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a b s t r a c t 

The notions of taxis and kinesis are introduced and used to describe two types of behaviour of an organ- 

ism in non-uniform conditions: (i) Taxis means the guided movement to more favourable conditions; (ii) 

Kinesis is the non-directional change in space motion in response to the change of conditions. Migration 

and dispersal of animals has evolved under control of natural selection. In a simple formalisation, the 

strategy of dispersal should increase Darwinian fitness. We introduce new models of purposeful kinesis 

with diffusion coefficient dependent on fitness. The local and instant evaluation of Darwinian fitness is 

used, the reproduction coefficient. New models include one additional parameter, intensity of kinesis, and 

may be considered as the minimal models of purposeful kinesis . The properties of models are explored by 

a series of numerical experiments. It is demonstrated how kinesis could be beneficial for assimilation of 

patches of food or of periodic fluctuations. Kinesis based on local and instant estimations of fitness is not 

always beneficial: for species with the Allee effect it can delay invasion and spreading. It is proven that 

kinesis cannot modify stability of homogeneous positive steady states. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

The notions of taxis and kinesis are introduced and used to de-

cribe two types of behaviour of an organism in non-uniform con-

itions: 

• Taxis means the guided movement to more favourable condi-

tions. 
• Kinesis is the non-directional change in space motion in re-

sponse to the change of conditions. 

In reality, we cannot expect pure taxis without any sign of ki-

esis. On the other hand, kinesis can be considered as a reaction

o the local change of conditions without any global information

bout distant sites or concentration gradients. If the information

vailable to an organisms is completely local then taxis is impos-

ible and kinesis remains the only possibility of purposeful change

f spatial behaviour in answer to the change of conditions. The in-

errelations between taxis and kinesis may be non-trivial: for ex-

mple, kinesis can facilitate exploration and help to find non-local

nformation about the living conditions. With this non-local infor-

ation taxis is possible. 

In this paper, we aim to present and explore a simple but basic

odel of purposeful kinesis. Kinesis is a phenomenon observed in
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 wide variety of organisms, down to the bacterial scale. Purpose-

ul seems to imply a sort of intentionality that these organisms

re incapable of. The terms ‘purpose’ and ‘purposeful’ are used

n mathematical modelling of biological phenomena in a wider

ense than in psychology. ‘Purpose’ appears in a model when it in-

ludes optimisation. The general concept of purposeful behaviour

 Rosenblueth and Wiener, 1950 ) of animals requires the idea of

volutionary optimality ( Parker and Smith, 1990 ). In many cases

his optimality can be deduced from kinetic equations in a form

f maximization of the average in time reproduction coefficient –

arwinian fitness ( Gorban, 2007; 1984; Metz et al., 1992 ). Applica-

ion of this idea to optimization of behaviour is the essence of evo-

utionary game theory and its applications to population dynamics

 Hofbauer and Sigmund, 1998 ). 

There are three crucial questions for creation of an evolutionary

ame model: 

1. Which information is available and usable? Dall et al. (2005)

proposed a quantitative theoretical framework in evolutionary

ecology for analysing the use of information by animal. Nev-

ertheless, the question about information which can be recog-

nised, collected and used by an animal requires empirical an-

swers. Answering this question may be very complicated for

analysis of taxis, which involves various forms of non-local in-

formation. For kinesis the situation is much simpler: the point-

wise values of several fields (concentrations or densities) are

assumed to be known ( Sadovskiy et al., 2009 ). 

https://doi.org/10.1016/j.ecocom.2018.01.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ecocom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ecocom.2018.01.002&domain=pdf
mailto:a.n.gorban@le.ac.uk
mailto:ag153@le.ac.uk
mailto:nc243@le.ac.uk
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2. What is the set of the available behaviour strategies? All the or-

ganisms, from bacteria to humans have their own set of avail-

able behaviour strategies, and no organism can be omnipotent.

It is necessary to describe constructively the repertoire of po-

tentially possible behaviours. 

3. What are the statistical characteristics of the environment, in

particular, and what are the laws and correlations in the chang-

ing of environment in space and time? It is worth mentioning

that all the changes in the environment should be measured by

the corresponding changes of the reproduction coefficient. 

