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A B S T R A C T

A new critical effect is predicted in population dispersal. It is based on the fact that a trade-off between the
advantages of mobility and the cost of mobility breaks with a significant deterioration in living conditions. The
recently developed model of purposeful kinesis (Gorban & Çabukoǧlu, Ecological Complexity 33, 2018) is based
on the “let well enough alone” idea: mobility decreases for high reproduction coefficient and, therefore, animals
stay longer in good conditions and leave quicker bad conditions. Mobility has a cost, which should be measured
in the changes of the reproduction coefficient. Introduction of the cost of mobility into the reproduction coef-
ficient leads to an equation for mobility. It can be solved in a closed form using Lambert W-function.
Surprisingly, the “let well enough alone” models with the simple linear cost of mobility have an intrinsic phase
transition: when conditions worsen then the mobility increases up to some critical value of the reproduction
coefficient. For worse conditions, there is no solution for mobility. We interpret this critical effect as the com-
plete loss of mobility that is degeneration of diffusion. Qualitatively, this means that mobility increases with
worsening of conditions up to some limit, and after that, mobility is nullified.

1. Introduction

The study of two basic mobility mechanisms, kinesis and taxis, is
concerned with responses of organisms motions to environmental sti-
muli: if such a response has the form of directed orientation reaction
then we call it taxis, and the change in the form of undirected and
random locomotion is called kinesis. These ‘innocent’ definitions cause
many problems and intensive conceptual discussion (Dunn, 1990). One
of the problems is: how to select the proper frame for discussion of the
directed motion and separate the directed motion from the motion of
the media. If the frame is selected unambigously then in the PDE
(partial differential equations) approach to modelling taxis corresponds
to change of advection terms, whereas kinesis is modeled by the changes
of the mobility coefficient.

The notion of ‘mobility coefficient’ (or simply ‘mobility’ for brevity)
was developed by Einstein (1956) (for historical review we refer to
Philibert (2005)). It is summarised by the Teorell formula (Gorban
et al., 2011; Teorell, 1935)

Flux = mobility× concentration× specific force.
Teorell studied electrochemical transport and measured specific

force as force per ‘gram-ion’. For ecological models (Lewis et al., 2013)
concentration of animals u is used. The “diffusion force” is
− ∇ = − ∇u(ln ) u

u (the “physical” coefficient RT is omitted).
The most important part of Einstein’s mobility theory is that the

mobility coefficient is included in the responses to all forces. For the
applications of the mobility approach to dispersal of animals this means
that intensity of kinesis and taxis should be connected: for example,
decrease of mobility means that both taxis and kinesis decrease pro-
portionally.

The kinesis strategy controlled by the locally and instantly eval-
uated well-being can be described in simple words: Animals stay longer
in good conditions and leave more quickly bad conditions. If the well-
being is measured by the instant and local reproduction coefficient then
the diffusion model of kinesis gives for mobility μi of ith species
(Gorban and Çabukoǧlu, 2018):

= − …μ D ei i
α r u u s

0
( , , , )i i k1 (1)

The corresponding diffusion equation is

∂ = … ∇ + …u x t μ u u s u r u u s u( , ) div[ ( , , , ) ] ( , , , ) ,t i i k i i k i1 1 (2)

where:

k is the number of species (in this paper, we discuss mainly the
simple case =k 1),
ui is the population density of ith species,
s represents the abiotic characteristics of the living conditions (can
be multidimensional),
ri is the reproduction coefficient of ith species, which depends on all

https://doi.org/10.1016/j.ecocom.2018.06.007
Received 17 May 2018; Accepted 12 June 2018

⁎ Corresponding author.
E-mail addresses: a.n.gorban@le.ac.uk (A.N. Gorban), nc243@le.ac.uk (N. Çabukoǧlu).

Ecological Complexity 36 (2018) 16–21

1476-945X/ © 2018 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/1476945X
https://www.elsevier.com/locate/ecocom
https://doi.org/10.1016/j.ecocom.2018.06.007
https://doi.org/10.1016/j.ecocom.2018.06.007
mailto:a.n.gorban@le.ac.uk
mailto:nc243@le.ac.uk
https://doi.org/10.1016/j.ecocom.2018.06.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ecocom.2018.06.007&domain=pdf


ui and on s,
D0i>0 is the equilibrium mobility of ith species (‘equilibrium’
means here that it is defined for =r 0i ),
The coefficient αi>0 characterises dependence of the mobility
coefficient of ith species on the corresponding reproduction coeffi-
cient.

