a
large enough amplitude to influence the annotation (fig. 6). In
a sense, the intensity of this effect can be interpreted as the
network’s ”confidence”.

VII. ENSEMBLE

To date, there are many strategies for the formation of
neural network ensembles (for review see [15]). The selected
strategy determines the number of members of the ensemble,
the way they are combined and the way to guarantee diversity
among them (for example, different learning rate protocols for
the networks [2], correlation penalty [16], etc.). In our case,



Fig. 6: A simple case of ECG annotation by a single network. On
the top graph, the bottom set of colored markings shows the ground
truth manual annotation for P waves (red), QRS complexes (green)
and T waves (blue). The set of colored markings above represents
the networks annotation for the same ECG. The bottom graph shows
the raw output signal of the network. These values represent the
networks confidence in the fact that the current segment does contain
the appropriate ECG waveform. For a simple case of a healthy ECG,
we can see that the network performs well when compared against
a professional annotation done by a cardiologist. Smooth symmetric
waves in the output signal of the network are characteristic of the
segmentation of simple cases (like this one)

Fig. 7: Distinctive features of the networks output signal in a
markedly pathological case. The top graph contains annotations for
QRS complexes and T-waves in green and blue respectively. The
bottom set of markings represents the ground truth annotation, the
networks annotation is located above. The P wave (red) is lacking
completely, a fact which was both noted by the cardiologist and the
network. Non-smooth asymmetric waves of arbitrary amplitude in the
output signal of the network are characteristic of segmentation of an
electrocardiogram with severe pathology (like in this case) and are
shown by black arrows

the diversity was provided by different training samples for
members of the ensemble. The ensemble formation procedure
was designed in such a way that adding a new network to the
ensemble fixes some errors of the already existing networks
on the training set.

After training the F1-score of the base network was mea-
sured on each patient of the training sample to see in which
cases the network does not perform well. Then the procedure
of iterative ensemble building starts. All patients rated at an
F1-score of 0.99 and above were removed from the training
set. The rest of the training set is then used as a separate

training set for the new neural network.
This new neural network is then trained on that training set

and, again, the procedure of screening out patients is carried
out. All the cases on which this neural network has failed
to achieve a score of 0.99 remain while others are deleted.
The procedure described is repeated until the patients in the
training set run out.

At each iteration of this algorithm a new neural network
is created. Each of these networks is trained on an ever
decreasing data set. If, after one step, the sample size has
not changed then the same network is re-trained on the same
sample on the assumption that it fell into a bad local minimum.

Figure 9 demonstrates an example of how the size of the
training set has changed during the procedure described.

Fig. 8: Number of patients remaining in the train subset at every
stage of ensemble formation. The formation continues until the
number of patients in the subset reaches zero

When the ensemble is created, the resulting annotation for
every input ECG can be obtained by averaging softmax output
signals across all members of the ensemble.

VIII. ERROR CORRECTION IN ACTION

From the very ensemble construction algorithm itself one
can see that the ensemble is able to systematically correct
some errors of a single network. Members of the ensemble can
correct each other’s mistakes. To illustrate that, we provide a
couple of typical examples. Fig. 9 demonstrates how the 4th
member of the ensemble fixes the error of the 3rd member in
case of an abnormal ECG.

Fig. 9: Noticeable improvement of annotation quality through con-
secutive stages of ensemble training. The ground truth annotation is
shown at the bottom, the 4th networks annotation is located in the
middle and the 3rd networks annotation is at the top. The 3rd network
mistakenly notes the P-wave, blue. The remaining components of the
cycle (green and red colors) are defined by both networks correctly

Fig. 10 depicts how the ensemble itself fixes an error of the
base network for an abnormal case (patient was taken from



Fig. 10: Annotation for an abnormal case. The ground truth annota-
tion is shown at the bottom, a single networks annotation is located in
the middle and the ensembles annotation is at the top. The improved
quality of segmentation since the introduction of the ensemble is
clearly visible

test set). Table I shows that the ensemble of networks has
improved most of the quality metrics compared to a single
network. In next sections we will explore what caused these
improvements.

A. Overfitting analysis

Networks added to the ensemble at later iterations were
trained on very small patient subsets. This situation obliges us
to check for the degree of overfitting in such networks.