We use a toy model to illustrate the idea of purposeful kine-

sis. Assume that an animal can use one of two locations for repro-

duction. Let the environment in these locations can be in one of

two states during the reproduction period, A or B . The number of

survived descendants is r A in state A and r B in state B . After that,

their further survival does not depend on this area. Assume also

that the change of states can be described by a Markov chain with

transition probabilities P A → B = p and P B → A = q . These assumptions

answer Question 3. 

The animal is assumed to be very simple: it can just evaluate

the previous state of the location where it is now but cannot pre-

dict the future state. There is no memory: it does not remember

the properties of the locations where it was before. This is the an-

swer to question 1. 

Finally, there is only one available behaviour strategy: to select

the current (somehow chosen) location or to move to another one.

There exists resources for one jump only and no ‘oscillating’ jumps

between locations are possible. This means that after the change

of location the animal selects the new location for reproduction

independently of its state. Thus Question 2 is answered. 

Analysis of the model is also simple. If the state of the location

is unknown then the probability of finding it in state A is q 
p+ q and

the probability of finding it in state B is p 
p+ q ; these are the sta-

tionary probabilities of the Markov chain. The expectation of the

number of offsprings without arbitrary information is 

r 0 = 

qr A + pr B 
p + q 

. 

If an animal chooses for reproduction the location with the pre-

vious state A then the conditional expectation of the number of

offsprings is r | A = (1 − p) r A + pr B . If it chooses the location with

the previous state B then the expected number of offsprings is

r | B = (1 − q ) r B + qr A . 

If the animal is situated in the location with the previous state

A , and r | A < r 0 , then the change of location will increase the ex-

pected number of offsprings. Analogously, if it is situated in the

location with the previous state B , and r | B < r 0 , then the change of

location will increase the number of offsprings. 

We have obtained the simplest model with mobility dependent

conditionally expected reproduction coefficient r | • under given lo-

cal conditions: if r | • is less than the value r 0 expected for the in-

definite situation then jump, else stay in the same location. This is

the essence of purposeful kinesis for this toy model. 

It is very difficult to find realistic space and time correlations in

the environment during the evolution of animals under consider-

ation. The answers to Questions 1 and 2 for real animals are also

non-obvious, but the main idea can be utilised for the modelling of

kinesis. We expect that the dynamics of the models could provide

insight, regardless of whether parameters were obtained from op-

timization of real Darwininan fitness or just the structure of equa-

tions was guessed on the basis of this optimization. 

In this paper, we study PDE models of space distribution.

We start from the classical family of models. Patlak (1953) , and

Keller and Segel (1971) proposed a PDE system which is widely
sed for taxis modelling ( Hillen and Painter, 2009 ). 

∂ t u (t, x ) = ∇ ( k 1 (u, s ) ∇u + k 2 (u, s ) u ∇s ) + k 3 (u, s ) u, 

∂ t s (t, x ) = D s ∇ 

2 s + k 4 (u, s ) − k 5 (u, s ) s, 
(1)

here 

u ≥ 0 is the population density, 

s ≥ 0 is the concentration of the attractant, 

D s ≥ 0 is the diffusion coefficient of the attractant, 

coefficients k i ( u, s ) ≥ 0. 

Coefficient k 1 ( u, s ) is a diffusion coefficient of the animals. It

epends on the population density u and on the concentration of

he attractant s . Coefficient k 2 ( u, s ) describes intensity of popula-

ion drift. 

Special random processes were introduced for ‘microscopic’

heory of dispersal in biological systems by Othmer et al. (1988) .

hey consist of two modes: (i) position jump or kangaroo pro-

esses, and (ii) velocity jump processes: 

• The kangaroo process comprises a sequence of pauses and

jumps. The distributions of the waiting time, the direction and

distance of a jump are fixed; 
• The velocity jump process consists of a sequence of ‘runs’ sep-

arated by reorientations, after which a new velocity is chosen. 