This model aimed to describe the ‘purposeful’ kinesis (Gorban and
Çabukoǧlu, 2018) that helps animals to increase there fitness when the
conditions are bad (for low reproduction coefficient mobility increases
and the possibility to find better conditions may increase) and not to
decrease fitness when conditions are good enough (for high values of
reproduction coefficient mobility decreases). The instant quality of
conditions is measured by the local and instant reproduction coeffi-
cient.

Gorban and Çabukoǧlu (2018) demonstrated on a series of bench-
marks for models (2) with mobilities (1) that:

• If the food exists in low-level uniform background concentration and
in rare (both in space and time) sporadic patches then purposeful
kinesis (2) allows animals to utilise the food patches more in-
tensively;

• If there are fluctuations in space and time of the food density s then
purposeful kinesis (2) allows animals to utilize these fluctuations
more efficiently.

• If the presence of the Allee effect the kinesis strategy formalised by
(2) may delay the spreading of population

• The “Let well enough alone” strategy (1), (2) can prevent the effects
of extinction caused by too fast diffusion and decrease the effect of
harmful diffusion described by Cosner (2014).

The ‘let well enough alone’ assumption (1), (2) provides the me-
chanism for staying in a good location because mobility decreases ex-
ponentially with the reproduction coefficient. High mobility for un-
favorable conditions allows animals to find new places with better
conditions and seems to be beneficial. Nevertheless, it is plausible that
increase of mobility in adverse conditions requires additional resources
and, therefore, there exists a negative feedback from higher mobility to
the value of the reproduction coefficient. This is the ‘cost of mobility.’ In
the next section we introduce the cost of mobility and analyse the
correspondent modification in the mobility function.

2. Cost of mobility

The ‘cost of mobility’ has been introduced and analysed for various
research purposes. It is a well known notion in applied economic theory
(Tiebout, 1956). The ‘psychic cost of mobility’ and it influence on the
human choice of occupations has also been discussed (Schwartz, 1973).
Analysis of evolution of social traits in communities of animals de-
monstrated that the cost of mobility has a major impact on the origin of
altruism because it determines whether and how quickly selfishness is
overcome (Le Galliard et al., 2004). Different costs of mobility on land
and in the sea is considered as an important reason of higher diversity
on land that in the sea (Vermeij and Grosberg, 2010). It was mentioned
that the energy cost of mobility may lead to surprising evolutionary
dynamics (Adamson and Morozov, 2012).

The optimality paradigm of movement is the key part of the modern
movement ecology paradigm (Nathan et al., 2008). Movement can help
animals to find better conditions for foraging, thermoregulation, pre-
dator escape, shelter seeking, and reproduction. That is, movement can
result in increase of the Darwinian fitness (the average in time and
generations reproduction coefficient). At the same time, movement
requires spending of resources: time, energy, etc. This means that
movement can decrease fecundity. The trade-off between fecundity loss
and possible improvement of conditions is the central problem of
evolutionary ecology of dispersal. In general, it is hardly known if and

how mobility transfers to fitness costs. The fecundity costs of mobility
in some insects was measured in field experiment (in non-migratory,
wing-monomorphic grasshopper, Stenobothrus lineatus) (Samietz and
Köhler, 2012). For some other insects (the Glanville fritillary butterfly
Melitaea cinxia) the fecundity cost of mobility was not found
(Hanski et al., 2006). These results challenge the hypothesis about
dispersal–fecundity trade-off. A physiological trade-off between high
metabolic performance reduced maximal life span was suggested in-
stead. Another source of the cost of mobility may be increase of the rate
of mortality due to the losses on the fly.

From the formal point of view, all types of ‘mobility cost’ can be
summarised in the negative feedback from the mobility to the re-
production coefficient: increase of mobility decreases the reproduction
coefficient directly. On the other hand, the change of conditions can
increase the fitness. Form this point of view, there is trade-off between
the direct loss of fitness due to mobility and probable increase of fitness
due to condition change.