In order to do so, we have designed a simple procedure,
which roughly evaluates a degree of overfitting of all but one
networks in an ensemble without need to use the test set.
Every member of the ensemble (except for the first one) is
only trained on some subset of the training set of patients.
This allows us to use the unseen (for this member) part of
the training set as a test set (for this member) and therefore
to evaluate its generalization ability. Visualization of results
is shown in fig. 11. It illustrates the behavior of an ensemble

Fig. 11: Histogram of the generalization capability of every individ-
ual member of the ensemble. The ensemble members capability to
annotate its part of the dataset exceptionally well (i.e. F1-score not
less then 0.99) is shown in dark green, while its ability to annotate
the previously unseen part of the dataset exceptionally well is shown
in light green

of 12 members. For every member of the ensemble the dark

green bar shows the amount of well annotated patients from
the training set of that member. At least half of members of
the considered ensemble were trained on less than 10 patients
(see fig. 8). The light green bar illustrates the amount of well
annotated patients from the unseen part of the whole training
set. We can see that there are only two networks which
are probably significantly overfitted (dark green is too high
comparing to light green). The first network does not have
its own test set, so we cannot make any judgments about
it. Some of the remaining ensemble members can produce
good annotations (F1-score higher than 0.99) for tens of
unseen patients despite having been trained on 2-3 patients.
This is interesting in the light of the fact that deep learning
models usually require large amounts of data for a good
generalization.

B. ”Distillation” effect

To get an idea of the behavior of an ensemble described
above, we visualized its behavior on a test and training set.
We then compared this behavior to the behavior of the single
network. The resulting visualization is shown in Fig. 12.

(a) F1-score of segmentation given by an ensemble (left) or by single
network (right) for the train set

(b) F1-score of segmentation given by an ensemble (left) or by single
network (right) for the test set

Fig. 12: F1-score scattergrams for every patient demonstrates ”dis-
tillation effect” looking from right to left. This behavior his behavior
persists for both test set and train set.

The left subfigures demonstrate how the base network
annotates testing and training sets. The right part depicts the
same for the ensemble. The ensemble concentrates F1-scores



TABLE I: Quality metrics for the single network and ensemble. Values are averaged across 15 experiments

P onset P offset QRS onset QRS offset T onset T offset
Se(%) 95.20 95.39 99.51 99.50 97.95 97.56

single PPV(%) 82.66 82.59 98.17 97.96 94.81 94.96
m± σ(ms) 2.7±21.9 −7.4±28.6 2.6±12.4 −1.7±14.1 8.4±28.2 −3.1±28.2
Se(%) 97.97 97.36 99.86 99.95 93.77 93.51

ensemble PPV(%) 90.48 90.72 98.27 98.66 96.28 96.23
m± σ(ms) 3.4±18.4 −4.1±19.4 1.7±10.0 −3.4±12.3 9.2±28.2 −6.0±25.0

in a very narrow area near 1. I.e. after the ensemble processing
the data set turned out to be divided into two classes: a dense
cloud and a very rarefied one. The dense cloud consists of
samples which were annotated by a single network with minor
errors (F1-score near 0.9), and which after using the ensemble
became annotated close to the ideal (F1-score near 1). We
will call such examples ”simple” and the remaining ones -
”complex”.

An example of a typical ”complex” ECG is depicted in fig.
13.

Fig. 13: An example of an outlier ECG on which both – the
ensemble and the base network – fail: all the members have failed
to segment the T-vawe (green), potentially because the amplitude of
the T-wave has become comparable in scale to the amplitude of the
noise. Colored blocks indicate the segmentation of the expert. The
top markings show the output signals of the ensemble members

Overall F1-score of the ensemble is higher than that of the
single network. For the single network it is 0.94 and for the
ensemble is more then 0.95, but the proportion of outliers
detected by the ensemble is not less (about 16,5% for test sets)
than that for the single network. This means that the ensemble
improved the quality metrics mostly not at the expense of
”complex” cases.

IX. CONCLUSION AND RESULTS

In this paper, we presented a qualitative study of how the
error correction of a single network by an ensemble occurs
(using the example of a typical ensemble and an important
applied task from medicine). The most important results are:

1) Error correction does not occur evenly across the entire
data set, but two classes of cases are clearly distin-

guished - ”simple” (easily corrected by the ensemble)
and ”complex” (practically not amenable to correction).

2) Ensemble error is minimal in healthy patients, and they
belong to the above-described ”simple” class

3) The presence of a rare class of disease in ECG in
question doesn’t necessarily result in the ECG sample
falling into the class of ”complex” samples

4) With appropriate selection of an ECG in a training
sample it is possible to achieve that the network trained
only for 2-3 patients builds a rather good generalization.
This allows to take a fresh look at the situation with
”complex” and ”simple” samples: the fact that the exam-
ple got into the ”complex” class is not a predetermined
by the rareness of a specific disease in a dataset

X. DISCUSSION

The number of samples from the aforementioned class of
”complex” cases can be used as a basis for assessing the
quality of internal representation that a network of a given
architecture can build. In the case considered, for example, it
can be concluded that internal representation built by the single
network has serious flaws despite the fact that formal quality
metrics (such as specificity, positive predictive value and F1-
measure) show relatively high values. Also a promising area of
research could be the search for a reliable metric that assesses
the quality of network representation while doesn’t consider
the network as a black box. The creation of such metrics
probably requires the further development of mathematical
theory for deep learning.
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