Eq. (1) can be produced from kinetic (transport) models of

elocity–jump random processes ( Othmer and Hillen, 20 0 0, 20 02 )

n the limit of large number of animals and small density gradients

nder an appropriate scaling of space and time. The higher approx-

mations are also available in the spirit of the Chapman–Enskog

xpansion from physical kinetics ( Chapman and Cowling, 1970 ).

halub et al. (2004) found sufficient conditions of absence of

nite-time-blow-ups in chemotaxis models. Turchin (1989) demon-

trated that attraction (and repulsion) between animals could

odify the space dispersal of population if this interaction is

trong enough. Méndez et al. (2012) derived reaction-dispersal-

ggregation equations from Markovian reaction-random walks

ith density-dependent transition probabilities. They have ob-

ained a general threshold value for dispersal stability and found

he sufficient conditions for the emergence of non-trivial spatial

atterns. Grünbaum (1999) studied how the advection-diffusion

quation can be produced for organisms (“searchers”) with differ-

nt food searching strategies with various turning rate and turning

ime distributions, which depend on the density of observed food

istribution. 

The family of models (1) is rich enough and the term ∇( k 1 ( u,

 ) ∇u ) can be responsible for modelling of kinesis: it describes

on-directional motion in space with the diffusion coefficient D =
 1 (u, s ) . This coefficient depends on the local situation represented

y u and s . In some sense, the family of models (1) is even too

ich: it includes five unknown functions k i with the only require-

ent, the non-negativity. 

Cosner (2014) reviewed PDE reaction–advection–diffusion mod-

ls for the ecological effects and evolution of dispersal, and math-

matical methods for analyzing those models. In particular, he dis-

ussed a series of optimality or evolutionary questions which arose

aturally: Is it better for the predators to track the prey density,

he prey’s resources, or some kind of combination? Is it more ef-

ective for predators to slow down their random movement when

rey are present or to use directed movement up the gradient of

rey density? Should either predators or prey avoid crowding by

heir own species? Cosner (2014) presented also examples when

iffusion is harmful for the existence of species: if the average in

pace of the reproduction coefficient is negative for all distribu-

ions of species then for high diffusion there is no steady state

ith positive total population even if there exist steady states
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Fig. 1. A schematic representation of a patch of food. 
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ith positive total population for zero or small diffusion (for con-

ected areas). The possibility of organisms moving sub- or super-

iffusively, e.g. Lévy walks, fractional diffusion, etc. (see, for exam-

le the works by Chen et al., 2010; Méndez et al., 2010 ), can be

ombined with the idea of purposeful mobility (see, for example

he works by Chen et al., 2010; Méndez et al., 2010 ) but we limit

nalysis in this paper by the classical PDE. 

In this work, we study the population dispersal without

axis, therefore, the advection coefficients k 2 is set below to

ero. Such dispersal strategy seems to be quite limited compar-

ng to the general kinesis+taxis dispersal system. Nevertheless,

olting et al. (2015) demonstrated on the jump models that the

urely kinesis (non-directional dispersal strategy) allows foragers

o identify efficiently intensive search zones without taxis and are

ore robust to changes in resource distribution. 

We also assume strong connection between the reproduction co-

fficient r = k 3 and the diffusion coefficient. The reproduction coef-

cient characterises both the competitive abilities of individuals,

nd their fecundity. The Darwinian fitness is the average repro-

uction coefficient in a series of generations ( Gorban, 2007; Hal-

ane, 1932; Metz et al., 1992 ). Dynamics maximise the Darwinian

tness of survivors (this is formalisation of natural selection). Un-

ortunately, evaluation of this quantity is non-local in time and

equires some knowledge of the future. Therefore, we use below

he local in time and space estimation of fitness and measure the

ell-being by the instant and local value of the reproduction co-

fficient r . This is a rather usual approach but it should be used

ith caution: in some cases, the optimisation of the local criteria

an worsen the long-time performance. We describe one such sit-

ation below: use a locally optimised strategy of kinesis may delay

nvasion and spreading of species with the Allee effect. On another

and, we demonstrate how kinesis controlled by the local repro-

uction coefficient may be beneficial for assimilation of patches of

ood or periodic fluctuations. 