In our previous model (1), (2) the trade-off between the cost of
mobility and the possible benefits from mobility was not accounted
(Gorban and Çabukoǧlu, 2018). Let us introduce here the cost of mo-
bility as a negative linear feedback of the mobility μ on the reproduc-
tion coefficient r:

= −r r Cμ,0 (3)

where r0 depends on the population densities and abiotic environment,
C is the cost coefficient and Cμ is the cost of mobility.

According to ‘let well enough alone’ assumptions (1),
= −μ D αrexp( )0 . Let us introduce = −μ D αrexp( ),0 0 0 that is the mobi-

lity (1) for the system with the reproduction coefficient r0 instead of the
coefficient r (3) with the cost of diffusion. Obviously, μ0≥ μ and

= −μ μ Cμ/ exp( )0 .
Simple algebra gives:

− = − −αCμ α r r α r r( )exp( ( )).0 0 0

Therefore,

= −
−

μ
W αCμ

αC
( )

,0
(4)

where W is the Lambert W-function (Corless et al., 1996). The Lambert
W-function is the inverse function to xexp (x), Fig. 1. Function W(x) is
defined for > −x 1/e. Therefore, the mobility μ (4) exists for

≤αCμ 1
e

.0 (5)

The argument of the function W in (4) belongs to the interval
−[ 1/e, 0). The dependence of the dimensionless variable αCμ on the
dimensionless variable αCμ0 (Fig. 2) is universal for all models of the
form (1), (2) with the cost of mobility (3).

The universal limit (5) can be represented in terms of the

Fig. 1. The Lambert function =y W x( ) is defined for ≥ −x 1/e. For negative x,
the upper branch of W is used, the so-called W0, which is real-analytic on
− ∞( 1/e, ).
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reproduction coefficient: the mobility formula (4) is valid for

≥ +r
α

αCD1 (1 ln( )).0 0

For r0 below this critical solution, the equation for mobility loses so-
lution. This is a critical transition (Scheffer et al., 2012): a ‘critical
thresholds’ is found, where the behavior of the systems is changing
abruptly.

Definition of mobility for >αCμ0
1
e requires additional assumptions

beyond (1), (2), and (3). We have no sufficient reasons now for the
definite choice. The simplest assumption is:

= >μ αCμ0 for 1
e

.0 (6)

This collapse to zero has some biological reasons: if the further increase
of mobility leads to catastrophic decrease of the reproduction coeffi-
cient (because the cost of mobility) then the reasonable strategy is to
stop the dispersal at all.

3. Equations of population dynamics with kinesis and mobility
cost

Consider an ODE model for space-uniform populations in uniform
conditions:

= …du
dt

r u u s u( , , , )i
i k i0 1 (7)

(it should be supplemented by dynamic equation for abiotic compo-
nents s). The correspondent reaction-diffusion equations with kinesis
and the mobility cost have the following form. Three additional positive
coefficients are needed for each species: αi, D0i, and Ci. The equations
are:

∂ = ∇ +
= −

=
⎧

⎨
⎪

⎩
⎪

−
−

≤

>

= −

u x t μ u r u
r r Cμ

μ

W α C μ
αC

αCμ

αCμ

μ D αr

( , ) div( ) ,
,

( )
if 1

e
;

0 if 1
e

,

exp( ).

t i i i i i

i i i

i

i i i

i

i i i

0

0
0

0

0 0 0 (8)

Dependence of the mobility μ on the initial reproduction coefficient
r0 is schematically represented in Fig. 3. If r0 decreases below the cri-
tical value then the mobility nullifies. This means that diffusion de-
generates. Nullifying of mobility leads to increase of the reproduction
coefficient r because the mobility cost vanishes (see Fig. 3).

Degenerating diffusion attracted much attention in the theory of
porous media (Vázquez, 2007). The ‘porous media equation’ is

=u uΔ ,t
m

where Δ is the Laplace operator, m>1.
Diffusion coefficient vanishes smoothly when u tends to zero.