. Main results 

.1. The “Let well enough alone” model 

The kinesis strategy controlled by the locally and instantly eval-

ated well-being can be described in simple words: Animals stay

onger in good conditions and leave quicker bad conditions. If the

ell-being is measured by the instant and local reproduction co-

fficient then the minimal model of kinesis can be written as fol-

ows: 

∂ t u i (x, t) = D 0 i ∇ 

(
e −αi r i (u 1 , ... ,u k ,s ) ∇u i 

)
+ r i (u 1 , . . . , u k , s ) u i , (2) 

here: 

u i is the population density of i th species, 

s represents the abiotic characteristics of the living conditions

(can be multidimensional), 

r i is the reproduction coefficient, which depends on all u i and

on s , 

D 0 i > 0 is the equilibrium diffusion coefficient (defined for r i =
0 ), 

The coefficient αi > 0 characterises dependence of the diffusion

coefficient on the reproduction coefficient. 

Eq. (2) describe dynamics of the population densities for ar-

itrary dynamics of s . For the complete model the equations for

nvironment s should be added. The space distribution strategy is

ummarised in the diffusion coefficient D i = D 0 i e 
−αi r i , which de-

ends only on the local in space and time value of the reproduc-

ion coefficient. Diffusion depends on well-being measured by this
oefficient. We can see that the new models add one new parame-

er per species to the equations (instead of function k 1 ( u, s ) in (1) ).

his is the kinesis constant αi . It can be defined as 

i = − 1 

D 0 i 

dD i (r i ) 

dr i 

∣∣∣∣
r i =0 

. 

n the first approximation, D i = D 0 i (1 − αi r i ) . The exponential form

n (2) guarantees positivity of the coefficient D i for all values of r i . 

For good conditions ( r i > 0) diffusion is slower than at equi-

ibrium ( r i = 0 ) and for worse conditions ( r i < 0) it is faster.

q. (2) just formalise a simple wisdom: do not change the loca-

ion that is already good enough ( let well enough alone ) and run

way from bad location. 

We analyse below how the dependence of diffusion on well-

eing effects patch dynamics and waves in population dynamics. 

.2. Stability of uniform distribution 

The positive uniform steady state ( u ∗, s ∗) satisfies the equation:

 i (u ∗1 , . . . , u 
∗
k 
, s ∗) = 0 . 

The linearised equations near the uniform steady state are 

 t δu i (x, t) = d i ∇ 

2 (δu i ) + u i 

( ∑ 

j 

r i, j δu j + r i, 0 δs 

) 

, (3)

here 

δu i is the deviation of the population density of i th animal from

equilibrium u ∗, δs = s − s ∗, 
r i, j = ∂ r i /∂ u j | (u ∗,s ∗) , r i, 0 = ∂ r i /∂ s | (u ∗,s ∗) are derivatives of r at

equilibrium. 

These linearised equation are the same as for the system with-

ut kinesis (with constant diffusion coefficients). Therefore, kinesis

oes not change stability of positive uniform steady states . Moreover,

ear such a steady state linearised equations for a system with ki-

esis are the same as for the system with constant diffusion coef-

cient. 

There is an important difference between possible dynamic

onsequences of taxis and kinesis: we proved that kinesis can-

ot modify stability of homogeneous steady states, whereas

yutyunov et al. (2017) demonstrated that taxis can destabilise

hem. 

.3. Utilisation of a patch of food 

As a first test for the new model we used utilisation of a

atch of food (a sketch of this gedankenexperiment is presented

n Fig. 1 ). Concentration of food in patches is one of the stan-

ard ecological situations. Nonaka and Holme (2007) considered

clumpiness” as a main characteristic of the food distribution and

eveloped an agent-based model for analysis of optimal foraging.

rünbaum (1998) studied foraging in population of the ladybird
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Fig. 2. Utilisation of a food patch. Population density burst and relaxation: a) for 

animals with kinesis and b) for animals without kinesis. 

Fig. 3. Utilisation of a food patch: a) dynamics of population density at the centre 

of patch, b) dynamics of the food density at the centre of patch. 
beetle ( Coccinella septempunctata ), while preying on the golden-

rod aphid ( Uroleucon nigrotuberculatum ). He used both experimen-

tal observation and PDE models and analysed nonuniform “aggre-

gated” distributions, in which foragers accumulate at resource con-

centrations, and evaluated parameters of foragers’ strategy from

experimental data. 

From our point of view, the potential of PDE models is not ex-

hausted despite of growing popularity of the multiagent models

in dynamics of space distribution of populations ( Rahmandad and

Sterman, 2008 ). Let us compare two models: 

• A system of one PDE for population with kinesis and one ODE

for substrate: 

∂ t u (t, x ) = D ∇ 

(
e −α(as (t,x ) −b) ∇u 

)
+ (as (t, x ) − b) u (t, x ) , 

∂ t s (t, x ) = −gu (t , x ) s (t , x ) + d; (4)

• A system of one PDE for population with the constant diffu-

sion coefficient (i.e. without kinesis) and the same ODE for sub-

strate: 

∂ t u (t, x ) = D ∇ 

2 u + (as (t, x ) − b) u (t, x ) , 
∂ t s (t, x ) = −gu (t , x ) s (t , x ) + d. 

(5)

These models are particular realisations of the system (1) 

For the computations experiment, to solve partial differential

equations, first MATLAB ( pdepe, 2017 ) function has been used

for space dimension one. For two-dimensional results below, the

MATHEMATICA ( NDSolve, 2014 ) solver with Hermite method and

Newton’s divided difference formula has been used. 

We selected 1D benchmark ( Fig. 1 , compare to Fig. 1 in work of

Grünbaum, 1998 ) on the interval [ −50 , 50] with boundary condi-

tions and with the initial conditions: 

s (0 , x ) = Ae −
x 2 

2 , u (0 , x ) = 1 , A = 4 . 

The values of the constants are: D = 10 , α = 5 , a = 2 , b = 1 , g = 1 ,

d = 1 . 

It is the first expectation that the proper kinesis should improve

the ability of animals to survive in a clumpy landscape. We can

see from Figs. 2 and 3 that the density burst for the system with

kinesis is higher and the utilisation of fluctuation of substrate goes

faster than without kinesis. 

The fluctuation of food decreases faster for the system with ki-

nesis. The population density increases to a higher level for system

with kinesis. This is essentially non-linear effect because in the lin-

ear approximation near uniform equilibrium models with kinesis

(4) and without kinesis (5) coincide. 

2.4. Utilisation of fluctuations in food density 

For the second benchmark we consider fluctuations of sub-

strate, which are periodic in space and time. Our gedankenex-

perimet includes two populations of animals. The only difference

between them is that the first population diffuses with kinesis

(population density v ), whereas the second (population density u )

just diffuses with the constant diffusion coefficient (no kinesis).

The equilibrium values of the diffusion coefficients coincide. These

populations interact by consuming the same resource as it is de-

scribed by Eq. (6) below 

∂ t u (t, x ) = D ∇ 

2 u + (as (t, x ) − b) u (t, x ) ;
∂ t v (t, x ) = D ∇ 

(
e −α(as (t,x ) −b) ∇v 

)
+ (as (t, x ) − b) v (t, x ) ;

∂ t s (t, x ) = −g(u + v ) s + d[1 + δ sin (w 1 t) sin (w 2 x )] , 

(6)

with zero-flux boundary conditions and with the initial condi-

tions: 

s (0 , x ) = 0 . 5 , u (0 , x ) = 1 , v (0 , x ) = 1 . 

The values of constants are: D = 10 , α = 5 , a = 2 , b = 1 , g = 1 , d =
1 , w = w = 1 . 
1 2 



A.N. Gorban, N. Çabuko ̌glu / Ecological Complexity 33 (2018) 75–83 79 

Fig. 4. Dynamics of population densities in fluctuating conditions: a) growth of 

subpopulation with kinesis, b) extinction of subpopulation without kinesis. 