Barenblatt (1952) found his famous now analytic automodel solutions
for equations of diffusion in porous media, and these solutions were
used for modelling of nuclear bomb explosion. Existence and regularity
properties were studied in a series of works in 1960s–1970s
(Aronson, 1969). In 1970s, the equation of diffusion in porous media
was introduced in ecological modelling (Gurtin and Maccamy, 1979).
This equation predicts a finite speed of spreading of a population, which
is initially confined to a bounded region. This property is in strong
contrast with the well-known properties of the classical diffusion
equation, the infinite speed of propagation.

The divergent form of the porous media equation with power dif-
fusion coefficient is

= ∇ = − >u u u δ mdiv( ), 1 0.t
δ

Exact solutions for propagation of fronts for equation

= ∇ + −u u u u udiv( ) ,t
δ p k

were analysed for k> p by Petrovskii and Li (2006).
Equations with non-linear diffusion coefficient, which degenerates

when u→ 0 and goes to ∞ when u→ 1 was proposed for modelling of
the formation and growth of bacterial biofilms (Eberl et al., 2001):

= ∇ +u D u u kudiv( ( ) ) ,t

where =
−

D u δ( ) ,u
u(1 )

a

b a, b≥ 1≫ δ>0. A finite difference scheme for
this equation was developed and numerical experiments were provided
by Eberl and Demaret (2007).

Discontinuity in dependence μ(r0) (Fig. 3) causes an important
property of sufficiently regular solutions: the normal derivative of u
nullifies on the boundary of the areas of degenerations. Equations (8)
with non-linear mobility coefficient μ form a new family of degenerate
reaction-diffusion equations. The degenerate diffusion equations

Fig. 2. The universal dependence of the dimensionless variable αCμ on the
dimensionless variable αCμ0 for all models of the form (1), (2) with the cost of
mobility (3). When Cαμ0 exceeds 1

e
then the equation for mobility μ has no

solution (suggested =μ 0).

Fig. 3. Typical dependences of the mobility μ (a) and the modified reproduction
coefficient r (b) on the unmodified reproduction coefficient r0.
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appears in many physical applications and in geometry (Ricci flow on
surfaces, for example). The typical questions are:

• Short and long time existence and regularity;

• Dynamics of boundaries of degenerated areas;

• Formation of singularities;

• Existence through the singularities.

We believe that the detailed analysis of these equations will produce
many interesting questions and unexpected answers.

Consider a system with the Alley effect to demonstrate an example
of non-trivial problem and interesting effect. For such a system the
reproduction coefficient r0(u) grows with u on some interval. Let the
critical effect appear on this interval, at point =u u0 and, in addition,

+ <r u( 0) 00 and − >r u( 0) 00 (Fig. 4). Under these conditions, the
population dynamics =u r u u˙ ( ) stabilises u at the critical value =u u0.

The solution of nonlinear equation = ∇ +u μ u u r u udiv( ( ) ) ( )t
should be rigorously defined near the singularities. Instead of general
definitions we apply the regularisation and transform the equation in a
vicinity of the singularity into a singular perturbed system with fast
relaxation. Consider an ε vicinity of u0 and the equation for = −v u u0
(assume that 0< v< ɛ):

= ⎛
⎝

+ ∇ ⎞
⎠

+ ⎛
⎝

− + + − − ⎞
⎠

+

v μ u v v

r u v r u r u v u

div ( 0)
ɛ

( 0)
ɛ

( ( 0) ( 0)) ( ).

t 0

0 0 0 0
(9)

Here, = +μ vμ u( 0)/ɛ,0 = − − − − +r r u v r u r u( 0) ( ( 0) ( 0))/ɛ0 0 0 .
Solution of this equation stabilises at

= − − − +v r u r u r uɛ ( 0)/( ( 0) ( 0))0 0 0 . At this state, =r 0 and

=
+ −

− − +
μ

μ u r u
r u r u

( 0) ( 0)
( 0) ( 0)

.0 0

0 0

Therefore, there appear areas with (almost) critical value of the popu-
lation density u≈ u0 and effective reproduction coefficient r≈ 0. This
appearance of areas with constant critical density and equilibrium
(zero) reproduction coefficient resembles the growth of biofilm
(Eberl et al., 2001).