Fig. 5. Dynamics of population densities in fluctuating conditions at one point (the 

centre of the interval). Concurrent exclusion of the population without kinesis by 

the population with kinesis. 
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Animals with kinesis have evolutionarily benefits in the ex-

lored non-stationary condition. We observe extinction of the pop-

lation without kinesis ( Figs. 4 and 5 ). This is the concurrent ex-

lusion of the animals without kinesis by the animals with kinesis.

t the same time, the fluctuations of the population with kinesis

n space and time are lager then for the population without it. This

ffect was expected: animals with kinesis rarely leave the benefi-

ial conditions an jump more often from the worse conditions. In

he conditions with the reproduction coefficient r > 0 their density

rows faster and in the worse condition (with r < 0) it decreases

aster than for animals with the constant diffusion coefficient. 
.5. Spreading of a population with the Allee effect 

The reproduction coefficient of a population takes its maximal

alue at zero density and monotonically decays with the density

rowth in the simplest models of logistic growth and their closest

eneralisations. It is widely recognised that such a monotonicity is

n oversimplification: The reproduction coefficient is not a mono-

onic function of the population density ( Allee et al., 1949; Odum

nd Barrett, 1971 ). This is the so-called Allee effect . The assump-

ion of the negative growth rate for small values of the population

ensity is sometimes also included in the definition of the Allee ef-

ect. The Allee effect is often linked to the low probability of find-

ng a mate in a low density population but non-monotonicity of

ependence of the reproduction coefficient on the population den-

ity and existence of the positive optimal density can have many

ifferent reasons. For example, any form of cooperation in com-

ination with other density-dependent factors could also produce

 non-monotonic reproduction coefficient and existence of optimal

opulation density. 

The simplest polynomial form of the reproduction coefficient

ith the Allee effect is r(u ) = r 0 (K − u )(u − β) . A typical depen-

ence r ( u ) with the Allee effect is presented in Fig. 6 . The op-

imal density corresponds to the maximal value of r (by defi-

ition). The evolutionarily optimal strategy for populations with

he Allee effect is life in clumps with optimal density when the

verage density is lower than the optimal density ( Gorban and

adovskiy, 1989 ). This clumpiness appears even in homogeneous

xternal conditions and is the most clear manifestation of the Allee

ffect in ecology. There are multiple dynamical consequences of

he Allee effect ( Bazykin, 1998; McCarthy, 1997 ). In combination

ith diffusion it leads to a possibility of spread of invasive species

ia formation, interaction and movement of separate patches even

n homogeneous external conditions ( Morozov et al., 2006; Petro-

skii et al., 2002 ). 

The reaction–diffusion equations for a single population with

he Allee effect in dimensionless variables are below for a system

ithout kinesis (7) and for a system with kinesis (9) . 

 t u (t, x ) = D ∇ (∇ u ) + (1 − u )(u − β) u (t, x ) , (7) 

 t u (t, x ) = D ∇ 

(
e −α(1 −u )(u −β) ∇u 

)
(8) 

+(1 − u )(u − β) u (t, x ) . 

he values of the constants are: D = 1 , α = 10 , β = 0 . 2 . 

We study invasion of a small, highly concentrated population

nto a homogeneous environment. Eqs. (7) and (9) are solved for

ne space variable x ∈ [ −50 , 50] with zero-flux boundary boundary

onditions and with the initial conditions: 

 (0 , x ) = Ae −
x 2 

2 , A = 1 . (9)
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Fig. 7. Evolution of a small, highly concentrated population with the Allee effect 

from the Gaussian initial conditions (9) in a homogeneous environment: (a) for an- 

imals with kinesis, (b) for animals without kinesis (7) . The values of constants are: 

D = 1 , α = 5 , β = 0 . 2 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Evolution of a small, highly concentrated population with the Allee effect 

from the Gaussian initial conditions (9) in a homogeneous environment: (a) popu- 

lation density at the centre of the drop, (b) total population dynamics (numerically 

integrated over space). The values of constants are: D = 1 , α = 5 , β = 0 . 2 . 