4. Generalizations

The observed effect is not a special property of the Lambert function
and is robust. Consider equations (2) with mobility function

= − …μ D h α r u u s( ( , , , )),i i i i k0 1 (10)

where h(z)> 0 is a monotonically growing, convex, and twice differ-
entiable function on real axis, h′′(z)> 0 and h′(z)→∞ when z→∞
(this h(x) substitutes exponent in (1)).

Using the same linear cost of mobility Cμ (3) we get

= − −r r CD h αr( )0 0 (11)

or

= +h y y
CD α

r
CD

( ) ,
0

0

0 (12)

where = −y αr . There exists a unique solution yc of the equation

′ =h y
CD α

( ) 1 .
0

Therefore, for solutions of equation (12) we get:

• If > −r CD h y y α( ) ( / )c c0 0 then (12) has two solutions;

• If = −r CD h y y α( ) ( / )c c0 0 then (12) has one solution =y yc;

• If < −r CD h y y α( ) ( / )c c0 0 then (12) has no solutions.

Qualitatively, the situation is the same as for the exponent: there
exists a critical value of the reproduction coefficient r0 and when it
decreases below this critical value, then the equation for mobility has
no solution. The explicit solution with Lambert function allowed us a
bit more: we found the universal explicit dependence between di-
mensionless quantities =y Cαμ and =v Cαμ ,0 = − −y W v( ) (Fig. 2),
which does not change with parameters.

For simple algebraic functions h (proposed by an anonymous re-
viewer) the universal explicit solutions are also possible. Consider

=
−

h z
z

( ) 1
1

.

This function is defined for z<1, is convex on this semi-axis, h′′(z)> 0,
and h′(z)→∞ when z→ 1. Let us use this h in (10). Solution of equa-
tion (11) is

= + − = − −g
q q αC

D
μ

q q
2 4

1 ,
2 4

1
2

0

2

where the dimensionless variables g and q are:

= +g αr CD( 1)/ ,0

= +q αr CD( 1)/ .0 0

Solution exists if q≥ 2 and does not exist if q<2 (i.e.
< −r CD α(2 1)/0 0 ) (see Fig. 5).

Fig. 4. Dependence of the reproduction coefficient r on the population density
for a system with the Alley effect. A special case is presented when

+ <r u( 0) 00 and − >r u( 0) 00 . In this situation, the population dynamics
=u r u u˙ ( ) stabilises u at the critical value (red arrows indicate the directions of

changes). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Fig. 5. The universal dependence of the dimensionless variables
= +g αr CD( 1)/ 0 (upper branch, dashed line) and μ αC D/ 0 (bottom branch,

solid line) on the dimensionless variable = +q αr CD( 1)/0 0 for models of the
form (1), (10) with the cost of mobility (11) and = −h z z( ) 1/(1 ). The equation
for mobility has no solution (suggested =μ 0) when q<2.
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5. Mobility and relation between spatial and temporal
correlations

Kinesis could be beneficial for animals because it allows them to
find better conditions. The probability distribution of such benefits
depends on correlations of conditions in space and time. Qualitatively,
if correlation in space are low for bad conditions then it is possible to
find better conditions with random movement. If correlation in time are
high then the strategy ‘to wait’ can be worse than the strategy ‘to move’
because the probability that the situation will become better at the
same place is smaller than the probability to find better conditions in
random walk. In the opposite case, when the correlations in space are
high, and the correlation in time are small, then it may be more ben-
eficial to wait at the same place then to move.

The benefits from motion should be compared to the mobility cost.
Both these quantities should be measured in the reproduction coeffi-
cient. The interplay between these quantities determines the optimal
kinesis strategy.

Detailed analysis of the optimal mobility by the methods of the
evolutionary optimality (see, for example works by (Gorban, 2007;
Hofbauer and Sigmund, 1998)), requires more detailed models and
much more data. Dynamics of the adaptation resource of animals spent
for mobility (Gorban et al., 2016) and the typical spatial and temporal
correlations of conditions should be taken into account.

Nevertheless, qualitative analysis of benefits from kinesis for var-
ious space and time correlations is very desirable. Let us simplify the
problem and discuss discrete space (two locations) and time. The fol-
lowing simple example demonstrates how the ‘stop mobility’ effect
depends of the relations between the spatial correlations, the temporal
correlations and the cost of mobility.