Fig. 9. Initial distribution ( t = 0 ): u (0 , x ) = Ae −
x 2 + y 2 

2 , A = 1 . 
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The results of the numerical experiments ( Figs. 7 and 8 )

demonstrate that kinesis may delay invasion and spreading of

species with the Allee effect. The width of the cluster grows faster

for the system without kinesis ( Fig. 7 ), and the total population

dynamics numerically integrated over space ( Fig. 8 ) also demon-

strates the faster growth of population without kinesis. The delay

in spreading appears because the animals with kinesis rarely leave

dense clusters, whereas animals without kinesis are spreading in

areas with lower values of the reproduction coefficient and pop-

ulate them. this effect is also reproduced in two-dimensional case

presented in Figs. 10 and 11 : an initial Gaussian drop ( Fig. 9 ) grows

with kinesis ( Fig. 10 ) slower than without kinesis ( Fig. 11 ). 

This effect of faster spreading could also lead to extinction for

a population with Allee effect. For small population density u < β
the reproduction coefficient is negative. If diffusion is so fast that

the local concentration becomes lower than the threshold β then

the extinction of population follows. In Fig. 13 we can see how

the population without kinesis vanishes for high diffusion, whereas

the population with kinesis persists for the same diffusion ( Fig. 12 )

because it keeps low mobility at locations with high reproduction

coefficient. 

3. Discussion 

We suggested a model of purposeful kinesis with the diffu-

sion coefficient directly dependent on the reproduction coefficient.

This model is a straightforward formalisation of the rule: “Let well

enough alone”. The well-being is measured by local and instant

values of the reproduction coefficient. Gorban et al. (2016) have

discussed the problems of definition of instant individual fitness

in the context of physiological adaptation. Let us follow here this

analysis in brief. The proper Darwinian fitness is defined by the
ong-time asymptotic of kinetics. It is non-local in time because

t is the average reproduction coefficient in a series of genera-

ions and does not characterize an instant state of an individual or-

anism ( Gorban, 2007; Haldane, 1932; Maynard-Smith, 1982; Metz

t al., 1992 ). The synthetic evolutionary approach starts with the

nalysis of genetic variation and studies the phenotypic effects of

hat variation on physiology. Then it goes to the performance of or-

anisms in the sequence of generations (with adequate analysis of
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Fig. 10. 2D Allee effect with kinesis D = 0 . 2 , α = 5 , β = 0 . 1 , with Gaussian initial distribution ( Fig. 9 ). 

Fig. 11. 2D Allee effect without kinesis D = 0 . 2 , α = 5 , β = 0 . 1 , with Gaussian initial distribution ( Fig. 9 ). 

Fig. 12. 2D Allee effect with kinesis , D = 0 . 5 , α = 5 , β = 0 . 1 , with Gaussian initial distribution ( Fig. 9 ). 

Fig. 13. 2D Allee effect without kinesis D = 0 . 5 , α = 5 , β = 0 . 1 , with Gaussian initial distribution ( Fig. 9 ). 
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he environment) and, finally, it has to return to Darwinian fitness.

he ecologists and physiologists are focused, first of all, on the

bservation of variation in individual performance ( Pough, 1989 ).

n this approach we have to measure the individual performance

nd then link it to the Darwinian fitness. This link is not obvious.

oreover, the dependence between the individual performance

nd the Darwinian fitness is not necessarily monotone. (This ob-
ervation was partially formalized in the theory of r− and K− se-

ection ( MacArthur and Wilson, 1967; Pianka, 1970 ).) The notion

performance’ in ecology is ‘task–dependent’ ( Wainwright, 1994 )

nd refers to an organism’s ability to carry out specific behaviours

nd tasks: to capture prey, escape predation, obtain mates, etc. Di-

ect instant measurement of Darwinian fitness is impossible but it

s possible to measure various instant performances several times
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Fig. 14. Flow diagram showing the paths through from genotype to Darwinian fit- 

ness. Genotype in combination with environment determines the phenotype up to 

some individual variations. Phenotype determines the limits of an individual’s abil- 

ity to perform day-to-day behavioural answer to main ecological challenges (per- 

formances). Performance capacity interacts with the given ecological environment 

and determines the resource use, which is the key internal factor determining re- 

productive output and survival. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r  

f

 

r  

c  

a  

b  

a  

t  

t  

m  

s  

2  

b  

s  

d  

s  

i  

d

 

e  

i  

M  

s  

c  

a  

c  

s  

e  

e  

v  

a

A

 

s  

A  

w  

(

R

A  

A  

B  

B  

 

 

 

 

C  

 

C  

C  

 

 

G  
and treat them as the components of fitness in the chain of gener-

ations. The relations between performance and lifetime fitness are

sketched on flow-chart ( Fig. 14 ) following Wainwright (1994) with

minor changes. Darwinian fitness may be defined as the lifetime

fitness averaged in a sequence of generations. 

The instant individual fitness is the most local in time level in

the multiscale hierarchy of measures of fitness: instant individual

fitness → individual life fitness → Darwinian fitness in the chain

of generations. The quantitative definition of the instant and local

fitness is given by its place in the equations. The change of the

basic equation will cause the change of the quantitative definition.

We have used the instant and local reproduction coefficient r

for defining of purposeful kinesis. The analysis of several bench-

mark situations demonstrates that, indeed, sometimes this formal-

isation works well. Assume that this coefficient r ( u, s ) is a mono-

tonically decreasing function of u for every given s and monotoni-

cally increasing function of s for any given u . Then our benchmarks

give us the following hints: 

• It the food exists in low-level uniform background concentra-

tion and in rare (both in space and time) sporadic patches then

purposeful kinesis defined by the instant and local reproduction

coefficient (2) is evolutionarily beneficial and allows animals to

utilise the food patches more intensively (see Figs. 2 and 3 ); 
• If there are periodic (or almost periodic) fluctuations in space

and time of the food density s then purposeful kinesis defined

by the instant and local reproduction coefficient (2) is evolu-

tionarily beneficial and allows animals to utilize these fluctua-

tions more efficiently (see Figs. 4 and 5 ). 
• If the reproduction coefficient r ( u, s ) is not a monotonically de-

creasing function of u for every given s (the Allee effect) then

the “Let well enough alone” strategy may delay the spreading

of population (see Figs. 7, 8, 10 , and 11 ). This strategy can lead

to the failure in the evolutionary game when the colonization

of new territories is an important part of evolutionary success.

This manifestation of the difference between the local optimi-

sation and the long-time evolutionary optimality is important

for understanding of the evolution of dispersal behaviour. At

the same time, the “Let well enough alone” strategy can pre-

vent the effects of extinction caused by too fast diffusion (see
Figs. 12 and 13 ) and, thus, decrease the effect of harmful diffu-

sion described by Cosner (2014) . 

These results of exploratory numerical experiments should be

eformulated and transformed into rigorous theorems in the near

uture. 

Purposeful kinesis is possible even for very simple organisms: it

equires only perception of local and instant information. For more

omplex organisms perception of non-local information, memory

nd prediction ability are possible and the kinesis should be com-

ined with taxis. The idea of evolutionary optimality can also be

pplied to taxis. This approach immediately produces an advec-

ion flux, which is proportional to the gradient of the reproduc-

ion coefficient. Cantrell et al. (2010) introduced and studied such

odels. Moreover, the evolutionarily stable flux in these models

hould be proportional to u ∇ln r ( Averill et al., 2012; Gejji et al.,

012 ). Here, ∇r could be considered as a ‘driving force’. It would

e a very interesting task to combine models of purposeful kine-

is with these models of taxis and analyse the evolutionarily stable

ispersal strategies, which are not necessarily unique even for one

pecies ( Büchi and Vuilleumier, 2012 ). Of course, the cost of mobil-

ty should be subtracted from the reproduction coefficient for more

etailed analysis. 

If we go up the stair of organism complexity, more advanced

ffects should be taken into account like collective behaviour and

nteraction of groups in structured populations ( Perc et al., 2013 ).

oreover, the evolutionary dynamics in more complex systems

hould not necessarily lead to an evolutionarily stable strategy and

ycles are possible ( Gorban, 2007; Szolnoki et al., 2014 ). Even rel-

tively simple examples demonstrate that evolutionary dynamics

an follow trajectories of an arbitrary dynamical system on the

pace of strategies ( Gorban, 1984 ). Human behaviour can be mod-

lled by differential equations with use of statistical physics and

volutionary games ( Perc et al., 2017 ), but special care in model

erifications and healthy scepticism in interpretation of the results

re needed to avoid oversimplification. 
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