Let us start from the simple model used by Gorban and Çabu-
koǧlu (2018) to illustrate the idea of purposeful kinesis. An animal can
use one of two locations for reproduction. The environment in these
locations can be in one of two states during the reproduction period, A
or B. The number of surviving descendants is rA in state A and rB in state
B. Their further survival does not depend on this area. Let us take
rA> rB (just for concreteness).

The animal can just evaluate the previous state of the locations
where it is now but cannot predict the future state. There is no memory:
it does not remember the properties of the locations where it was be-
fore. It can either select the current (somehow chosen) location or to
move to another one. It can do no more than one change of locations.
The change of location decreases the reproduction coefficient by mul-
tiplication on −e C (cost of mobility).

Let S1(t) and S2(t) be the states of the locations 1 and 2, corre-
spondingly. Assume also that changes of the pairs (S1, S2) can be de-
scried by an ergodic Markov chain with four states (A, A), (A, B), (B, A),
and (B, B). Let all the transition probabilities be symmetric with respect
to the change of locations 1↔2. Four conditional probabilities are
needed for analysis of mobility effects in this model:

+ = = + = =S t A S t A S t B S t AP P( ( 1) ( ) ), ( ( 1) ( ) ),1 1 1 1

+ = = + = =S t A S t B S t B S t BP P( ( 1) ( ) ), and ( ( 1) ( ) ).2 1 2 1

Assume that an animal is at time t in the location with state A, then:

• if the animal remains in the initial location then the expected
number of surviving descendants is

+ = = + + = =S t A S t A r S t B S t A rP P( ( 1) ( ) ) ( ( 1) ( ) ) .A B1 1 1 1

• if the animal jumps to another location then the expected number of
surviving descendants is

+ = =
+ + = =

− S t A S t A r
S t B S t A r

P
P

e [ ( ( 1) ( ) )
( ( 1) ( ) ) ].

C
A

B

2 1

2 1

If an animal is at time t in the location with state B, then:

• if the animal remains in the initial location then the expected
number of surviving descendants is

+ = = + + = =S t A S t B r S t B S t B rP P( ( 1) ( ) ) ( ( 1) ( ) ) .A B1 1 1 1

• if the animal jumps to another location then the expected number of
surviving descendants is

+ = =
+ + = =

− S t A S t B r
S t B S t B r

P
P

e [ ( ( 1) ( ) )
( ( 1) ( ) ) ].

C
A

B

2 1

2 1

The choice ‘to stay in the current location or to jump’ is determined
by the selection of behaviour with the highest number of expected
offspring. In the evaluation of this number the temporal correlations
between S1(t) and +S t( 1),1 the spatio-temporal correlations between
S1(t) and +S t( 1),2 and the cost of mobility coefficient −e C are used.

6. Discussion

Superlinear increase of the mobility for decrease of the reproduction
coefficient in combination with linear cost of mobility leads to the
critical effect: for sufficiently bad condition the solution of equation for
mobility does not exist. For some dependencies of mobility on the re-
production coefficient this critical effect can be found explicitly (for
example, for the exponential dependence (1) proposed and analysed in
our previous work (Gorban and Çabukoǧlu, 2018)).

Existence of the critical effect is proven. The question arises: how to
find mobility after the critical transition? There is no formal tool to find
the answer. We suggest that after the critical threshold, the mobility
nullifies. Qualitatively this means that with worsening of conditions
mobility increases up to some maximal value. If the conditions dete-
riorate further, another mobility strategy is activated: do not waste
resources for mobility, just wait for conditions to change.

The exact values of the critical thresholds and the optimal depen-
dence of mobility on the reproduction coefficient depend on the cor-
relation of the conditions in space and time. Typical correlations during
the evolution time should be used. These correlations are unknown, and
instead plausible hypotheses and identification of parameters from the
data can be used.

There are several directions of further work:

• We expect that the described critical effect was widespread in
nature, but its description required a theoretical basis. Now this
basis is proposed, and existing data on animal mobility can be re-
vised to understand the new critical effect.

• The new family of models requires additional theoretical (mathe-
matical) and numerical analysis with the development of existence
and uniqueness theorems, the analysis of attractors, and the devel-
opment of adequate numerical methods.

• It would be great to apply the new models for modelling of dispersal
of real population.
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